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Abstract

Maternal diet and metabolic state are important factors in determining the environment 

experienced during perinatal development. Epidemiological studies and evidence from animal 

models provide evidence that a mother’s diet and metabolic condition are important in 

programming the neural circuitry that regulates behavior, resulting in a persistent impact on the 

offspring’s behavior. Potential mechanisms by which maternal diet and metabolic profile 

influence the perinatal environment include placental dysfunction and increases in circulating 

factors such as inflammatory cytokines, nutrients (glucose and fatty acids) and hormones (insulin 

and leptin). Maternal obesity and high-fat diet (HFD) consumption exposure during development 

have been observed to increase the risk of developing serious mental health and behavioral 

disorders including anxiety, depression, attention deficit hyperactivity disorder and autism 

spectrum disorder. The increased risk of developing these behavioral disorders is postulated to be 

due to perturbations in the development of neural pathways that regulate behavior, including the 

serotonergic, dopaminergic and melanocortinergic systems. It is critical to examine the influence 

that a mother’s nutrition and metabolic profile have on the developing offspring considering the 

current and alarmingly high prevalence of obesity and HFD consumption in pregnant women.
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Introduction

Obesity has a significant and deleterious effect on numerous aspects of human health. Being 

obese increases the risk of many serious diseases including cardiovascular disease, 

hypertension, diabetes and several forms of cancers (1–3). Mounting evidence suggests that 

obesity is also associated with mental health disorders such as anxiety (4), depression (4) 

and attention deficit hyperactivity disorder (ADHD) (5). As obesity increases the risk of 

many serious metabolic diseases and behavioral disorders, it has a significant impact on 

quality of life and decreases life expectancy. According to the latest statistics from the 
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National Health and Nutrition Examination Survey, a third of adult Americans are currently 

obese (6). The prevalence of obesity in both adults and children has markedly increased in 

the United States over the past three decades (7); childhood obesity has more than tripled in 

children aged 6–11 years since 1980 (8). The recent dramatic rise in the prevalence of 

obesity has led to a staggering increase in national health-care costs. This surge in obesity 

rates is likely due in part to increased accessibility to calorically dense and highly palatable 

foods (9). In addition, modern technologies have decreased the amount of energy needed to 

complete daily tasks, and adults and children are increasingly able to choose sedentary 

activities such as watching television and playing video games in place of more physically 

active leisure activities (9). Of dire concern, recent reports and news in the popular press 

have suggested that the current new generation will be the first to have a decreased life 

expectancy compared to their parents (10, 11). Importantly, there is increasing evidence 

from animal models that programming during perinatal environment contributes to the 

striking rise in obesity rates (12–15).

Although there are many aspects by which maternal obesity, insulin resistance and/or diet 

affect fetal and adolescent development, this review will focus on the critical impact on 

brain development that has consequences for offspring behavior. It is our belief that negative 

impacts on behavior and increased risks of psychiatric disorders may have a consequence on 

quality of life as serious as the potential metabolic outcomes that impact life expectancy.

Maternal Obesity Increases Offspring’s Risk of Obesity and Metabolic 

Diseases

A third of pregnant American women are currently obese (8), and the majority consume 

excess calories due to consumption of a diet high in fat (16). Children who are exposed to 

maternal obesity during gestation have an increased risk of obesity and metabolic syndrome 

in adulthood (17, 18). Furthermore, gestational diabetes, which can significantly affect 

prenatal development, has also been well documented to increase offspring risk of adult 

obesity (19). The effect of maternal obesity on the susceptibility to obesity in offspring is 

thought to be independent of gestational diabetes because obese mothers with euglycemia 

still have babies with increased adiposity (20). Maternal obesity also increases the risk of the 

child developing fatty liver disease, cardiovascular disease and diabetes (8, 21). Given the 

high prevalence of obesity in pregnant women, it is critical to examine the full impact of 

maternal obesity on the developing offspring.

However, it should be noted that one of the limiting factors of the human studies is the 

inability to segregate the possible effects of the maternal metabolic phenotype versus the 

diet that may be causing the obesity and insulin resistance. To truly understand the relative 

contributions of the different aspects of metabolic complications associated with maternal 

obesity, we need to have better characterization of the metabolic phenotype and diet in these 

clinical and epidemiological studies. Much can also be learned from well-controlled animal 

models.
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Animal Models of Maternal Obesity

Maternal obesity is commonly simulated in animal models by feeding adult females a 

palatable diet that is high in fat. However, the duration of diet exposure and the composition 

of the diet are variable between studies. The diets most often used to produce obesity are 

either a refined high-fat diet (HFD) with fat in place of carbohydrates as an energy source or 

a cafeteria diet in which animals are provided with a selection of calorie-dense palatable 

food items that have a high fat and carbohydrate content along with their regular diet. The 

cafeteria diet is most effective in promoting obesity possibly because of the greater caloric 

load and/or increased consumption of carbohydrates. Differences between studies may be 

partly due to the carbohydrate content of the diet, as perinatal high carbohydrate 

consumption has been shown to have a lasting impact on neural development in rodent (22) 

and sheep (23) models. Rats fed a HFD through pregnancy and lactation have pups with 

increased body weight and adiposity, as well as higher rates of hyperglycemia compared to 

pups from control diet-fed mothers (24). Murine models of chronic maternal overnutrition 

also find that offspring show increased adiposity due to hyperphagia and reduced locomotor 

activity (25). In addition, exposure to a highly palatable junk-food diet during perinatal 

development results in offspring with increased preference for fatty, sugary and salty foods 

(26). Our group has further confirmed these findings using a nonhuman primate (NHP) 

model of HFD-induced maternal obesity. Juvenile offspring from HFD-fed mothers display 

increased body weight and fat mass, hyperleptinemia, and the early stages of fatty liver 

disease (27). Importantly, we demonstrated that the effects of maternal HFD on the offspring 

are independent of maternal obesity (27). These studies confirm that in animal models, 

maternal overnutrition predisposes offspring to early-onset obesity and metabolic disorders. 

Since these maternal HFD effects are independent of obesity (27), it may be critical to 

provide nutritional advice to all pregnant women and not just those who are visibly obese.

Maternal Obesity Increases Offspring’s Risk of Mental Health Disorders

In recent years, maternal obesity has also been linked to increased risk of behavioral 

disorders in human offspring, including ADHD (28, 29) and autism spectrum disorders 

(ASD) (30). Maternal obesity and diabetes are also linked with an increased prevalence of 

ASD and developmental delays in children aged 2–5 years old (30). Mothers of children 

with ADHD are almost twice as likely to be obese than mothers of unafflicted children (28). 

Similarly, pre-pregnancy obesity is associated with a twofold risk in ADHD symptom score 

in offspring, compared with the children of women who were of normal weight during 

pregnancy (29). Children of mothers with maternal diabetes also showed significant deficits 

in expressive language (30). These human studies indicate a potential link between having 

an obese mother and developing behavioral disorders, but it is unclear if this relationship is 

due to genetic factors, a common postnatal environment, or the prenatal environment that 

offspring from obese mothers experience due to diet. Animal studies have begun to shed 

some light on the contribution of each of these important factors.
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Animal Models of Maternal Obesity Show Persistent Behavioral Changes

Animal studies provide clear evidence that offspring behavior is affected by maternal HFD 

consumption. Recent studies in NHP (31) and rodent (32) models indicate that maternal 

HFD consumption is associated with increased anxiety. Adult male rat offspring exposed to 

a diet high in either saturated or trans fat during gestation and lactation displayed increased 

anxiety (32). However, other studies in rodents suggest that HFD feeding decreases anxiety. 

It appears that this may be dependent on the composition of the diet and on the timing of 

consumption (33) by the mother. Offspring from mothers fed a purified HFD throughout the 

perinatal period displayed increased anxiety, whereas offspring exposed to a cafeteria diet 

during lactation displayed evidence of decreased anxiety (33). Moreover, cafeteria diet 

consumption during the early postnatal period has been observed to reduce anxiety and 

depression-like behaviors in rodent offspring exposed to stress during gestation (34). By 

using a NHP model, our group demonstrated that maternal HFD consumption through the 

perinatal period suppresses serotonergic system signaling, which predisposes female 

offspring to increased anxiety (31). The finding that female NHP offspring exposed to 

maternal HFD consumption are more sensitive to developing anxiety than male offspring is 

consistent with findings in humans that indicate that females are more susceptible to anxiety 

than males and that the association between obesity and anxiety is stronger in women than 

men (35). However, the studies in the animal models suggest that there could be an earlier 

programming event that causes a neurochemical imbalance that makes these individuals 

especially sensitive to social stresses later in life.

Indeed, maternal diet during the perinatal period also impacts the offspring’s social 

behavior. Rat offspring exposed to a maternal diet high in polyunsaturated fatty acids 

displayed increased aggression to intruders (36). Changes in reward-based feeding have also 

been observed in several models of maternal HFD consumption (26, 37, 38). For example, 

rat offspring exposed to junk food during either gestation or lactation displayed increased 

preference for fatty, sugary and salty foods as adults (26, 37, 38). This finding is confirmed 

by preliminary studies using our NHP model of HFD-induced maternal obesity, which find 

that HFD offspring display increased preference for diets with a high sugar and fat content 

(Sullivan and Grove, unpublished observation). Maternal HFD consumption has also been 

associated with decreased behavioral sensitization to amphetamine in the offspring by 

altering dopamine transmission through the nucleus accumbens (39). These studies provide 

compelling evidence that perinatal nutrition may have a long-term influence on reward-

based behaviors such as consumption of palatable food and response to drugs of abuse.

Potential Mechanisms for Maternal Obesity Programming Behavior

Several mechanisms are postulated to be contributors to the impact that maternal obesity and 

HFD consumption have on the development of the complex neural circuitry involved in 

behavioral regulation. HFD exposure has been observed to affect the development of 

neurotransmitter signaling pathways such as the serotonergic (31), dopaminergic (39, 40), 

melanocortinergic (41), and galanin systems (42). Maternal obesity and HFD consumption 

are associated with a number of potential factors that can affect brain development: placental 
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dysfunction, increased exposure to inflammatory factors, increased circulating levels of 

metabolic hormones, and increased levels of nutrients.

Maternal Obesity Causes Placental Dysfunction

The increased rate of maternal obesity in humans corresponds with an increase in pregnancy 

complications (18). These complications are thought to be due to placental dysfunction, as 

placental dysfunction has been observed in NHP (43) and ovine models (44) of maternal 

obesity and HFD consumption. Studies with large animal models indicate that there is a 

strong association between maternal diet and disruption of normal placental function. Our 

group has demonstrated that NHP mothers that consumed a HFD before and during 

pregnancy showed a 35–50% decrease in uterine artery blood flow, which was independent 

of maternal metabolic phenotype (43). There were further complications with fetal blood 

flow and a higher frequency of placental infarctions and stillbirths if the mothers were obese 

and insulin resistant (43). Ovine studies similarly found that overnourished ewes exhibited 

decreased uterine blood flow, a reduction in placental mass by one third and reduced 

placental capillary density (44). Rodent models of maternal HFD consumption have also 

shown reduced placental mass (45). These finding emphasize that there is a consistent 

relationship between HFD consumption and reduced uterine blood flow (44), leading to 

placental dysfunction.

Maternal Obesity is Associated with Inflammation

Obesity can be thought of as a state of chronic inflammation because it results in increased 

levels of circulating inflammatory cytokines in many organs, including the brain (46) and 

the placenta (47, 48). In human studies, the amount of adipose tissue mass is positively 

correlated with elevations in markers of inflammation such as C-reactive protein, interleukin 

(IL)-6, and IL-1β in the plasma (46, 49). These inflammatory markers are associated with an 

increased risk for a number of metabolic diseases: cardiovascular disease, heart disease, 

insulin resistance, type 2 diabetes mellitus and hypertension (46). In patients with type 1 

diabetes, who suffer from a compromised immune system, metabolic disease is associated 

with increased serum levels of the endotoxin lipopolysaccharide (LPS) originating from 

bacterial colonization of the gastrointestinal tract (50). LPS upregulates inflammatory 

responses through pathways modulated by receptors such as toll-like receptor-4 (51). During 

pregnancy, increased levels of inflammatory cytokines secreted from adipocytes in obese 

women contribute to endothelial (52) and placental dysfunction (53). As maternal obesity 

can stimulate endotoxemia and elevated inflammatory cytokines, it increases the amount of 

inflammatory factors that the developing fetus comes into contact with and that affects 

neural development.

HFD-Induced Inflammation Results in Placental Dysfunction in Animal 

Models

As described above, maternal obesity and HFD consumption are associated with both 

decreased placental blood flow and an increase in circulating inflammatory cytokines. In 

addition, evidence from animal models indicates that consumption of a HFD increases 
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inflammation in the placenta. The placentae of obese sheep displayed elevated levels of 

activated inflammatory signaling pathways and inflammatory cytokine activity compared 

with those of nonobese ewes (54). Furthermore, in our NHP model, we have shown that 

consumption of a HFD, regardless of the metabolic state of the mother, increases the 

expression of placental inflammatory cytokines and that these cytokines are selectively 

secreted into the fetal compartment (43). This is of grave concern, as rodent models have 

shown that placentally generated cytokines initiated further cytokine synthesis in the fetus, 

perpetuating the inflammatory environment (55, 56). Elevation of such cytokines also led to 

changes in growth factors that are essential for fetal development (57) and for changes in 

behavior.

Inflammation-Induced Neural Programming

There is strong evidence that exposure to increased circulating cytokines during fetal 

development affects brain development and thus is a potential mechanism by which 

maternal HFD consumption affects behavioral regulation. Rodent offspring from mothers 

consuming a HFD exhibit neural inflammation as evidenced by increased microglial 

activation in the hippocampus, which persists into adulthood (57) and is associated with 

decreased neurogenesis in the corresponding region (58). NHP offspring from mothers 

consuming a HFD show an increase in circulating and hypothalamic cytokines during the 

early third trimester (41). The development of neurotransmitter systems critical for 

regulating behavior are affected by such circulating cytokines (46). This exposure to 

increased inflammatory cytokines may lead to the perturbations in the melanocortinergic 

(41) and serotonergic system observed in fetal offspring (31). Maternal HFD consumption 

downregulates dopamine release in the nucleus accumbens of rodent offspring, leading to 

increased motivation to consume fatty food (40). Rats that had decreased accumbens 

dopamine were more likely to be obese (59), indicating that they may be increasing 

consumption in order to combat their lower levels of dopamine. Palatable food may 

therefore be overconsumed in an attempt to elevate dopamine levels. One study suggests 

that increasing consumption of fatty foods causes a positive feedback loop in the nucleus 

accumbens and hippocampus, meaning that increases in palatable food intake would 

increase the desire of an individual to eat fatty food (60).

Neural inflammation has also been observed as a result of bacterial or viral infection, and 

this evidence demonstrates how influential inflammation is for brain development. It is well 

documented that when infections or illness occur during pregnancy, there is a subsequent 

increase in inflammatory cytokines delivered to the developing fetus, which in turn causes 

an inflammatory response in the fetal brain during critical periods of development (61). For 

example, women who were infected with influenza during pregnancy had offspring who 

were at an increased risk of developing schizophrenia (62). NHP studies show that a mid-

gestational influenza infection results in atypical brain development similar to what is seen 

in cases of schizophrenia, such as reduced cortical gray matter and enlarged lateral 

ventricles (63, 64). These structural abnormalities are persistent and are likely to manifest 

into behavioral dysfunction, but this study was not long enough to observe the full extent of 

behavioral effects (64). Offspring of NHP mothers affected by influenza during pregnancy 

demonstrated trouble with attention and orientation tasks from an early age (64). Recent 
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evidence indicates that gestational obesity may have an effect similar to gestational infection 

or illness, as it also elevates the levels of inflammatory cytokines that a fetus is exposed to 

(43). Therefore, maternal obesity may similarly impact neural development, increasing the 

risk for behavioral disorders and metabolic diseases. These data demonstrate that the 

disruptions caused by inflammatory cytokines after infection may be similar to what is seen 

after maternal HFD consumption, extending beyond placental compromise into fetal brain 

development and offspring behavior.

Human Inflammation and Behavioral Abnormalities

Exposure to elevated maternal inflammatory cytokines has been indicated to have a role in 

human fetal brain development and consequently have a persistent impact on behavior. A 

number of psychopathologies, including Alzheimer’s disease (65), anxiety (66–68), 

depression (69–71), ASD (72–74), and ADHD (75), have been linked with exposure to 

inflammatory cytokines. When proinflammatory cytokines cross the placenta and enter the 

fetal bloodstream, the fetal brain undergoes excessive neuronal growth and plasticity, termed 

a ‘cytokine-storm’ (76). Buehler (76) proposes that the inundation of cytokines and the 

subsequent neuronal growth can in turn assist the development of a state of chronic 

inflammation in the fetal environment and that this may explain many of the symptoms 

observed in individuals with ASD. Symptoms of ASD including hypersensitivity to external 

stimuli, repetition of heard sounds and movements, and object fixation are postulated to be a 

result of this mechanism (76). HFD consumption during pregnancy has been shown to 

activate many of the same inflammatory cytokines that have been reported to be elevated 

either during gestation in mothers of children that developed ASD such as IL-4 and IL-5 

(72) or in children with ASD including monocyte chemotactic protein-1, RANTES, and 

granulocyte-macrophage colony-stimulating factor (73, 74). In addition, in utero exposure to 

high levels of IL-8 results in fetal brain alterations that are consistent with the neurological 

structure of schizophrenia patients (77), and thus the elevation of this cytokine in response to 

maternal obesity could increase the risk of schizophrenia in offspring from obese mothers. 

Studies that focused on obesity instead of on its consequent inflammatory response also 

show a link between obesity and behavioral disorders. These mechanisms propose that 

inflammatory cytokines and obesity affect human brain development in a way that leads to 

the development of behavioral abnormalities.

Psychopathologies as Pro-Inflammatory Responses

The increased cytokine reactivity stimulated by intrauterine infection or maternal HFD 

consumption can be induced by administration of proinflammatory factors, further 

corroborating that inflammation is a mechanism responsible for the consequent alterations in 

fetal brain development (56, 78, 79). Injection of LPS elicits increased cytokine reactivity in 

infant monkeys (78) and caused systemic inflammation in cats (80) and horses (81). NHP 

infants from high LPS pregnancies demonstrated behavior that contained disturbances 

similar to what is seen in ASD and schizophrenia, such as the failure to exhibit a normal 

startle response (78). These LPS infants displayed reduced gray matter (78), which is 

similarly seen in NHP models of perinatal influenza (64), and also had a significant 8.8% 

increase in white matter volume across many cortical regions (78), which is similar to the 
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increased white matter growth seen in the early development of individuals with ASD (82, 

83). Offspring of rats fed a HFD had heightened response to LPS compared with controls, 

and these rats also displayed alterations in anxiety and spatial learning (32). These studies of 

endotoxemia indicate that elevated levels of inflammatory cytokines, whether triggered by 

HFD consumption or infection, create a pathway that affects the development of the 

neurocircuitry in ways that are consistent to the neural abnormalities observed in human 

psychopathologies.

As exposure to inflammation during development causes a nonspecific response that impacts 

many neurotransmitter systems, it is important for future research to directly examine the 

influence of maternal obesity and HFD consumption-induced inflammation on each neural 

pathway important in behavioral regulation. Compounds with anti-inflammatory properties, 

such as ursolic acid, have been found to improve the behavioral performances of mice fed a 

HFD (84). This cognitive improvement was credited to the inhibition of inflammatory 

signaling and suggests that anti-inflammatory agents may be helpful in combating obesity-

induced cognitive impairments (84).

Programming by Excess Hormones and Nutrients

Maternal Obesity is Associated with Gestational Diabetes—As maternal obesity is 

often associated with gestational diabetes (85), rates of gestational diabetes will continue to 

increase as the obesity epidemic continues. Gestational diabetes is associated with the 

initiation of inflammation in the placenta (47–49), and thus the same mechanisms 

responsible for placental dysfunction in intrauterine infection and HFD consumption are also 

activated by gestational diabetes (86). Both human and rodent models point to the placenta 

as one target of the negative effects of maternal diabetes (87). Gestational diabetes is linked 

with hyperglycemia and hyperinsulinemia (88). The fetus is only exposed to higher levels of 

glucose because glucose, but not insulin, can permeate through the blood-placenta barrier 

and be transferred to the fetus (89). The fetal pancreas compensates for this hyperglycemia 

by increasing insulin release. As insulin is an important neural growth factor (90), it is 

proposed that early exposure to hyperinsulinemia alters the development of brain circuitry 

regulating energy balance and behavior. This theory is supported by studies that find that 

insulin administration during the last term of gestation alters energy balance and produces 

obese offspring (91, 92) and that administering insulin to the hypothalamus of rat pups 

during the time that projections from the arcuate nucleus (ARH) to the paraventricular 

nucleus (PVH) are developing results in elevations in body weight and insulin level, 

impaired glucose tolerance and increased vulnerability to diabetes in adulthood (93).

Maternal Obesity is Associated with Hyperleptinemia—Leptin is a satiety factor 

secreted by adipocytes in proportion to the amount of fat mass, and, consequently, offspring 

from obese mothers are exposed to increased levels of leptin. The hyperleptinemia that 

offspring from obese mothers experience during development is implicated in metabolic 

imprinting. There is substantial evidence in rodents that postnatal leptin is a critical factor in 

the development of neural pathways in the hypothalamus (94–96). In addition, offspring 

from rodent mothers who consumed a HFD and had increased circulating leptin levels 

showed increased inflammation in the periphery and hypothalamus, even if they consumed a 
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healthy diet after birth (32). Rodent studies indicate that neonatal overnutrition increases 

postnatal leptin resistance in the arcuate nucleus (97), leading to overconsumption of 

palatable foods (96, 97). Human studies report that leptin is elevated in obese (98) and 

diabetic mothers (99, 100) and is lower in infants who experienced intrauterine growth 

restriction at term (101). However, in human and NHP gestation, circulating leptin levels do 

not increase until after hypothalamic development is well advanced (102, 103). Although 

critical for brain development in rodents, there is limited evidence for leptin’s role in the 

development of primate brains (97, 104). Yet, hyperleptinemia is associated with placental 

dysfunction (98, 99), and thus elevated leptin may impact brain development indirectly. 

Hyperleptinemia may also result from the effect that maternal HFD has on the leptin 

signaling pathway. Offspring from HFD mothers experienced reduced phospho-signal 

transducer and activator of transcription-3 activation as compared with control pups (97). 

This suggests that leptin resistance develops during the suckling period and persists through 

life, increasing the susceptibility of HFD offspring to obesity (97). To date, studies 

examining the role of leptin in influencing the development of neural pathways that regulate 

behavior have focused on feeding behavior (105, 106); however, with the increasing 

evidence that maternal metabolic state influences social and mental health behavior in 

offspring, future studies will work to determine the role that leptin has in programming 

mental health-related behavior.

Maternal HFD-Induced Suppression of the Serotonin System—The serotonin (5-

HT) system has an integral role in neural development, influencing neurogenesis, neuronal 

migration and synaptogenesis (107, 108). Furthermore, the metabolism of tryptophan (TRP), 

the precursor to 5-HT, through the kynurenine (KYN) pathway has a crucial role in immune 

function during pregnancy. During the first trimester, metabolism of TRP prevents the 

rejection of the fetus by suppressing the maternal immune response (109), and it is involved 

in the regulation of blood flow between the placenta and fetus during the second and third 

trimesters of gestation (110). KYN metabolites have been reported to be elevated in animal 

models of maternal inflammation (111). As the KYN pathway competes with 5-HT for the 

substrate TRP, an increase in the KYN pathway results in less TRP availability for 5-HT 

synthesis. As mentioned previously, our group has demonstrated that chronic consumption 

of a HFD during pregnancy reduces placental blood flow, indicating the potential role of the 

elevated KYN levels; however, this effect is further exacerbated if the animals are obese and 

insulin resistant (43). Furthermore, in humans, a suppression of brain 5-HT synthesis is 

associated with a number of mental health and behavioral disorders like anxiety (112), 

depression (113), ADHD (114) and ASD (115), and thus perturbations in the 5-HT system 

are postulated to underlie the increased risk of offspring exposed to maternal overnutrition 

developing behavioral disorders.

Conclusion

In summary, there are several mechanisms by which maternal obesity and HFD 

consumption may affect the developing fetal brain and thus behavioral regulation. These 

mechanisms include placental dysfunction, the increased exposure to inflammatory 

cytokines and the higher levels of nutrients and metabolic hormones that offspring receive 
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from obese mothers. The serotonergic system has been identified as a potential mediator of 

maternal HFD-induced behavioral dysregulation, and suppression in the 5-HT system has 

been documented in several different animal models. With the current prevalence of 

maternal HFD consumption and obesity, future generations are at an increased risk for 

behavioral and mental health disorders. Given the high rates of maternal obesity, future 

studies need to identify therapeutic strategies that are effective at preventing maternal HFD-

induced malprogramming of offspring behavior.
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