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Abstract — In the USA, fetal alcohol syndrome (FAS) is the leading known cause of mental
retardation. FAS is estimated to affect 4000 infants yearly in the USA with an additional 7000 children
suffering various forms of fetal alcohol effects in the absence of the full syndrome. A comparable
incidence would be expected in other industrialized countries, but essentially no data are available from
either developing or third world countries. An understanding of the biochemical causes of FAS has been
slow to develop, but progress has been made toward a molecular causation theory of FAS. This paper
summarizes much of the current work as to the effects of fetal ethanol exposure on mitotic and metabolic
parameters as well as ethanol's effect on the cellular signalling pathways thought to regulate these
processes. Based upon these studies, it is apparent that exposure of embryonic tissue to ethanol results in
decreased growth and that alcohol adversely affects a multitude of cellular functions critical for the
growth of the developing organism, including inhibition of protein and DNA synthesis. In addition,
ethanol alters the uptake of critical nutrients such as glucose and amino acids and causes changes in
several kinase-mediated signal transduction pathways that regulate these biochemical processes.

INTRODUCTION

Fetal alcohol syndrome (FAS) results from in
utero exposure to ethanol. Though much research
has been done in the 25 years since the name FAS
was coined, much remains to be accomplished.
This paper brings together data on the cellular
changes that ethanol elicits in a developing
embryo, including ethanol's effect on DNA
synthesis, protein synthesis, glucose uptake,
amino acid uptake and on the kinase signalling
pathways that regulate these processes. Growth
inhibition is the most common defect resulting
from fetal alcohol exposure (Lochry et al, 1980;
Sulik et al, 1981; Pennington et al, 1983; Abel,
1985; Gallo and Weinberg, 1986; Pennington,
1988a; Goodlet et al, 1989; Pennington et al,
1995; Shibley and Pennington, 1995) and intra-
uterine growth retardation is a strong predictor of
fetal outcome. Thus, ethanol-induced growth
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retardation and the molecular mechanism(s) by
which the growth retardation occurs have been the
focus of much recent work.

CELL DIVISION/GROWTH

DNA synthesis

Numerous studies have described the effects of
ethanol on DNA synthesis in cultured cells. For
example, a study (Weston et al., 1994) of ethanol-
induced changes in craniofacial growth using
embryonic rat palate mesenchymal cells exposed
in vitro to ethanol (200 mM) for 24 h found a
marked reduction in [3H]thymidine incorporation.
Adickes et al. (1993) measured the rates of DNA
synthesis in cardiac myocytes from 1-2-day-old
rats exposed to ethanol for either 7 continuous
days in culture or only during a 24 h period of
hyperplastic growth. [3H]Thymidine incorporation
was decreased by ethanol during the first 3 days of
exposure, but uptake was not significantly differ-
ent during the last 4 days. Thus, the data suggest

423

© 1997 Medical Council on Alcoholism

 by guest on O
ctober 4, 2012

http://alcalc.oxfordjournals.org/
D

ow
nloaded from

 

http://alcalc.oxfordjournals.org/


424 I. A. SHIBLEY Jr and S. N. PENNINGTON

that the early hyperplastic growth period of these
cells is the period of greatest susceptibility to
ethanol-induced decrease in DNA synthesis.

Astrocytes cultured from 21-day rat fetuses and
grown in primary culture have also been used to
assess the effects of ethanol on DNA synthesis and
cellular proliferation (Guerri et al., 1990). Astro-
cytes from animals exposed to ethanol in utero
showed decreased [3H]thymidine incorporation
and decreased cellular proliferation. Cultured
cells from control embryos exposed to ethanol in
vitro experienced a similar degree of inhibition of
[3H]-thymidine incorporation (Guerri et al., 1990).
Concentrations of ethanol <50 mM resulted in no
change in [3H]thymidine incorporation (Snyder et
al., 1992ft).

Ethanol not only decreases basal DNA synthesis
in most cells, but also inhibits growth-factor-
stimulated DNA synthesis. Balb/c 3T3 and p6
cells (Balb/c 3T3 cells overexpressing the IGF-I
receptor) both showed inhibition of IGF-I-induced
proliferation in the presence of 10-150 mM
ethanol (Resnicoff et al., 1993). Even at concen-
trations of IGF-I as high as 60 ng/ml, the ethanol-
treated parental Balb/c 3T3 cells showed essen-
tially no growth response to IGF-I. The ethanol-
treated p6 cells did respond to IGF-I, but they
required increased concentrations of IGF-I to do
so and never reached the growth rate of the control
p6 cells (Resnicoff et al., 1993).

Epidermal growth factor (EGF)-mediated pro-
liferation has been demonstrated to be inhibited by
ethanol in cultured fetal rat hepatocytes (Hender-
son et al., 1989, 1991). Hepatocyte replication is
decreased after 24 h in ethanol-containing media
(Henderson et al., 1989, 1991) and DNA synthesis
is decreased by ethanol after 20 h (Henderson et
al., 1991). In primary rat hepatocyte cultures from
adult rats that had been given ethanol-containing
liquid diets for 8 weeks, EGF-stimulated DNA
synthesis was significantly decreased after 2 days
in culture (Bhavani et al., 1993). The inhibition of
EGF-mediated DNA synthesis by ethanol became
more pronounced with time in culture. Thus,
whether cells were treated in situ with ethanol or
cultured from in vivo treated hepatic tissue, EGF-
mediated DNA synthesis was significantly
decreased.

One recent report did find that NIH 3T3
fibroblasts experienced significantly enhanced
insulin-stimulated [3H]thymidine incorporation

after incubation in ethanol-containing media
(10-150 mM) for 24 h (Tomono and Kiss, 1995).
However, the rat astrocyte study discussed above
(Snyder et al., 1992ft) demonstrated that [3H]-
thymidine incorporation may not be changed by
low doses of ethanol in some cells. However, the
majority of studies support the idea that ethanol
exposure will decrease the DNA synthesis of the
developing embryonic cells.

An enzyme known to be critical for normal
cellular division is ornithine decarboxylase
(ODC). Quiescent cells that are stimulated to
divide show increased levels of ODC activity prior
to any measurable increase in cellular DNA, RNA,
or protein synthesis (Russell and Snyder, 1968).
Also, an increased rate of DNA synthesis has been
correlated with increased ODC activity (Thadani,
et al, 1977; Janne et al, 1991). Ethanol decreases
ODC activity in embryonic chick cells (Sandstrom
et al, 1993) suggesting a mechanism by which
ethanol inhibits cellular growth. The effects of
ethanol on ODC activity and polyamines have
recently been reviewed (Shibley et al, 1995) and
thus will not be considered further here.

Protein synthesis
Kennedy (1984) proposed an integrating

hypothesis to explain the effects of ethanol on
the developing fetus. The growth deficiency
associated with FAS could be most directly
explained, according to Kennedy, by a decrease
in protein synthesis. The proposed hypothesis
included several citations of ethanol-induced
reductions in protein synthesis in fetal tissue
(Rawat, 1975, 1976; Brown et al, 1979; Wunder-
lich et al, 1979; Dreosti et al, 1981). Other
studies following Kennedy's review have sup-
ported the idea that ethanol exposure reduces
protein synthesis in most cells.

Unlike [3H]thymidine incorporation, which
serves as a universal indicator of DNA synthesis,
protein synthesis rates can be measured using a
variety of radiolabelled amino acids (Rawat, 1985;
Guerri et al, 1990; Snyder et al, 1992ft; Siddiq et
al, 1993a,ft). Ethanol-exposed rat embryo brain
protein synthesis was measured both in vivo and in
vitro by Rawat (1985). Both synthesis rates were
significantly reduced in ethanol-exposed embry-
onic brains. Insulin-stimulated protein synthesis
has also been shown to be inhibited by ethanol
(Snyder et al, 1992ft). Additional studies (Siddiq
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et al, 1993fc) demonstrated that ethanol decreased
the rate of protein synthesis in the ventricular
mitochondria of exposed rats.

Recent reviews by Preedy and Richardson
(1994) and Preedy et al. (1994) summarize the
results of many studies as to the effect of ethanol
on cardiac protein synthesis. Protein synthesis in
the rat heart was found to be inhibited by ~ 20%
by acute ethanol exposure (Preedy and Peters,
1990; Siddiq et al, 1993a). Many studies (Wallin
and M0rland, 1987; Renau-Piqueras et al, 1989;
Coleman and Cunningham, 1991) have also
reported impaired protein synthesis in the liver
caused by ethanol, but an in vivo study (Donohue
et al., 1987) found no changes in the protein
synthetic capabilities as the result of either acute
or chronic ethanol exposure. Relatively few
studies of the effects of ethanol exposure in
utero on protein synthesis have been undertaken.

CELLULAR METABOLISM

Glucose uptake

The transport of glucose across the plasma
membrane of the cell is mediated by a family of
facilitative transporter proteins called glucose
transporters. An explosion of information has
been accruing on these transporters as evidenced
alone by the number of reviews appearing in the
1990s. Not only have descriptive reviews been
published (Gould and Bell, 1990; Lienhard et al,
1992; Bell et al., 1993; Mueckler, 1994), but
reviews on the regulation of glucose transporters
(Jones, 1991; Czech et al, 1992; Pessin and Bell,
1992; Merrall et al., 1993; White and McCubrey,
1995) and the similarities between glucose
transporters and other transporters (Fischbarg
and Vera, 1995) have also appeared. Glucose
transporter 1 (glutl) serves as the primary glucose
transporter of fetal tissue and cultured cells. Glutl
has been found in all stages, and in nearly all
tissues, of early mouse embryos (Hogan et al,
1991; Aghayan et al, 1992).

Fetal glucose levels have been demonstrated to
be a significant factor in normal embryonic
growth. The rate of transfer of glucose across the
placenta increases during embryonic growth spurts
(Rosso, 1975). If prolonged maternal hypogly-
caemia is induced in rats, intrauterine growth
retardation results (Gruppuso et al., 1981; Nitzan,

1981) with a concomitant decrease in embryonic
glucose levels. Thus, the limitation of fetal
glucose appears to be a significant cause of
intrauterine growth retardation. Prolonged mater-
nal fasting of a rat has also been associated with
low blood glucose in the fetus (Girard et al.,
1977). It may therefore be concluded 'that changes
in glucose transport modulation might contribute
to the development of asymmetric growth retarda-
tion and that the maintenance of normal transpor-
ter function and expression in brain may play a
role in sparing its growth.' (Simmons et al., 1993).
Despite the critical importance of glucose uptake
to normal embryonic development, few studies
have been published on the modulation of specific
glucose transporters by ethanol in the developing
embryo.

Regulation of glucose uptake by growth factors
and other mitogens occurs by at least three
mechanisms: (1) redistribution of existing trans-
porter proteins; (2) increased transporter activity;
(3) altered synthesis or degradation of transporter
proteins. Ethanol could theoretically affect any, or
all, of these processes. Surprisingly, the alteration
of glutl expression by ethanol exposure has
received attention mostly in the adult. For
example, one recent study reported that rats
exposed to ethanol for 4 weeks had higher levels
of glutl protein in their brains, but a decreased
level of glutl mRNA in the brain (Singh et al,
1993). Another study found increased glutl
expression in the liver of rats exposed to ethanol
for a month (Hagman et al, 1993). A further study
of human lymphocytes monitored glucose uptake
after only 4 min of exposure to ethanol. In these
cells, ethanol caused a dose-dependent decrease in
glucose uptake (Krauss et al, 1994). In the same
study, ethanol inhibited glucose uptake in Chinese
hamster ovary (CHO) cells overexpressing glutl.

Chronic alcoholic mothers suffer from under-
nutrition and therefore would be expected to
experience impaired glucose levels which might,
in turn, lower those in fetal blood. Rats given
ethanol-containing diets had fetuses with signifi-
cantly lower blood glucose levels, although
maternal hypoglycaemia did not occur (Singh et
al, 1986). This result suggests that ethanol has a
direct effect on glucose uptake in fetal tissue. The
direct effect of ethanol may exacerbate the
decreased fetal glucose levels caused by ethanol-
induced maternal undernutrition.
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Several studies have reported that maternal
ethanol exposure inhibits the uptake of glucose by
fetal tissue (Tanaka et al., 1982; Singh etal., 1988,
1989, 1992; Snyder et al., 1992a). Ethanol also
appears to inhibit glucose uptake by the placenta
(Snyder et al., 1986). The mechanism of the
ethanol-induced decrease in glucose uptake has
received little attention. One study on the effect of
prenatal ethanol exposure on glutl expression in
rat brain (Singh et al., 1992) reported a 50%
decrease in glutl mRNA and a direct correlation
between the rate of glucose uptake and brain
weight. Further studies on the regulation of
glucose transport in the developing fetus are
therefore warranted.

Amino acid uptake

Similar to the transport of glucose, the transport
of amino acids into cells has been extensively
studied and reviewed (Guidotti et al., 1978;
Lerner, 1985; Van Winkle, 1988, 1993; Christian-
sen, 1989; Kilberg et al, 1993; McGivan and
Pastor-Anglada, 1994). Though a multitude of
amino acid transport systems have been identified,
system A has received the most attention. System
A exhibits broad reactivity toward amino acids
with short, polar, or linear side chains. The system
is dependent upon, and energized by, Na+. The
alanine analogue, (JV-methylamino)-a-isobutyric
acid (AIB), has been used widely to categorize
this system.

Amino acid transport by both placental and
embryonic tissue is critical for normal develop-
ment (Jones and Rolph, 1985). Amino acids in the
embryo are used predominantly for protein synth-
esis and the dysfunction of placental amino acid
transport has been linked to intrauterine growth
retardation (Moe, 1995). Thus, small for gesta-
tional age human babies have lower umbilical
veno-arterial concentration differences for most
essential amino acids (Bell et al., 1986), suggest-
ing that the placenta is not properly transporting
essential amino acids to the growth-retarded
fetuses.

A recent report showed that microvillous
membrane vesicles of the placental syncytiotro-
phoblasts transported AIB 63% less in placental
vesicles of small for gestational age babies,
compared with the vesicles from the placentas of
appropriate size for gestational age infants
(Yasuda et al., 1990). This finding implicates

disruption of system A as a possible cause of
ethanol-induced intrauterine growth retardation.
Ethanol had little effect on placental AIB uptake
in sheep (Fisher et al., 1981a), but lowered AIB
uptake by 35% in rats (Snyder et al., 1986). In
other rat studies, ethanol exposure in vivo
inhibited placental amino acid uptake (Fisher et
al., 1981a,b; Hendersons al., 1981, 1982a,b; Lin,
1981). The same effect was seen in a non-human
primate model (Fisher et al., 1983).

A study of human placental tissue found that
ethanol exposure in situ had virtually no effect on
amino acid uptake (Schenker et al., 1989). The
authors concluded that human placenta is resistant
to the effects of ethanol on amino acid transport.
More recent data on cultured human trophoblasts
repeated the early finding by demonstrating
unchanged amino acid uptake in cells pre-treated
for 72 h with ethanol (Karl and Fisher, 1994).
Though the basal uptake was unaltered, the
hormone-stimulated amino acid uptake was sig-
nificantly decreased by ethanol exposure (Karl and
Fisher, 1994). Both insulin- and IGF-I-stimulated,
Na+-dependent AIB uptake were decreased in the
ethanol-treated cells. The investigators found
insulin and IGF-I binding to the trophoblasts
unchanged, suggesting a downstream block in the
signal transduction pathway.

SIGNAL TRANSDUCTION

Protein kinase C (PKC)
Although PKC activity has been recognized for

less than 20 years (Inoue et al., 1977; Takai et al.,
1977), PKC's enzymatic activity has now been
determined to arise from at least 12 isoforms and
reviews of PKC have been appearing regularly
since the original discovery (Nishizuka, 1984;
Blumberg, 1988; Kikawa et al., 1989; Stabel and
Parker, 1991; Hug and Sarre, 1993; Dekker and
Parker, 1994). PKC has been suggested to regulate
many cellular parameters. To illustrate, activation
of PKC via treatment with a phorbol ester
increases glucose transport (Henriksen et al.,
1989; Dwivedi et al., 1994) and ODC activity
(Groblewski et al., 1992). Furthermore, PKC
isoform distribution has been suggested to account
for some of the genetic differences in ethanol
sensitivities between strains of mice (Balduini et
al., 1994). Ethanol's effect on PKC appears to
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depend on the duration of ethanol exposure and on
the cell type being studied. Suggested molecular
targets of ethanol include several of the proteins
regulating PKC activity, e.g. phospholipase C
(PLC) and G-proteins as well as the PKC protein
itself (Hoek and Rubin, 1990). Ethanol has also
been suggested to cause a desensitization of PLC
via a PKC-dependent mechanism in isolated rat
hepatocytes (Hoek and Higashi, 1991). Additional
studies also suggest that short-term ethanol
exposure causes an increase in PKC activity, but
that longer exposure will result in down-regulation
of PKC due to the chronic activation of PKC. To
illustrate, treatment of LRM55 astroglial cells with
ethanol for 30 s induced PKC translocation from
the cytosol to the membrane, leading to a 100%
increase in membrane PKC activity (Skwidh and
Shain, 1990). Other studies have also suggested
that short-term ethanol exposure leads to an
increased PKC activity (DePetrillo and Liou,
1993; Kharbanda et al., 1993; Sanna et al,
1994). A study designed to explore the effects of
chronic ethanol exposure used rats fed an ethanol-
containing diet for 25 days (Battaini et al, 1989)
as a model. These rats exhibited decreased brain
PKC. However, even though chronic ethanol
exposure may decrease PKC activity in most
cells, work by Messing et al. (1991) suggested
that, in neurite-derived PC 12 cells, ethanol
exposure for 2-8 days increased PKC activity.
Two PKC isoforms, PKC-£ and PKC-<5, were
shown to be elevated by ethanol (Messing et al.,
1991) and the increase augmented signal transduc-
tion via pathways involving these two PKC
isoforms (Roivainen et al., 1995) as well as
increasing neurite outgrowth (Roivainen et al.,
1993).

cAMP-dependent protein kinase A (PKA)

PKA becomes activated through the binding of
cyclic AMP to the kinase regulatory subunit
protein. Cyclic AMP synthesis is stimulated by
an extracellular hormonal signal being transmitted
to adenylate cyclase via a standard G-protein-
mediated mechanism. Activation of PKA by
changes in cAMP levels appears to cause differ-
ential effects. For example, increased cAMP levels
have been shown to stimulate (Rozengurt, 1986;
Dumont et al., 1989) or to inhibit (Nilsson and
Olsson, 1984; Blomhoff et al., 1987; Magnaldo et
al., 1989) cellular proliferation in different cells.

Just as the effect of cAMP on growth seems
dependent on cell type, the effect of ethanol on
cAMP levels also seems dependent on cell type
and ethanol dose. Thus, ethanol exposure for 1 h
has been reported to increase adenosine receptor-
stimulated cAMP levels in a dose-dependent
manner in NG108-15 neuroblastoma-glioma
hybrid cells (Gordon et al, 1986) and a 5 min
exposure of platelet-rich plasma from Sprague—
Dawley rats to various concentrations of ethanol
increased cAMP levels (Hwang et al., 1987). A
recent report on Wistar rat hepatocytes found that
25-50 mM ethanol treatment in situ decreased
cAMP levels, but that 100-200 mM ethanol
actually increased cAMP levels (Nagy, 1994).
Forty-eight hour exposure of primary rat hepato-
cyte cultures to ethanol caused an increase in
agonist-stimulated cAMP levels (Nagy, 1994).
Glucagon and forskolin exposure both caused a
much larger increase in cAMP levels in ethanol-
exposed hepatocytes. Treatment with ethanol for
periods longer than 16 h of cultured human
placental trophoblasts resulted in an increased
sensitivity to adrenaline-stimulated increases in
cAMP levels (Karl et al., 1994). Receptor-
stimulated increases in cAMP levels were inhib-
ited in PC-12 cells exposed to 150 mM ethanol for
4 days (Rabin, 1990; Rabin et al., 1993).
Sprague-Dawley rats given ethanol for 6 days
had decreased cAMP levels in all brain areas, but
the cAMP levels returned to normal when the
ethanol was withdrawn (Shen et al., 1983).

The most striking evidence for cell-specific
changes in cAMP levels due to ethanol exposure
comes from a report by Rabe et al. (1990). In two
subclones of PC-12 cells, isolated membrane
preparations exhibited increased basal and agon-
ist-stimulated cAMP levels after a 5 min ethanol
exposure. However, when intact cells were
studied, one subclone displayed ethanol-induced
inhibition of receptor-stimulated cAMP increases,
whereas the other subclone exhibited stimulation.
The conclusion from the above study suggests
caution: "The results indicate that extrapolation of
the effects of ethanol from one cell type to
another, or from in vitro to in vivo systems, may
be complicated by the interaction of ethanol with
regulatory processes that influence second mes-
senger systems, and can differ in various types of
intact cells.' (Rabe et al., 1990).

In addition to cAMP levels, other components
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of the signalling system involved in the activation
of PKA have been studied, including PKA itself,
G-proteins, and adenylate cyclase. For instance,
chronic ethanol exposure has been shown to
decrease the receptor-stimulated adenylate cyclase
activity (Rabin, 1990, 1995), but rats exposed to
ethanol for 8 weeks were found to have increased
hepatic adenylate cyclase activity (Blumenthal et
al., 1991). When the mechanisms of ethanol-
induced changes in adenylate cyclase activity, and
hence of cAMP production, were investigated, the
same type of disparate results were seen. Chronic
ethanol exposure decreased the quantity of
inhibitory G-protein (GO in rat hepatocytes
(Nagy and DeSila, 1992), but enhanced the
expression of G,-proteins in the brains of mice
(Wand et al., 1993). In rats with a partial
hepatectomy, chronic ethanol exposure inhibited
expression of Gs-protein and, therefore, cAMP
accumulation (Diehl et al., 1992). Likewise, in
PC-12 cells, 7 day ethanol exposure caused a
decrease in the membrane levels of Gs (Rabin,
1993).

The effects of ethanol on PKA in a developing
embryo have been explored in the chick model.
The responsiveness of brain adenylate cyclase to
stimulation by prostaglandins was inhibited by
ethanol (Pennington, 1988b) and cAMP levels
were found to be decreased by ethanol exposure
(Pennington, 1990). Both basal and cAMP-stimu-
lated autophosphorylation of the regulatory sub-
unit of PKA (RII) were significantly lowered by
ethanol exposure (Beeker et al., 1988). The
binding of cAMP to RII was also inhibited by
ethanol (Pennington, 1988b). These studies sug-
gest that ethanol acts by decreasing the ability of
RII to bind cAMP which results in the loss of
catalytic activity of PKA.

Insulin signalling pathway

The insulin signalling pathway directly involves
insulin-dependent tyrosine kinase activity. Follow-
ing the activation of insulin-dependent tyrosine
kinase, the pathway has many branch points.
Because of the ability of insulin to regulate cell
growth, division and metabolism, numerous stu-
dies have examined the involvement of insulin in
the early growth of organisms. Work has been
done using fetal rats (Akashi et al., 1991;
Simmons et al., 1993), fetal mice (Spaventi et
al, 1990), Xenopus oocytes (Chuang et al., 1993),

chick (De Pablo etai, 1982, 1985, 1990; Bassas et
al., 1987, 1988, 1989) and sea urchin embryos
(Kuno et al., 1994).

Ethanol has varied effects of the cellular
response to insulin, which could adversely alter
fetal growth. In adults, ethanol has been suggested
to cause insulin resistance in peripheral tissue
(Boden et al., 1993) and is known to inhibit
insulin-induced insulin receptor substrate-1 (IRS-1)
phosphorylation (Xu et al., 1995) and IGF-I-
induced IRS-1 phosphorylation (Resnicoff et al.,
1994) in cultured cells. In another cell model,
ethanol added concomitantly with IGF-I inhibited
the IGF-I-induced increases in transcription of
c-myc, c-fos, and c-jun (Resnicoff et al., 1993). A
similar result was observed in rat hepatocytes
during liver regeneration, where decreased IRS-1
phosphorylation and decreased phosphoinositol-3
kinase (PI-3) activity occurred due to ethanol
exposure (Sasaki and Wands, 1994). Few studies
have explored the insulin signalling pathway in
fetal tissue. In humans, fetal alcohol exposure may
result in insulin resistance in the adult (Barbanti et
al., 1987), and fetal ethanol-induced insulin
resistance was also detected in an animal model
(Gilani and Persaud, 1986; Villarroya and
Mampel, 1985).

Thus, even though the effects of ethanol on fetal
development have now been documented in many
different tissues and cell types, an understanding
of the ramifications of these changes will be
necessary. Hoek and Rubin (1990) succinctly state
the challenge for researchers as follows: 'To go
beyond the phenomenology and develop a
mechanistic understanding of the actions of
ethanol on cellular control processes in different
tissue will continue to be a major challenge to
investigators in the field of alcoholism.'

CONCLUSIONS AND COMMENTS

Ethanol can adversely affect a multitude of
cellular functions associated with fetal develop-
ment including such functions as protein synthesis,
DNA synthesis (thymidine uptake), glucose
uptake, and amino acid uptake. The signalling
pathways mediated by PKC, PKA, and the insulin-
dependent tyrosine kinase are important in reg-
ulating these functions and are all affected by
ethanol exposure. Thus, though much information
has been generated on the kinase pathways
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themselves, relatively little is known about the
specific molecular effects of ethanol on these
kinase pathways. Because each pathway is
involved in cell growth and differentiation, further
study of ethanol's effect on these pathways in
embryonic cells is needed.
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