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Foreword by Brian J. Wilkinson

It is a great pleasure to write a foreword for the book Personalized Food Intervention 
and Therapy for Autism Spectrum Disorder Management edited by Drs. Mohamed 
Essa and M. Walid Qoronfleh, who have gained extensive experience in their respec-
tive scientific fields, including natural compounds and their potential beneficial 
effects on brain diseases and human health. It is highly commendable for these two 
scientists to author this book at this time when people are looking for something that 
would give them a good perspective on autism and the impact of food natural prod-
ucts on this disease spectrum.

Nowadays, there is great interest in investigations of food ingredients for their 
potential health benefits among the people suffering from autism spectrum disorder 
(ASD). We frequently fail to recognize the real benefit of traditional medicines and 
food natural ingredients despite the fact that they have been used for many centuries 
and are still being used widely in all cultures across the globe. This book provides a 
compelling perspective on the potential benefits of many edible items, including 
natural compounds, herbs, vegetables, fruits, grains, seeds, and nuts, for which sub-
stantial evidence now exist in the literature of their effectiveness against ASD. The 
individual chapters that are covered and written by experienced authors in their 
fields provide an additional value to the reader. The chapters are organized under 
three parts, covering the following: (1) Autism Spectrum Disorder from Background 
to Interplay of Genetic, Epigenetic, Environmental Risk Factors and Nutraceuticals, 
(2) Specific Foods and Nutrient Qualities in Autism, and (3) Food and Dietary 
Intervention and Therapy in Autism. This organization provides the reader a better 
basic understanding of pharmacological constituents, including their potential ben-
efits against ASD.

Why this book is timely? Firstly, a greater proportion of the population in most 
developing and developed countries have become open-minded for the use of food 
ingredients and traditional medicines in spite of the use of allopathic medicines for 
treatment of diseases. Secondly, there is a huge increase in the prevalence of ASD 
globally, and until now, there are no proper medications to deal with symptoms or 
effectively manage comorbidities, behavior, performance, and food intolerances. 
Thirdly, misunderstanding and confusion exist among the parents of an ASD 



vi

 individual and their caregivers, and this book provides up-to-date clarification to 
the public.

Another notable factor in this book is that several chapters provide a better 
understanding of the mechanisms of the effects of various phytochemical constitu-
ents, such as sulforaphane, curcumin polyphenols (resveratrol), and flavonoids 
(luteolin). For instance, there is now an extensive literature on omega-3 fatty acids 
from nuts, showing they function as precursors for anti-inflammatory agents such as 
neuroprotectin D1 and resolvins, which might exert significant benefits on many 
neurological disorders including ASD.

In conclusion, I appreciate the efforts of the editors to publish this book, which 
is a great resource of composite information on food and autism. It should also be a 
good resource for parents with ASD children, dieticians, nutritionists, nutrition 
researchers, and other readers with interests in human health.

Brian J. Wilkinson
School of Biological Sciences
Illinois State University 
Normal, IL, USA

Foreword by Brian J. Wilkinson
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Foreword by Magid Abou-Gharbia

I was delighted when I received a request from Dr. M. Walid Qoronfleh to write a 
brief foreword for his book. I have known Dr. Qoronfleh for many years, and I have 
been impressed by his accomplishments in the biomedical field. During the last 
decade, Dr. Qoronfleh and I were among the team of Arab Expatiate Scientists 
(AES) who worked with Qatar Foundation to help in promoting Qatar research 
culture. In the process, we embarked on several new research initiatives in several 
important research areas. In the biomedical area, we also worked together on put-
ting together and writing the planning document that was used to establish Qatar 
Biomedical Research Institute (QBRI), where significant biomedical research is 
currently being conducted today.

As a drug discovery researcher for over three decades in the pharmaceutical 
industry and academia, my research teams have always explored innovative 
approaches for design and synthesis of novel therapeutics for treatment of many 
diseases including central nervous system (CNS) disorders. We successfully discov-
ered ten marketed drugs. Examples of CNS disorder drugs include the antidepres-
sants Effexor® and Pristiq®, the sedative Sonata®, and the analgesic Dezocine®. 
While pursuing our drug discovery research, we were conscious of the importance 
of natural products therapeutic potential as well as the role of nutrition in preventing 
and ameliorating disease symptoms. Our efforts led to the discovery of natural prod-
ucts drugs like Mylotarg® and Toresil®.

I am pleased to provide a foreword to Personalized Food Intervention and 
Therapy for Autism Spectrum Disorder Management. Having such book is a good 
step in the direction toward increasing public awareness of the benefit of nutrition 
in preventing neurological diseases such as autism. I believe this book will serve as 
a good introduction to the benefit of personalized food in disease prevention and 
disease therapy.

Magid Abou-Gharbia
Moulder Center for Drug Discovery Research
School of Pharmacy, Temple University 
Philadelphia, PA, USA
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Foreword by Theodore DeFrank

Having known Dr. Qoronfleh for many years, it is an honor to submit a foreword for 
the book Personalized Food Intervention and Therapy for Autism Spectrum Disorder 
Management. I worked with Dr. Qoronfleh during our years together at Pierce 
Biotechnology, where he was the Director of R&D, developing new technologies 
and reagents for proteomics research. He was instrumental in positioning Pierce to 
be a leader in this emerging field in the advent of creating personalized medicine as 
an approach to therapeutic treatment. After I moved to Active Motif, a life science 
research company specializing in epigenetics, we continued our dialog on how envi-
ronmental factors affect gene expression and hence one’s health. The book edited by 
Drs. Mohamed Essa and M. Walid Qoronfleh further advances this topic to the field 
of autism spectrum disorders.

Theodore DeFrank
Active Motif Inc.
Carlsbad, CA, USA
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Preface

 Synopsis of the Book

Nature has bestowed on mankind an overabundance of edible vegetables, fruits, 
nuts, and seeds. The availability of a variety of nutrients and bioactive compounds 
in these natural products play a crucial role in the health and disease status of human 
beings. Hippocrates said “Let food be thy medicine and medicine be thy food.” 
Awareness and specific interest in natural medicine have substantially increased and 
continue to rise. The practice has taken hold in our society, and this wide acceptance 
emphasizes an integrative health approach that addresses body, mind, and spirit. 
Food and its active phytochemicals are used in prevention, cure, and/or manage-
ment of various neurological disorders, neurodevelopmental disorders, neurodegen-
erative diseases, and other neuronal dysfunctions. In the recent decade, numerous 
studies were conducted that proved naturally occurring phyto-compounds (poly-
phenolics, flavonoids, and antioxidants found in fruits, vegetables, herbs, nuts, etc.) 
could potentially offer benefit and impact the severity of neurodevelopmental disor-
ders. Certainly, individualized nutritional approaches with dietary management dur-
ing various disease states including autism have seen a steep increase as of late. 
Autism spectrum disorder (ASD) is a debilitating neurodevelopment disorder char-
acterized by stereotyped interests and behaviors, and abnormalities in verbal and 
non-verbal communication. It is a multifactorial disorder resulting from interactions 
between genetic, environmental, and immunological factors. Excito-toxicity and 
oxidative stress are potential contributing mechanisms, which are likely to serve as 
a converging point to these risk factors. The potential use of antioxidants against 
free radical toxicity has been an emerging field in the management of many neuro-
developmental conditions including autism. The supportive role of antioxidants and 
anti-inflammatory agents to reduce the severity of autism via the promotion of func-
tional neurogenesis and neuro-protection in the pathological child brain has great 
promise. The present idea for this book comprehends the recent studies describing 
the therapeutic roles of antioxidants and other active pharmacological compounds 
in ASD and other neurologic disorders, while highlighting the scope of using 
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 antioxidants to promote neurogenesis and improve other symptoms in ASD. The 
molecular mechanisms behind the curative effects may rely mainly on the action of 
phytonutrients on distinct signaling pathways associated with protein folding and 
neuro-inflammation. This book is aimed to advocate a new line of research approach 
to define the mechanisms by which antioxidant-rich food offers possible therapeutic 
strategies to ASD. The book focuses on implications of traditional and processed 
foods for ASD intervention and management. Many publications exist on the ben-
efit of diet in relation to ASD.  However, a comprehensive collection of various 
aspects of food active pharmacological ingredients for intervention, dietary 
approaches, nutritional management, and neurotherapeutics, with respect to ASD in 
the form of a book is lacking. This book provides a comprehensive collection of 
research studies that will benefit students at various levels, researchers in several 
disciplines (such as alternative medicine, nutrition, neuroscience, agriculture, food 
science, and medicine), and many others who are interested in this discipline. The 
book also can be used as a required or recommended text for related courses taught 
at universities globally.

Muscat, Oman  Musthafa Mohamed Essa 
Doha, Qatar   M. Walid Qoronfleh 

Preface
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Psychiatrist Leo Kanner published a paper describing “children whose condition differed so 
markedly and uniquely from anything reported so far.” L. Kanner. Autistic disturbances of 
affective contact. Nervous Child, 2, 217–250 (1943).

1.1  Overview and Reflection

Autism spectrum disorder (ASD) is one of the most common and challenging neu-
rodevelopmental disorders in children. The prevalence rate of ASD has reached over 
1% worldwide prompting governments, health providers, and schools to develop 
programs and policies to address this challenging disorder. In 2018, recent CDC 
estimates in the USA cited by Autism Speaks recized prevalence among the nation’s 
children to 1  in 59 children. In this section, we present chapters that discuss the 
causes, as well as environmental factors, genetic mutations, epigenetics role, and 
neural pathways that are implicated in ASD and criteria that are commonly used for 
its diagnosis and future genomics/genetic testing that can aid in the diagnosis of this 
disorder. Finally, we provide practical steps that can be used to reduce the incidence 
and severity of ASD.

ASD is characterized by deficits in communication and social interaction, as well 
as the presence of repetitive and restrictive behavior. ASD often manifests with a 
wide range of comorbidities including morphological (macrocephaly), physiologi-
cal (gastrointestinal and/or sleep problems), and psychiatric (anxiety) conditions. 
The most common proposed causes of ASD are physiological and metabolic disor-
ders, involving immunity, oxidative stress, and mitochondrial dysfunction. There is 
no pharmacological cure to ASD.

The number of individuals diagnosed with ASD has risen dramatically over the 
past 40 years. Regardless of the reasons, this increase in diagnosis has led to large- 
scale research initiatives, awareness campaigns, and the need for government sup-
port. Currently, ASD is diagnosed clinically based on the severity of a heterogeneous 
list of social, communicative, and behavioral deficits; however, there is no effective 
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medical diagnosis for ASD, however, early diagnosis (12–18 months) using universal 
standardized assessment screening tools and intervention coupled with remedial 
services is highly beneficial to patients.

Separate from High-Income Countries (HICs), public health knowledge or cam-
paigns concerning ASD impact remain poorly undeveloped and implemented, 
respectively. To date, 86.5% of all cases of ASD have been reported in HICs repre-
senting only 20% of the world population. Insufficient population-based studies 
have been conducted in Low- to Medium-Income Countries (LMICs), which may 
well underrepresent the impact of ASD. There are also difficulties in measuring the 
prevalence of ASD, stemming from population awareness, selection of studies and 
diagnostic capabilities, as well as cross-cultural appropriateness and comparability 
of ASD screening, measurement, and epidemiological data. The uneven rates of 
diagnosis have also led to variations in ASD prevalence by race and ethnicity includ-
ing the MENA and Gulf regions. Therefore, the knowledge gap between evidence 
and action in the care of ASD in LMICs has remained considerably wide.

The ASD economic impact is substantial, which includes direct medical/non- 
medical billings and indirect productivity costs. The approximate lifetime cost of 
caring for an individual with ASD inflicted with comorbid conditions is ~$2.2 mil-
lion in the USA, and £1.5 million in the UK; though the cost drops to $1.4 million 
in the USA and £0.9.2 million in the UK for ASD otherwise. In addition, if unrec-
ognized or untreated, ASD can contribute to poor educational attainment and diffi-
culty with employment, leading to negative economic implications. A 2015 US 
study estimates the total economic impact of ASD, based on direct medical, non-
medical, and productivity costs combined, totaled $268 billion—ranging from 0.9% 
to 2% of gross domestic product (GDP). This amount is expected to rise to $461 
billion (ranging from 0.9.9% to 3.6% of GDP) by 2025. These costs are on par with 
recent estimates for “silent epidemics” such as diabetes. Indeed, the burden of ASD 
appears to exceed the cost of the traditional enemies of health. However, what sets 
ASD apart from other non-communicable diseases—such as heart disease, cancer, 
stroke, and hypertension—are the significantly higher non-medical costs when 
compared to direct medical costs. There is also suggestion that comorbidities of 
ASD tend to amplify burden to the society and afflicted individuals alike.

Part I Autism Spectrum Disorder from Background to Interplay…
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Abstract Autism spectrum disorder (ASD) is a complex neurodevelopmental 
 disorder generally manifesting in the first few years of life and tending to persist 
into adolescence and adulthood. It is characterized by deficits in communication 
and social interaction and restricted, repetitive patterns of behavior, interests, and 
activities. It is a disorder with multifactorial etiology. In this chapter, we will focus 
on the most important and common epidemiological studies, pathogenesis, screen-
ing, and diagnostic tools along with an explication of genetic testing in ASD.
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1  Introduction

The first description of ASD was in 1943 by the child psychiatrist Leo Kanner who 
identified 11 children with extreme withdrawal and incapability to form normal 
relationships with others. He labeled them as having early infantile autism [1].

Leo Kanner had characterized individuals with this condition as desiring 
extreme loneliness and adhering to a strict routine. They could distract themselves 
for hours with simple, repetitive tasks and were easily distressed by the slightest 
deviation from what they were accustomed doing. These children displayed varia-
tion in their social abilities, with some unable to speak or even communicate alto-
gether [1].

A year after Kanner’s report, pediatrician Hans Asperger independently docu-
mented four of his patients who displayed similar characteristics but differed mark-
edly in their intellectual abilities by demonstrating advanced aptitudes in science 
and math. Despite this difference, Asperger described his patients as also having 
autism [2].

The core symptoms of ASD rarely occur in isolation and are typically associated 
with other comorbidities such as multiple psychiatric disorders like anxiety and 
depression, attention-deficit/hyperactivity disorder (ADHD), epilepsy, gastrointes-
tinal problems, sleep disorders, feeding disorder, learning disability (LD), intellec-
tual disability (ID), and obsessive-compulsive disorder (OCD) which will all be 
discussed thoroughly in the chapter on psychological comorbidities.

The term “spectrum” represents the variability in severity of symptoms ranging 
from mildly autistic, high-functioning individuals to severely impaired cases requir-
ing long-term specialist support, often seen in affected children. ASD was found to 
affect about 1–2% of the general population [3, 4].

2  Epidemiology

The global prevalence of ASD was previously reported in 2010 as 7.6 per 1000 (1 in 
132) [5]. The overall prevalence of ASD in Europe, Asia, and the USA ranges from 
2 to 25 per 1000, or approximately 1 in 40 to 1 in 500 [6–19].
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In 2010 and 2012, the estimated prevalence of ASD among 8-year-old children 
was 14.7 per 1000, approximately 1 in 68 overall (1 in 42 boys and 1 in 190 girls) 
[10, 11, 20, 21]. The prevalence of ASD estimates varies widely: by geographical 
location and racial/ethnic groups. In 2014, the prevalence slightly increased to 16.8 
per 1000, 1 in 59 overall, with an estimation of 1 in 38 boys and 1 in 151 girls. This 
was thought to be largely due to improved screening and diagnosis among black and 
Hispanic children [6]. Using a new surveillance case definition consistent with the 
Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), 
diagnostic criteria (published in 2013) had little effect on the prevalence estimate. 
In 2016, the estimated NHIS prevalence of ASD was 25 per 1000 (95% CI 22.3 to 
28.1 per 1000), approximately 1 in 40 children overall, 1 in 26 boys and 1 in 93 
girls [13].

The prevalence of ASD has significantly increased over time, mainly since the 
late 1990s [22, 23]. Several studies have proposed that modifications of case defini-
tion and increased awareness explain the obvious rise [5, 24–27]. This along with 
other factors may play an important role like earlier detection, availability of more 
specialized developmental services, diagnostic substitution (increase in ASD preva-
lence along with declines in the prevalence of others such as learning disorders, 
developmental language disorder, and/or ID), as well as a true increase in preva-
lence [19, 24, 25, 28–33]. It is concluded that ASD affects about 1% of the general 
population.

Male-to-female ratio: ASD is four times more common in boys than girls [6, 34]. 
In a systematic review and meta-analyses of 54 studies including > 13,700,000 
patients, the overall male-to-female ratio was 4.2 (95% CI 3.8–4.6) [34]. However, 
in higher quality studies that screened the general population for cases of ASD, the 
male-to-female ratio was closer to 3, suggesting that ASD may be underdiagnosed 
in girls.

Frequency in siblings: The estimated prevalence of ASD in siblings of children 
with ASD who do not have other medical conditions or syndromes ranges from 3 to 
10% [35–44]. However, other studies have suggested that the prevalence of ASD in 
siblings of children with ASD may be as high as 20% [41, 45, 46].

Interestingly, younger male siblings of a child with ASD are more often affected 
than younger female siblings. But the risk of recurrence appears to increase when 
the indexed patient is a girl (younger brothers of girls with ASD, 17%). The recur-
rence of ASD among children in more than 1.5 million families with two children 
aged from 4 to 18 years between 2008 and 2016 showed that the overall prevalence 
of ASD was at 1.25%. Among the families in which the older child had ASD, the 
risk of recurrence varied according to the sex of the siblings as follows: younger 
brothers of boys with ASD, 13%; younger sisters of girls with ASD, 8%; and 
younger sisters of boys with ASD, 4% [46].

The risk of ASD in siblings of children with ASD without an identifiable etiology 
is 7% if the affected child is female, 4% if the affected child is male, and ≥ 30% if 
there are two or more affected children in the family according to the 2013 American 
College of Medical Genetics and Genomics practice guideline [41, 47, 48].

Overview and Introduction to Autism Spectrum Disorder (ASD)
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It was also discovered that siblings of children with ASD may have symptoms of 
ASD even if they do not meet criteria for diagnosis of ASD (occasionally named the 
“broad ASD phenotype”). Symptoms of ASD or associated neurodevelopmental 
abnormalities were found to be more common among siblings of children with ASD 
than siblings of children without ASD in observational studies [49–53].

3  Pathogenesis

The pathogenesis of ASD has not been understood completely. Many factors seem 
to be involved in the onset of this disorder. These include epigenetic interactions 
between genetic and environmental factors.

The general consensus is that ASD is caused by genetic factors that alter brain 
development, more specifically, neural connectivity, thereby disturbing the social 
communication development pathways, leading to restricted interests and repetitive 
behaviors [54–56]. This consensus is supported by the “epigenetic theory” in which 
an aberrant gene is switched “on” during early fetal development and alters the 
other genes’ expression without changing their primary DNA sequence [57, 58].

3.1 Genetic Factors

The complexity of ASD and the diversity of clinical presentations are possibly due to 
interactions among numerous genes or gene combinations along with epigenetic 
influences, i.e., exposure to environmental modifiers that cause fluctuating gene 
expression [40, 59–63]. ASD has been also associated with polygenic variants, single-
nucleotide variants, copy-number variants, and rare inherited variants [56, 61, 64, 65]. 
A solid genetic influence on the development of ASD is supported by the unequal sex 
distribution, increased prevalence in siblings, high concordance in monozygotic 
twins, and increased risk of ASD with increased relatedness [40, 60, 61, 66–70].

Sandin et  al. 2014  showed, through a large population-based study, that the 
cumulative risk of ASD by the age of 20 years was found to be around 59% for 
monozygotic twins, 13% for full siblings and dizygotic twins, 9% for maternal half- 
siblings, 7% for paternal half-siblings, and 3% for cousins [68]. Though male pre-
dominance proposes to be X-linked, several studies indicated that the male-to-male 
transmission in a number of families eliminates X-linkage as the sole mode of 
inheritance [40, 71]. It was also found that the prevalence among siblings of ASD 
patients is higher than the prevalence in the general population but much lower than 
would be anticipated for single-gene disorders [36, 38, 40, 42].

The correlation between clinical phenotypes and specific genetic profiles contin-
ues to be examined. Linkage studies and whole-exome sequencing (WES) have 
identified many genetic variations predisposing one to ASD [47, 64, 72]. The 
genomics of ASD is discussed in a separate chapter. On the other hand, neurobio-
logical elements such as neuroimaging, electrophysiology, and autopsy studies in 

N. Al-Dewik et al.
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ASD patients have proposed that brain anomalies, particularly atypical neural con-
nectivity, play an vital role in the development of ASD [22, 73]. In addition, ASD 
children may have enhanced head development during infancy and enlarged overall 
brain size [74, 75].

In comparison to individuals without ASD, ASD individuals have different total 
and regional gray and white matter volumes, brain chemical concentrations, neural 
network anatomy, sulcal and gyral anatomy, brain lateralization, and cortical struc-
ture and organization [76–83]. Furthermore, cortical changes appear to result from 
abnormal neuronal differentiation during prenatal development [76]. Individuals 
with ASD utilize atypical and distinct forms of connectivity, cognitive approaches, 
and brain regions to manage information during tasks necessitating social interac-
tions (e.g., faces, eye gaze, speech) and social and nonsocial rewards compared to 
individuals without ASD [84–95].

A chapter 2 in this book has been dedicated to genetics and diagnostics of autism. 
Genetic changes including chromosome abnormalities, genetic variations, tran-
scriptional epigenetics, and noncoding RNA topics are also highlighted.

3.2 Environmental Factors

Several environmental elements or factors are thought to contribute to autism, 
including (1) advanced parental age, (2) prenatal exposures, (3) perinatal risk fac-
tors, (4) maternal medication, (5) smoking and alcohol use, (6) vaccination, (7) 
nutrition, (8) toxic exposures, (9) socioeconomic status (SES), and (10) gut micro-
biota (GM) disequilibrium which may also explain some ASD cases [96]. 
Undoubtedly, both genetic and environmental factors influence autism.

 – Advanced Parental Age Both paternal and maternal ages were found to be 
connected to increased risk of having a child with ASD [96–103]. This associa-
tion could be attributed to the amplified risk of having de novo spontaneous 
mutations (more often paternal), DNA methylation changes in the sperm, and/or 
alterations in genetic imprinting in the advanced parental age [104, 105].

 – Prenatal Exposure Prenatal exposure such as sex hormone alterations, maternal 
obesity, diabetes, hypertension, infections (rubella, cytomegalovirus, and influ-
enza), in  vitro fertilization (IVF) pregnancy, immune activities, and ultrasound 
may all be considered a liability and contribute to ASD risk [96, 106–119].

It is well known that some viral congenital infections, such as rubella and cyto-
megalovirus, being correlated with brain calcification, microcephaly, and ASD, can 
interfere with brain development. Due to the increasing number of babies born with 
microcephaly, structural brain abnormalities, and neurological alterations in regions 
affected by Zika virus (ZIKV), investigations have been carried out in order to 
understand this process better. The maternal immune system directly influences the 
fetal central nervous system (CNS), and complications during pregnancy have been 
associated with neurodevelopmental disorders. ZIKV could be considered a possi-
ble risk factor for ASD due to neuroimmunological aspects [120].

Overview and Introduction to Autism Spectrum Disorder (ASD)
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 – Perinatal Risk Factors Perinatal risk factors for instance prematurity, cesar-
ean delivery, low birth weight, low Apgar score, and hypoxia may have a role in 
enhanced autism risk [96, 121–123].

 – Maternal Medication The potential role or use of drugs during gestational 
period in the development of ASD has been investigated. A large comparative 
systematic review and meta-analysis has found valproic acid (VPA) to be associ-
ated with the increased risk of ASD [124]. On the other hand, several meta-
analyses of observational and systematic review studies suggested that antenatal 
selective serotonin reuptake inhibitor (SSRI) exposure is not correlated with an 
increased risk of ASD [125, 126]. Maternal prenatal drug exposure during preg-
nancy is detailed in another chapter.

 – Smoking and Alcohol Usage Both smoking and alcohol abuse are a form or a 
subcategory of drugs that have been found to be reliably associated with neuro-
logical, psychiatric, and neurodevelopmental disorders, including comorbidities 
of ASD, such as ADHD [127]. However, this does not occur with ASD pheno-
types. On the other hand, smoking was found to be associated with an increased 
risk of ASD with ID [128, 129]. Two meta-analyses showed no proof of smoking 
as a risk factor in ASD, even after correcting for multiple confounds including 
SES and parental psychiatric history [130, 131].

 – Vaccines A potential role of an association between vaccines and ASD has also 
been investigated. There was some speculation that certain vaccines (e.g., mea-
sles, mumps, and rubella, MMR) or vaccine constituents (e.g., thimerosal) may 
play a role in the development of ASD [132–138]. However, prospective studies 
established that these ASD findings are often present during the first year of life, 
hence before the first dose of MMR, suggesting lack of association with immu-
nization. Moreover, epidemiological evidence does not support an association 
between immunizations and ASD [37, 139–142].

 – Maternal Nutrition Status The depletion of essential nutrients in the mother 
has been correlated with adverse health outcomes for children, including 
increased ASD risk. By virtue of this, short inter-pregnancy interval has also 
been associated with an increased risk of ASD [143, 144]. An entire section in 
this book has been devoted to specific food and nutrient qualities.

Mazahery et al. 2016 and Magnusson et al. 2016 have showed that vitamin D 
deficiency during early development combines with other risks and perhaps contrib-
utes to ASD risk. Vitamin D could be used as a preventive measure to reduce ASD 
symptoms in diagnosed cases [145, 146]. In addition, Demarquoy et al. 2019 were 
recently able to establish a possible link between ASD and carnitine deficiency. 
They were also able to show that dietary supplementation with L-carnitine is benefi-
cial to these patients [147].

Schmidt et al. 2014 also showed that maternal iron deficiency and low iron intake 
doubled the chance of having an ASD child in the presence of other ASD risk fac-
tors, where low iron intake significantly interacted with advanced maternal age and 
metabolic conditions; joined exposures were associated with a fivefold increase of 
ASD incidence [148]. Maternal deficiencies in zinc and cooper were found to pos-
sibly be contributing to overall ASD risk [149–152].

N. Al-Dewik et al.
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 – Pollution and Toxic Pollutant Exposure A systematic review and meta-anal-
ysis of 23 studies showed that the risk of having ASD increases one- or twofold 
with PM10 and PM2.5, respectively [153]. A systematic review and meta-analysis 
studying the link between concentrations of toxic metals (such as antimony, arse-
nic, cadmium, lead, manganese, mercury, nickel, silver, and thallium) in bioflu-
ids (whole blood, plasma, serum, red cells, hair, and urine) in ASD patients 
showed higher levels of mercury and lead in the blood and higher antimony, 
cadmium, lead, and mercury in the hair [154].

A review study showed there are several significant associations between all 
classes of pesticides and ASD risk. These effects were greatest for exposures in 
weeks 1–7 of pregnancy and postnatally in weeks 4–12 [155]. Another study showed 
that ASD risk increased by 60% with exposure to organophosphates during preg-
nancy. This risk was two times greater for exposure during the third trimester and 
three times greater with exposure to chlorpyrifos during the second trimester. 
Exposure to pyrethroid insecticide immediately prior to conception or during third 
trimester increased risk of both ASD and developmental delay around two 
times [156].

The role of nonpersistent organic pollutants, primarily phthalates and bisphenol 
which are used mainly in the production of plastics, has been investigated in relation 
to ASD. It was found that there are associations between phthalates and ASD, but 
the association with bisphenol was controversial [157–161]. In addition, the role of 
three major agents of persistent organic pollutants such as dichlorodiphenyltrichlo-
roethane (DDT), polychlorinated biphenyls (PCBs), and polybrominated diphenyl 
ethers (PBDEs) has been investigated in relation to ASD [162]. It was found that the 
pesticide DDT had a negative impact on cognitive skills (IQ, memory) and gene 
expression in the hypothalamus [163, 164]. PCBs have negative effects on various 
intellectual, motor, and verbal outcomes of relevance to autism, and PBDEs had 
also negative effects on neurodevelopment [165]. However, the latter finding was 
not confirmed in another study [166].

 – Socioeconomic Status (SES) Studies on the association between SES and 
autism have not been conclusive [167]. However, several studies in the USA 
found that lower SES, specifically concerning the aspects of household income 
and parental education, was associated with decreased risk of ASD and higher 
social class (higher median family income) was significantly associated with 
ASD [168–170]. In contrast, studies in European regions and other countries 
showed negative/inverse or no relationship between SES and ASD. For instance, 
increased risk of autism was associated with lower SES in Sweden, France, and 
Japan [167, 171, 172], and no association was found in Denmark and the UK 
[173, 174]. A recent study in China showed that children in middle-income and 
high-income families were less likely to have ASD than their low-income peers. 
Children in families with socioeconomic disadvantage, in the form of lower fam-
ily income and education, had greater risk of childhood ASD [175].

Overview and Introduction to Autism Spectrum Disorder (ASD)
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 – Gut Microbiota (GM) GM alteration in gut microflora equilibrium and its 
metabolites on the development of ASD symptoms is a new research frontier that 
is evolving at a rapid pace. Animal model studies with ASD behavioral traits 
revealed that there is in fact a correlation between GM dysbiosis and clinical 
features reported in ASD patients such as behavioral alterations, gastrointestinal 
tract abnormalities, and immunologic alterations [176, 177]; additionally, GM 
microbiota has a distinctive attribute in ASD children [178]. Thus, proliferation 
and/or depletion of clusters of particular bacteria controls intestinal functions 
and may interfere with neuro- immune communication and behavior in ASD 
patients [179–181].

It is worth mentioning that the influence of environmental exposure seems to 
depend on several factors such as the timing and duration of exposure, concentra-
tion of the toxin, mechanism of action, and diffusion in the CNS [56, 182, 183].

Gardener et al. 2011 carried out a comprehensive meta-analysis of 40 diverse 
observational studies of perinatal and neonatal risk factors for ASD and found only 
a slight hint of relationship with any single risk factor in the etiology of ASD [122]. 
However, some evidence suggested that a wide range of conditions, such as abnor-
mal presentation, umbilical-cord complications, fetal distress, birth injury or trauma, 
multiple birth, maternal hemorrhage, summer birth, low birth weight, small size for 
gestational age, congenital malformation, low 5-min Apgar score, feeding difficul-
ties, meconium aspiration, neonatal anemia, ABO or Rh incompatibility, and hyper-
bilirubinemia, are associated with ASD risk. A subsequent meta-analysis of 
observational studies supported the notion of increased risk of ASD in preterm 
infants [184]. Succeeding observational studies also proposed that maternal health 
conditions (e.g., diabetes, obesity, hypertension, preeclampsia) are linked with 
increased ASD risk [114, 185–189].

Further studies are still needed correlating these risk factors and ASD to inform 
prevention strategies.

4  Protective Factors

While the majority of research studies have investigated environmental risk factors 
in ASD, there is an evolving body of research studying the vital role of likely protec-
tive factors, mainly from the field of nutrition and food supplementation such as 
folate, fatty acids including the omega-3 group, and others such as probiotic bacte-
ria. Current studies indicate that prenatal nutrition and food supplementation might 
reduce the risk of ASD in children or alleviate severity. This field is receiving sub-
stantial attention at the international level. The reader is referred to the chapters 
focusing on the special qualities of specific foods and nutrients.

N. Al-Dewik et al.
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5  Screening Tools

Screening for ASD is suggested in children (1) with delayed language/communica-
tion milestones, (2) with a regression in social or language skills, and (3) whose 
parents raise concerns regarding ASD. ASD-specific screening is recommended by 
the American Academy of Pediatrics for all children at 18 and 24 months of age 
because these are critical intervals for early social and language development and 
earlier intervention is more effective for ASD [182].

The choice of the screening test depends on the age of the child and whether he 
or she is being screened for the first time or has been identified through develop-
mental surveillance or screening to be at risk of developmental problems [182]. In 
the former situation, a first-tier screen should be used, and in the latter, a second-tier 
screen. Herein, we discuss the tiered screening model. In the tiered screening model, 
first-tier screening is used to recognize ASD children at risk from the general popu-
lation. Second-tier screening is used to discriminate ASD from other developmental 
disorders in children with developmental concerns. Second-tier screening tools are 
appropriate for use among children who have failed general developmental screen-
ing or an ASD-specific screening test, depending upon their age and the level of 
concern. Second-tier tools are usually more time-consuming and may necessitate 
more expertise to administer and interpret. Several screening tools have been devel-
oped for ASD patients; these tools are listed in Table 1.

Tool Comparison Studies Several investigations have directly compared screen-
ing tools in specific populations. A few of these studies are described below.

A study that examined multiple screening tools, including the Social 
Communication Questionnaire  (SCQ), Infant Toddler Checklist  (ITC), and key 
items from the Checklist for Autism in Toddlers  (CHAT) in a population of 238 
high-risk children (clinician concern or positive first-tier screen), found that none of 
the instruments adequately discriminated ASD from non-ASD [224].

In a study comparing the Modified-CHAT (M-CHAT) with the SCQ in a sub-
sample of 39 preschool children referred for suspected ASD, the M-CHAT correctly 
classified 24 out of 29 children with ASD and 5 out of 10 children with non- 
ASD. The SCQ correctly identified 21 out of 29 children with ASD and 3 out of 10 
children with non-ASD. Both instruments were more accurate in evaluating chil-
dren with lower intellectual and adaptive functioning [225].

In a study comparing Parent’s Observations of Social Interactions (POSI) with 
the M-CHAT in 232 children (16 to 36 months) from primary care and specialty 
clinic populations, the POSI had higher sensitivity (83 vs. 50%) but lower specific-
ity (75 vs. 84%). In another study comparing the M-CHAT with the POSI in 217 
children (18 to 48 months) from a developmental clinic, the sensitivity of the POSI 
was higher (89 vs. 71%), but specificity was not significantly different (54 vs. 62%) 
[204]. Noteworthy is the fact that the M-CHAT has been validated only in children 
up to 30 months of age, so it had not been used as designated. In addition, a revised 
version of the M-CHAT i.e. M-CHAT, Revised with Follow-Up (M-CHAT-R/F) was 
released after this study.

Overview and Introduction to Autism Spectrum Disorder (ASD)
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In a study investigating the validity of identifying ASD in a sample of 49 children 
with ID, the DBC-ASA showed similar sensitivity (94 vs. 92%) and lower specific-
ity (46 vs. 62%) compared to the SCQ. Six of the seven children with false-positive 
scores on the Developmental Behavior Checklist-Autism Screening Algorithm 
(DBC- ASA) had elevated problem-behavior scores [221].

6  Diagnostic Tools

Several diagnostic tools have been employed in combination with clinical judgment 
to reach a diagnosis in ASD [182, 226, 227]. Diagnostic tools for ASD are com-
monly administered by a trained specialist.

These diagnostic tools are offered as self-completion questionnaires and a for-
mal diagnostic interview. However, their diagnostic accuracy has not been well 
evaluated [228–230]. The tools that are suggested as part of international guidelines 
are included in Table 2 [182, 226, 249–251].

In clinical practice, the Asperger Syndrome Diagnostic Scale is also used for 
higher functioning children along with the Autism Diagnostic Interview- 
Revised  (ADI-R), Autism Diagnostic Observation Schedule-Second 
Edition (ADOS-2), Childhood Autism Rating Scale-Second Edition (CARS-2), and 
Gilliam Autism Rating Scale (GARS). In a systematic review of observational stud-
ies evaluating diagnostic accuracy in children < 6 years of age, who underwent 
multidisciplinary evaluation for ASD (the reference standard), none of the studies 
using GARS, Developmental Dimensional and Diagnostic Interview  (3di), or 
Diagnostic Interview for Social and Communication Disorder  (DISCO) met the 
inclusion criteria [229]. Among studies of ADI-R, CARS, and ADOS, there was 
substantial variation in sensitivity and specificity, likely related to differences in 
study populations and methodology. The remaining studies that were available were 
too few in number to permit meaningful direct comparison. However, when the 
summary statistics were compared, ADOS was most sensitive (94% compared with 
80% for CARS and 52% for ADI-R). The three tools had similar specificity (ranging 
from 80 to 88%).

Diagnostic tools for ASD must be used in conjunction with clinical judgment for 
a number of reasons. The administration protocols that are used in research studies 
may not be achievable in clinical practice. In the studies included in the systematic 
review, ASD was diagnosed according to criteria from DSM-4 or earlier classifica-
tions that do not directly correlate with DSM-5 criteria [182]. In addition, the ver-
sions of the tools evaluated in published studies may have been updated after 
publication.

Ancillary Testing Ancillary testing is necessary to assess functional impairment, 
define the child’s strengths and weaknesses for education planning, identify 
 associated conditions (e.g., intellectual impairment, language impairment), and 
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Table 2 Diagnostic tools for ASD

Assessments Tools Age Description References

Autism-specific 
diagnostic 
interviews

ADI-R ≥ 2 years A semi-structured interview with 
parent/caregiver
96-item interviews
Takes around 2–3 h

[231]

DISCOa All ages A clinical semi-structured interview 
with parent/primary caregiver > 300, 
including 93 for diagnosis
Takes around 2–3 h

[232, 233]

CARS/
CARS-2

≥ 2 years Combination of interview and direct 
observation 15-item behavioral rating 
scale
A hybrid, collecting information from 
a variety of people and situations, 
including reports from parents and 
teachers alongside school and clinic 
observations
Takes around 5–15 min

[234, 235]

3dia Early 
childhood to 
adulthood

A structured interview with parent/
caregiver
Covers other mental states along with 
demography, family background, 
developmental history, and motor 
skills
Takes around 1.5–2 h

[236]

Autism 
diagnostic 
observational 
assessment

ADOS-2 ≥ 12 months A semi-structured behavioral 
observation
Four modules
It uses a combination of standardized 
play, activities, and verbal interview
Takes around 30–45 min to administer 
and a further 20 min to determine the 
scores

[237–241]

Tools to 
identify an 
increased 
likelihood of 
ASD

GARS/
GARS-2

3–22 years A 42-item checklist
Takes around 5–10 min to complete 
and score

[242–246]

PIA-CV ≤ 3 years A 118-item structured interview for 
parents
Consists of 11 domains: social 
relating, affective responses, imitation, 
peer interactions, object play, 
imaginative play, language 
understanding, nonverbal 
communication, motoric behaviors, 
sensory responses, and need for 
sameness
Takes around 30–45 min

[247, 248]

ADI-R, Autism Diagnostic Interview-Revised; DISCO, Diagnostic Interview for Social and 
Communication Disorder; CARS-2, Childhood Autism Rating Scale-Second Edition; 3di, 
Developmental Dimensional and Diagnostic Interview; ADOS-2, Autism Diagnostic Observation 
Schedule-Second Edition; GARS, Gilliam Autism Rating Scale; PIA-CV, Parent Interview for 
Autism-Clinical Version
aUsed predominantly outside the USA
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evaluate conditions characterized by symptoms that mimic ASD.  Generally, it 
includes [226, 251–253] the following:

 1. Speech, language, and communication assessment—the speech and language 
assessment provides a profile of language and communication skills and may 
differentiate ASD from developmental language disorder, language-based learn-
ing disorder, and social (pragmatic) communication disorder. The speech and 
language evaluation includes assessment of:

 (a) Formal language functions (e.g., vocabulary, grammar, syntax)
 (b) Prosodic features (e.g., rate, rhythm, volume, emotional expressiveness)
 (c) Pragmatic language functions (e.g., nonverbal communication [facial 

expressions, gestures, body language, prosody], nonliteral language [e.g., 
metaphor, humor], content of conversations [appropriateness of topic for the 
social situation], ability to stay on topic [topic maintenance])

Pragmatic language tests are subject to observer interpretation. Individuals 
with ASD may perform successfully in the 1:1 testing situation but not in 
real-time situations (e.g., classroom discussion, peer interaction).

 2. Developmental/intelligence testing with separate estimates for verbal and non-
verbal skills.

 3. Assessment of adaptive skills to document associated ID and to help establish 
priorities for when intervention is planned; functional impairment is one of the 
diagnostic criteria for both ASD and ID. In addition, in the USA, overall levels 
of function determine eligibility for services in many states.

 4. Sensorimotor and/or occupational therapy evaluation for treatment planning.
 5. Vision and hearing assessment (if not already performed).
 6. Lead testing (if not already performed).
 7. Other tests—ancillary testing may also include specific tests for certain condi-

tions associated with ASD as indicated by the initial clinical evaluation.

7  Diagnostic Criteria

The diagnostic criteria for ASD differ geographically. The most common diagnostic 
criteria are mentioned below:

 1. The DSM which was updated in 2013 (DSM-5) [254].
 2. The World Health Organization International Classification of Diseases, 10th 

revision (ICD-10) [255]. A new version was recently released in 2018, i.e., the 
11th revision (ICD-11) [256].

Clinical diagnosis of ASD is made in children who meet the established diagnos-
tic criteria for ASD based on available history and observation of behavior. There 
are two major sets of diagnostic criteria, both of which center on atypical social 
communication and interaction and restricted, repetitive patterns of behavior, activi-
ties, and interests: the DSM and the ICD.
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DSM-Fifth Edition (DSM-5) Criteria According to the DSM-5 criteria, a diag-
nosis of ASD requires all of the following [254]:

• Persistent deficits in social communication and social interaction in multiple set-
tings, demonstrated by deficits in all three of the following (either currently or by 
history):

 – Social-emotional reciprocity (e.g., failure to produce mutually enjoyable and 
agreeable conversations or interactions because of a lack of mutual sharing of 
interests and a lack of awareness or understanding of the thoughts or feelings 
of others)

 – Nonverbal communicative behaviors used for social interaction (e.g., diffi-
culty coordinating verbal communication with its nonverbal aspects [eye con-
tact, facial expressions, gestures, body language, and/or prosody/tone of 
voice])

 – Developing, maintaining, and understanding relationships (e.g., difficulty in 
adjusting behavior to social setting, lack of ability to display socially accept-
able behaviors, lack of interest in socializing, difficulty making friends even 
when interested in having friendships)

• Restricted, repetitive patterns of behavior, interests, or activities; demonstrated 
by ≥ 2 of the following (either currently or by history):

 – Stereotyped or repetitive movements, use of objects, or speech (e.g., stereoty-
pies such as rocking, flapping, or spinning); echolalia (repeating parts of 
speech, repeating scripts from movies or prior conversations)

 – Insistence on sameness, unwavering adherence to routines, or ritualized pat-
terns of verbal or nonverbal behavior (e.g., ordering toys into a line)

 – Highly restricted, fixated interests that are abnormal in strength or focus (e.g., 
preoccupation with certain objects [trains, vacuum cleaners, or parts of trains 
or vacuum cleaners]); perseverative interests (e.g., excessive focus on a topic 
such as dinosaurs or natural disasters)

 – Increased or decreased response to sensory input or unusual interest in sen-
sory aspects of the environment (e.g., adverse response to particular sounds, 
apparent indifference to temperature, excessive touching/smelling of objects)

• The symptoms must impair function (e.g., social, academic, completing daily 
routines).

• The symptoms must be present in the early developmental period. However, they 
may become apparent only after social demands exceed limited capacity. In later 
life, symptoms may be masked by learned strategies.

• The symptoms are not better explained by ID or global developmental delay.

ASD may occur with or without medical, genetic, neurodevelopmental, mental, 
or behavioral disorders (e.g., intellectual impairment, language impairment, epi-
lepsy, fetal valproate or alcohol exposure). The presence or absence of these condi-
tions is specified as part of the DSM-5 diagnosis of ASD (e.g., ASD with 
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accompanying intellectual impairment, ASD without accompanying language 
impairment). Some accompanying conditions are identified during the comprehen-
sive evaluation; others may require additional testing.

ICD-10th Revision (ICD-10) Criteria The ICD-10 criteria for the diagnosis of 
pervasive developmental disorders are provided in the ICD-10 [255]. Although the 
11th edition of ICD was released in 2018, the clinical descriptions and diagnostic 
guidelines in the ICD-10 should be used until January 2022, when the transition to 
ICD-11 is scheduled to occur.

Associated conditions and syndromes: A number of neurodevelopmental condi-
tions and genetic syndromes are associated with ASD.  Approximately 45% of 
patients with ASD have ID, as many as 50% have ADHD, and as many as 30% have 
epilepsy [22, 257]. The risk of epilepsy increases in patients with more severe 
ID [182].

Up to 25% of cases of ASD are associated with a clinically or molecularly 
defined syndrome (e.g., tuberous sclerosis complex [TSC], valproate embryopathy, 
15q chromosome duplication) [64, 182, 258–263]. Associated syndromes are more 
common in patients with global developmental delay or ID [182].

Clinical Syndromes Clinically defined syndromes commonly associated with 
ASD [22, 64, 182, 226, 264] include the following:

• TSC is an inherited neurocutaneous disorder that is characterized by the develop-
ment of a variety of benign tumors in multiple organs. Associated clinical fea-
tures include hypopigmented macules, angiofibromas, shagreen patches, 
seizures, and cognitive deficits. Approximately 40% of patients with TSC also 
have ASD; however, only 0.4–4% of patients with ASD have TSC [265–268]. 
Patients with comorbid TSC and ASD often have epilepsy [265, 267, 269, 270].

• Fragile X syndrome (FXS) is an X-linked disorder that is often associated with 
ID. Characteristic features of the classic phenotype include a long, narrow face, 
prominent forehead and chin, large ears, testicular enlargement in adolescence, 
macrocephaly, arched palate, and hyperextensible joints. In a systematic review, 
30% of males with FXS had features of ASD [266]. However, FXS is rarely 
found in patients with ASD [271–273].

• Chromosome 15 q11-q13 duplication syndrome is described by hypotonia, joint 
laxity, global (especially motor) developmental delays, seizures, speech delay, 
social deficits, stereotypies, and a variable pattern of mild facial dysmorphisms 
[274, 275]. 15q11-q13 duplication has been reported in approximately 1–2% of 
children with ASD, usually those with moderate to profound ID [226, 
276–279].

• Angelman syndrome (AS) is a neurodevelopmental disorder characterized by 
severe ID, postnatal microcephaly, and movement or balance problems. It is 
caused by the absence of the maternally inherited copy of the UBE3A gene, 
which maps onto chromosome 15q11-q13. In a systematic review, 34% of 
patients with AS had ASD [266].
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• Classic Rett syndrome occurs almost exclusively in girls. It is characterized by 
loss of speech, replacement of purposeful hand movement with stereotypic hand 
movement, gait abnormalities, and an abnormal respiratory pattern. In a system-
atic review, approximately 60% of females with Rett syndrome had phenomenol-
ogy of ASD [266].

• CHARGE syndrome: is characterized by coloboma of the eye, heart defects, cho-
anal atresia, growth retardation, genitourinary anomalies, and ear abnormalities. 
As many as 50% of affected patients have ASD [22, 266].

• Joubert syndrome: is a heterogeneous syndrome characterized by hypoplasia of 
the cerebellar vermis, neurological symptoms (e.g., dysregulation of breathing 
pattern, developmental delay), retinal dystrophy, and renal anomalies. 
Approximately 40% of patients with Joubert syndrome also have ASD [22].

• Smith-Lemli-Opitz syndrome is an autosomal recessive disorder of cholesterol 
biosynthesis [182]. Clinical features include postnatal microcephaly, soft cleft 
palate/bifid uvula, micrognathia, low-set posteriorly rotated ears, poor weight 
gain, syndactyly of the second and third toes, abnormal genitalia, ID, hypotonia, 
and autistic features (e.g., deficits in social interaction and communication, 
repetitive and stereotyped behaviors) [280, 281]. In one case series, 10 to 12 of 
14 children with Smith-Lemli-Opitz syndrome met criteria for ASD [281].

• Timothy syndrome: is characterized by syndactyly, congenital heart disease, mul-
tiorgan dysfunction, and cognitive abnormalities. As many as 70% of patients 
with Timothy syndrome also have ASD [22].

• Macrocephaly/autism syndrome: Clinical features of macrocephaly/autism syn-
drome include postnatal macrocephaly, broad forehead, frontal bossing, long 
philtrum, depressed nasal bridge, and ID.

• Cowden/Bannayan-Riley-Ruvalcaba syndrome: Clinical features include macro-
cephaly, birdlike facies, hypoplastic mandible and maxilla, cataract, microsto-
mia, high-arched palate, pectus excavatum, genitourinary anomalies, skin tags, 
lipomas, and penile macules.

Molecularly defined syndromes may account for as many as 20% of cases of 
ASD [64] and are characterized by incomplete penetrance and variable expressivity, 
making them difficult to identify clinically. Although there is some overlap with 
clinically defined syndromes, examples of molecularly defined syndromes include 
chromosomal variations (e.g., isodicentric 15q), ASD-associated copy-number vari-
ants (e.g., 16p11.2 deletions or duplications), and pathogenic variants of ASD-risk 
genes (e.g., CHD8 [chromosome helicase DNA binding protein 8]).

8  Genetic Testing

First-Tier Genetic Studies Suspected ASD cases whether or not they have dys-
morphic features are evaluated by chromosomal microarray (CMA) and DNA 
analysis for fragile X. Karyotyping is also warranted if balanced translocation is 
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suspected (e.g., history of ≥ 2 miscarriages) because CMA does not detect balanced 
translocations [282, 283]. However, truly balanced de novo translocations are 
rare [284].

Identification of a genetic diagnosis may provide information about prognosis 
and recurrence risk [258, 285]. It may also provide emotional relief for parents and 
can be crucial to the therapeutic alliance. However, few studies have evaluated the 
effect of genetic testing on such outcomes, and it is unclear whether or not genetic 
testing affects health outcomes.

However, classification and reporting of variants of unknown significance (VUS) 
remains a challenge. Thus, consultation with a clinical geneticist may be necessary 
for interpretation of CMA results, especially when novel and/or recurrent copy- 
number VUS are identified. Nonetheless, CMA still has the highest diagnostic rate 
amongst current genetic tests for ASD patients (excluding WES, which may be 
costly and not widely available) [286–289].

In a cohort of 933 patients who underwent genetic testing for a diagnosis of 
ASD, karyotype was abnormal in 2%, fragile X testing was abnormal in 0.5%, and 
array comparative genomic hybridization (CGH) identified abnormal deletions or 
duplications in 7% [287]. In another population-based sample of 258 unrelated chil-
dren consecutively diagnosed with ASD, CMA yielded a molecular diagnosis in 
9.3% [288]. Among the 95 children who underwent both CMA and WES, the diag-
nostic yield of WES was comparable to CMA (8.4%), and the combined yield of 
CMA and WES was 15.8%. Molecular diagnosis was more often achieved in chil-
dren with more severe dysmorphology, suggesting that it may be possible to identify 
children with the greatest likelihood of genetic diagnosis [290].

Recently, Jang et al. 2019 also showed that employing CMA as a first-tier test in 
developmental delay/intellectual disability (DD/ID), autism spectrum disorders 
(ASD), and multiple congenital anomalies (MCA) increases diagnostic yields and 
the quality of clinical management in these patients [291].

The genetic testing approach to children with ASD is part of the consistent rec-
ommendations of the American College of Medical Genetics and Genomics and the 
International Standards for Cytogenomic Arrays Consortium [44, 282, 292–295].

Other Genetic Tests as Clinically Indicated Other types of genetic testing are 
performed as clinically indicated in children with dysmorphic features, microceph-
aly, macrocephaly, cognitive impairment/abnormailities, suspicious medical or 
family history, or in cases where prenatal genetic counseling is desired [40, 47]. 
Consultation with or referral to a clinical geneticist can be helpful in determining 
the appropriate studies.

Specific testing should be guided by clinical findings. As examples:

• Testing for the X-linked MECP2 Rett mutation may be warranted for patients, 
particularly girls, with a history of significant developmental regression 
[226, 296].
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• Testing for mutations in the PTEN gene should be completed for patients with 
ASD and macrocephaly (greater than 2.5 standard deviations above the mean for 
age and sex) to rule out hamartomatous tumor syndromes (e.g., Proteus syndrome, 
Cowden syndrome, including Bannayan-Riley-Ruvalcaba syndrome) [47].

9  Additional Testing as Indicated

Metabolic Testing Disorders of amino acid, carbohydrate, purine, peptide, and 
mitochondrial metabolism account for < 5% of cases of ASD [226, 297].

Metabolic testing in children with ASD and symptoms or signs of a metabolic 
disorder [226, 258, 297, 298] includes:

Several observational studies studying the yield of metabolic testing in the 
absence of signs or symptoms of metabolic disease have shown that it has a low 
diagnostic yield [47, 258, 299, 300].

Neuroimaging Decisions about neuroimaging in children with ASD are made on a 
case-by-case basis. In observational studies, the yield of magnetic resonance imaging 
is low in children with ASD and no other neurological findings (e.g., ID, abnormal 
neurologic examination, seizures, headache, focal neurologic findings) [258, 301].

Electroencephalography (EEG) EEG is done on children with ASD only if war-
ranted by history or physical examination, specifically for clinical seizures, unusual 
spells, or behaviors frankly suggestive of seizures, to exclude Landau-Kleffner 
syndrome (acquired epileptic aphasia) in children with regression in language 
skills [182, 226]. Among children with ASD and staring spells, it has been found 
that EEG rarely yields clinically significant findings [302] and thus is not routinely 
recommended.

Lethargy, limited endurance (particularly if associated with mild illness)
Hypotonia
Recurrent vomiting and dehydration
Early seizure
Dysmorphic or coarse features
ID (or if ID cannot be excluded)
Developmental regression
Hearing impairment
Vision impairment
Unusual odors
Specific food intolerance (e.g., protein)
Inadequate or questionable adequate newborn screen
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10  Conclusion and Perspective

Increasing prevalence of ASD and high rates of related comorbidities have caused 
serious health deterioration and placed substantial burden on supporting families, 
caregivers, and health care services. The economic impact associated with ASD is 
substantial and includes direct medical, nonmedical, and indirect productivity costs.

The sizable economic burden of ASD in the USA is predicted to be $175–268 
billion, exceeding the cost of noncommunicable diseases like cancer, stroke, and 
heart disease together. ASD is projected to cost the USA a whopping $461 billion 
by 2025 [303]. Yearly direct medical and nonmedical and productivity costs together 
were forecasted to be $268 billion (range $162–367 billion; 0.88–2.0% of GDP) for 
2015 and $461 billion (range $276–1011 billion; 0.98–3.6% of GDP) by 2025.

Studies estimate the lifetime cost of caring for ASD an individual to be $2.2 mil-
lion in the USA and £1.5 million in the UK though the cost drops to $1.4 million in 
the USA and £0.9.2 million in the UK for ASD without comorbid conditions. In 
addition, if unrecognized or untreated, ASD can contribute to poor educational 
attainment and difficulty with employment, leading to negative economic implica-
tions. There is also a suggestion that comorbidities of ASD tend to amplify burden 
to the society and afflicted individuals alike [304, 305]. However, economic burden 
could be reduced via more investment and funding in ASD research to comprehend 
the causes of and develop treatments for ASD. Thus, there is a need for an increase 
in public, research, and government attention to ensure that all children have access 
to intensive early intervention and that school-based interventions support academ-
ics as well as social and language skills to explore the causes and best treatments 
for ASD.

In this review, we offered a summary of epidemiological studies, disease patho-
genesis, screening and diagnostic tools, and genetic testing of ASD. The future for 
individuals suffering from less severe forms of ASD is bright. Our hope is that 
through early behavioral screenings, genetic testing, identification of environmental 
risk factors, as well as a better understanding of neural development, the number of 
individuals suffering from autistic phenotypes may be greatly reduced. While there 
is much work to be done in understanding and treating ASD, there are important 
steps that can be taken now. First, continued awareness programs so that children 
are identified and treated as early as possible. Second, prenatal and prepregnancy 
awareness of environmental factors, including recommendations against consan-
guineous marriages and information regarding optimal maternal nutrition and the 
importance of limiting exposure to toxins and pollutants. Finally, the expansion of 
genetic screening and early postnatal monitoring of infant feeding, nutrition, and 
eye contact that will help provide treatment as early as possible.

Progress in clinical care for those affected by ASD will continue to be driven by 
multidisciplinary, collaborative research efforts. Efforts are currently underway to 
identify functional, genetic-ontological subtypes that may provide additional utility 
with regard to clinical intervention. This includes investigation of broader pheno-
types associated with gene disruptions that share molecular properties. Identification 
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of measurable neurological effects of gene disruptions, such as an electrophysiolog-
ical (EEG) signature, could translate to meaningful ASD biomarkers that are essen-
tial for clinical treatment trials. Development of treatment is also required to increase 
our knowledge about the timing of genetic expression and explore the possibility of 
reversing neurodevelopmental impairment. Thus, sustained comprehensive pheno-
typing will be vital to the success of clinical trials for genetic subtypes of ASD.

ASD is necessitating considerable joint efforts of the government and of other 
societal actors to perform more experimental and clinical research on children with 
ASD in order to move forward with advancements in clinical practice. There are 
great opportunities for collaborative research and innovation to contribute to a 
growing body of evidence and knowledge in ASD.
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Abstract Autism spectrum disorder (ASD) is a highly heritable, heterogeneous, 
and complex pervasive neurodevelopmental disorder (PND) characterized by dis-
tinctive abnormalities of human cognitive functions, social interaction, and speech 
development.

Nowadays, several genetic changes including chromosome abnormalities, 
genetic variations, transcriptional epigenetics, and noncoding RNA have been iden-
tified in ASD. However, the association between these genetic modifications and 
ASDs has not been confirmed yet.

The aim of this review is to summarize the key findings in ASD from genetic 
viewpoint that have been identified from the last few decades of genetic and molec-
ular research.
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1  Introduction

ASD is a clinically and genetically complex heterogeneous disorder with diverse 
patterns of inheritance and an underlying genetic background. Understanding of the 
currently well-defined genetic architecture of ASD is vital to study altered molecu-
lar pathways in ASD.

The majority of ASD cases (85%) are idiopathic and thus have no known genetic 
causes [1]. In these cases, it is likely that a combination of multiple genetic and 
nongenetic factors interacts with each other and results in ASDs [1]. That is, they 
are polygenic or multifactorial in nature, the result of genes plus environmental 
factors.

Several genes have been found to be implicated in ASD. The identified genes are 
known to be functionally heterogeneous, and many are found to be involved in syn-
aptic formation, transcriptional regulation, and chromatin remodeling [2–5]. From 
a genetic point of view, 200–1000 genes have been found to be involved in contrib-
uting to ASD susceptibility. Several consortia such as the Simons Simplex Collection 
(SSC) and the Autism Sequencing Consortium (ASC) have been established to 
study the complexity of genetic aspects of ASD [6, 7].

The genetic contribution to ASD has been known since the 1970s, after two 
identical twins were found to have the same condition [8]. It has since been deter-
mined that the heritable rate is 30–99% in identical twins and the conforming rate 
for sibling twins is around 3–30% with estimated overall heritability at around 
0.7–0.8 [9–12].

2  Inheritance Pattern

ASD has a tendency to run or aggregate in families and can also present itself in 
diverse patterns of inheritance and causal genetic variations. Thus, the inheritance pat-
tern of the most ASD cases is polygenic or multifactorial (not Mendelian) [10, 11, 13]. 
Almost half (44%) of the subjects with ASD have co-occurring adaptive and cognitive 
functioning deficits. Early diagnosis (12–18  months) and intervention is highly 
beneficial to patients.

The most common inheritance patterns of alleles associated with ASD are a 
dominant variant type, while recessive inheritance patterns are rare. X-linked or de 
novo inheritance patterns are very rare. Approximately five times more males than 
females are affected by this disorder pointing towards a possible involvement of sex 
chromosomes and imprinting effects in the etiology of the disorder. However, no 
specific genes have been conclusively implicated so far.

Gender gap or sexual dimorphism has also emerged in the equation deciphering 
the etiology of ASD. Female protective effect is one of the explanations for them 
being five times less likely to have ASDs, i.e., males being four to five times more 
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likely to have the disorder. This could be attributed to greater genetic load in females 
and possibly greater plasticity of the female ASD brain.

Genetic changes associated with ASD commonly lead to inheriting increased 
risk of acquiring the disorder rather than the condition itself. This is mainly because 
ASD features of another genetic syndrome can be passed on according to the mode 
of inheritance of that syndrome.

Research on the genetics of ASD has accelerated in recent years due to rapid 
advancement of DNA-decoding technologies [3]. With the identification of genetic 
variants related to ASD, testing at birth or in vitro may become a risk factor identi-
fication tool that leads to early intervention.

As technology advances, the list of genes linked to autism is growing. Many of 
these genes are vital for communication between neurons or control of the expression 
of other genes. Although over 400 genes have been linked strongly and 200 have been 
linked weakly to this disorder, the influence of each specific gene within the ASD 
population is very minor, and not exceed more than 2% of patients.

It is obvious that the genetic make-up of ASD is extremely diverse, with contri-
butions from alleles (variant regions within a gene, of which an individual has two 
copies of, one inherited from each parent) of varying frequencies.

3  Genotype/Phenotype Correlations

One of the very key concerns that remain unresolved is the understanding of the 
genotype-phenotype association, taking into account the up-to-date findings that 
exact mutations may be correlated with great phenotype heterogeneity.

However, at any rate, genetic basis can be correlated with three phenotypic pre-
sentations with unique genetic basis: (1) ASD with syndromic phenotype described 
by rare, single-gene disorders, (2) severe and specific phenotype induced by de novo 
variations in the patient, and (3) broad autistic phenotypes induced by genetic 
changes in one or many genes, these changes being frequent in the general popula-
tion but causing diverse clinical presentations when it passes a particular threshold 
by multiplex gene-gene (GxG) and gene-environment (GxE) interactions [14].

4  Genetic Changes

There are more than thousand genetic alterations/variations that have been described 
to be associated with ASD. However, no clear assumptions can be made to date 
pertaining to genetic changes involved in these heterogeneous group disorders. 
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Several  hypotheses have been proposed to solve this dilemma regarding several 
susceptibility genes networking together in a sophisticated model leading into ASD.

Many Mendelian diseases were found to be linked with ASD, presenting that 
single genes can remarkably increase risk for ASD.

5  Monogenic Autisms

Some autistic characteristics can also be observed to be part of several well-known 
syndromes and disorders such as fragile X syndrome (FXS; MIM 300624), tuber-
ous sclerosis (TS; MIM 191100), neurofibromatosis type 1 (NF1; MIM 162200), 
Angelman syndrome (AS; MIM 105830), Cornelia de Lange and Down syndrome 
(DS; MIM 190685), untreated phenylketonuria, and others (Fig. 1). Around 10% of 
all ASDs are classically associated with dysmorphic features and/or deformities and 
are named syndromic autism [15–17].

Approximately 5–10% of ASD patients have co-occurring monogenic syn-
dromes or disorders. The overall incidence of ASD in the syndrome was docu-
mented to be significantly higher than the incidence of the syndrome in ASD cases. 
For instance, the highest was observed in adenylosuccinate lyase deficiency 
(80–100%), and the lowest was in NF1 (Fig. 1) [18].

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
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Fig. 1 Incidence of ASDs in a well-known syndrome and disorders
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On the other hand, incidence of the syndrome in ASD was found to be less fre-
quent and not exceeding 15%. For instance, FXS is the most frequent syndrome in 
ASD accounting for approximately 2% of ASD and resulting from the expansion of 
a cytosine–guanine–guanine (CGG) trinucleotide repeat at the 5′ end of the fragile 
X mental retardation 1 (FMR1) gene [18]. FXS patients are presented with severe 
ID and distinctive dysmorphisms, and approximately 90% of FXS males exhibit at 
least one ASD presentation.

In addition, Rett syndrome (RTT; MIM 312750) is originated by X-linked varia-
tions/mutations in the methyl-CpG binding protein 2 (MECP2) gene [19, 20]. RTT 
is a neurodevelopmental disorder resulting from changes in MECP2 dosage leading 
to several neurobehavioral abnormalities such as MECP2 duplication syndrome 
[21, 22], ASD, mild learning disabilities, X-linked ID, and infantile encephalopathy 
[23, 24]. Approximately 4% of females diagnosed with ASD have MECP2 muta-
tions, while males with MECP2 duplications often present with ASD.

Furthermore, tuberous sclerosis complex (TSC) is caused by mutations in either 
the TSC1 or TSC2 tumor suppressor (TS) genes. TSC patients presented with benign 
tumors in numerous parts of the body, including the brain, epilepsy, ID, behavioral 
abnormalities, learning difficulties, and ASD.  Around 5% of ASDs have a TSC 
[25, 26].

Phosphatase and tensin homolog (PTEN)-related disorders, on the other hand, 
have been identified in approximately 7% of ASD patients. A group of tumor syn-
dromes, including Cowden syndrome and Bannayan–Riley–Ruvalcaba syndrome, 
among others, are caused by PTEN germline haploinsufficiency.

Remarkably, the clinical presentations of the syndromic autism are extremely 
heterogeneous. This could be attributed to the differences in genetic background 
and epigenetic influences.

6  Chromosomal Abnormalities, Copy-Number Variation 
(CNV)

Chromosomal anomalies including numerical and/or structural chromosomal varia-
tions (CNV involving deletion and duplication, translocation, inversion) including 
1q21, 2q37, 7q11.23, 15q11–13, 16p11.2, 17p11.2, 22q11.2, and 22q13 have been 
well established in genetic syndromes and identified and associated with ASD [27] 
(Fig. 2).

Large and submicroscopic chromosomal anomalies have been found to contrib-
ute to ASD. Several large chromosomal anomalies have been described in 5% of 
ASD cases and most commonly occurred at 15q11–q13, 16p11.2, 22q11.2, and 
22q13.3. These regions have been involved in several neurodevelopmental disorders 
and contribute substantially to ASD risk [27–31] (Fig. 2).

Chromosome 15 is apparently the most prevalent area of autosomal anomalies in 
ASD, the duplication of 15q11–q13 being the most regularly described variation. 
Duplications of 15q11–q13 (Dup15q syndrome), for instance, occur in  approximately 
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1–3% of all ASD cases and are known to be maternally inherited. This region 
encompasses at least 30 genes, of which several have been linked with ASD and 
other abnormalities like neurobehavioral disorders, cognitive deficits, hypotonia, 
language delay, and seizures. Many genes in this chromosomal region such as 
GABRA5 and GABRB3 (GABA receptors), UBE3A and HERC2 (components of the 
proteasome complex), and SNRPN (ribonucleoprotein peptide N) as well as CYFIP1 
(the FMRP interacting protein) have essential functions in the brain [27, 28, 32–38] 
(Fig. 2).

The 15q11–q13 region is very well known for its genetic instability and has 
numerous low copy repeats and segmental duplications. It is recognized as a crucial 
area for Prader–Willi syndrome (PWS; MIM 176270)/AS (MIM 105830) and has a 
complex pattern of paternal and maternal imprinting. 15q11–q13 includes at least 
five paternally expressed genes (MKRN3, MAGEL2, NDN, C15orf2, snoRNAs, and 
SNRPN-SNURF) and two maternally expressed genes (UBE3A and ATP10A). 
Aberrations in 15q11–q13 dosage result in ID, developmental delay, ataxia, and 

Fig. 2 Genome-wide distribution of CNVs. CNVs from the Autism Chromosome Rearrangement 
Database (ACRD) are plotted to the right of each chromosome (black). CNV data from the autism- 
specific stringent dataset of the present study are shown to the left of the chromosome and catego-
rized as de novo (blue), overlapping/recurrent (green), CNVs overlapping with structural variation 
from the ACRD (yellow), and singleton CNVs (red). Note that five CNVs belong to both de novo 
and the recurrent categories and these are denoted by an asterisk (adopted from [60])
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seizures. Furthermore, epigenetic elements controlling 15q11–13 have been con-
cerned with the presence of ASD and will be discussed in the epigenetic section [27, 
28, 32] (Fig. 2).

CNVs in terms of microdeletions and microduplications in the 16p11.2 locus 
are one of the most recurrent changes in ASD and a spectrum of neurodevelopmen-
tal disorders including developmental delay, intellectual disability, epilepsy, 
autism, and other psychiatric disorders which are all subject to incomplete pene-
trance and variable expressivity (Fig. 3). The deletions were commonly found to be 
de novo and inherited in around 50% of ASD cases. Losses in candidate genes in 
the16p11.2 locus, such as ALDOA, DOC2A, HIRIP3, MAPK3, MAZ, PPP4C, 
SEZ6L2, and TAOK2, seem to be contributing to the ASD phenotype. On the other 
hand, duplications of the same region lead to more diverse phenotypes including 
brain malformations, schizophrenia, or attention deficit hyperactivity disorder 
(ADHD) [39–42]. In addition, deletion and duplication at 16p11.2 were found to 
give rise to two distinct phenotypes: macrocephaly with obesity and microcephaly 
with underweight, respectively. An animal model showed that KCTD13 within the 
16p11.2 locus is accountable for brain size phenotype [43] (Fig. 3).

The 22q11 deletion is related to DiGeorge syndrome (DGS; MIM 188400) or 
velocardiofacial syndrome (VCFS; MIM 192430) and other related disorders like 
developmental delay and neurobehavioral abnormalities. Several studies showed 
that the 22q11 deletion syndrome is also related to neuropsychiatric features. In 
addition, 22q11.2 hemizygous deletion is particularly seen in ASD, and Tbx1 is one 
of the potential candidate genes responsible for 22q11.2 hemizygosity-associated 
ASD phenotypes, while duplications in the identical area are related with several 
neurodevelopmental and neurobehavioral disorders [44–51] (Fig. 3).

Deletions in the 22q13.3 region are also related to Phelan–McDermid syndrome 
(PHMDS; MIM 606232) characterized by severe speech delays and autistic behav-
iors and other phenotypes, while duplications in the identical area are related with 
cases of ADHD, Asperger syndrome, and hyperkinetic neuropsychiatric phenotypes 
[52–56] (Fig. 3).

Submicroscopic deletions and duplications have been described in few of ASD 
cases. These CNVs can either be inherited or de novo and were found in a variety of 
disorders including ASD.  Rare de novo CNVs (dnCNVs) were found in around 
5–10% of ASD cases, more frequently in sporadic ASD (10% in simplex families 
and 3% in multiplex families), and 1% controls proposing that rare dnCNVs may be 
important risk factors for sporadic ASD. In addition, homozygous CNVs such as 
1q21.1, 7q11.23 Williams–Beuren syndrome (WBS; MIM 194050), 15q11–13, 
16p11.2, and 22q11.2 DGS have been found in ASD cases. The prevalence of CNVs 
have very low frequency in ASD, and frequently, a particular CNV can be distinc-
tive to a single patient [57–64].

Though the burden of dnCNVs was found to be higher in affected than healthy 
individuals, these CNVs can also manifest in the normal individuals which is some-
times difficult to determine if these alterations are causing the disease. It is worth 
mentioning that CNVs associated with ASD are not particularly central to the 
presentations of ASD but can be found in a broad variety of neurodevelopmental 
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phenotypes, including ID, epilepsy, and schizophrenia. The diversity of CNV-
correlated phenotypes can also present itself within the same family members [65]. 
In a recent study of a Chinese cohort with ASD, 17 clinically important CNVs were 
identified, of which 12 overlapped with recurrent autism risk loci or genes. Novel 
candidate genes were also identified in the rare CNV regions [66].

The most frequently recurrent CNVs identified in ASD are 1q21.1 deletion and 
duplication syndrome, 2q37 deletion syndrome, 3q29 deletion syndrome, 7q11.23 
duplication syndrome, 15q11q13 deletion and duplication syndrome, 16p11.2 dele-
tion and duplication syndrome, 16p12.1 deletion syndrome, 16p13.1 deletion, 
17p11.2 deletion and duplication syndrome, 17q12 deletion syndrome, 17q21.31 
deletion and duplication syndrome, and 22q11.2 deletion and duplication syndrome 
[67]. Other chromosomal abnormalities identified in ASD patients include aneu-
ploidies: 21 (Down syndrome), X (Turner syndrome, Klinefelter syndrome, XXX 
syndrome), and Y (XYY syndrome) [15].

7  Single-Nucleotide Variants (SNVs): De Novo

Several studies showed that approximately 5% of ASDs are caused by de novo 
mutations [68–71]. These de novo variants and novel ASD susceptibility genes har-
boring de novo loss of function or gene-disrupting SNVs have been found to be 
implicated in ASD, for instance, DYRK1A, POGZ, CHD8, NTNG1, GRIN2B, 
KATNAL2, TBR1, PTEN, TBL1XR1, GPR98, KIRREL3, and SCN2A [68–72]. 
Interestingly, it was also found that some of the SNVs in NLGN3 and NLGN4 and 
other neuroligin genes can be both inherited and de novo but frequently occur de 
novo [73, 74] (Table 1).

8  Common Gene Variations

The largest class of genetic risks of ASD accounts for around 40–60% in simplex 
families and multiplex families, respectively [13, 86]. It is estimated to be derived 
from common variant single-nucleotide polymorphisms (SNPs) of an addition 
influence, nearly all of which have yet to be determined (SNPs with allele frequency 
more than 5% in the general population).

Many common gene variations, most of which have not been identified, are 
thought to affect the risk of developing ASD, but not all people with the gene varia-
tion will be affected, though most of the gene variations have only a small effect or 
impact. The association of these common variants is still useful. Much larger 
sample sizes are still needed to replicate the findings and identify many novel loci 
(Table 2).
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Fig. 3 ASD-associated CNVs. Deletions and duplications in the identical region can provide 
overlapping or specific phenotypes. These CNVs are also associated with different syndromes
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9  Rare Inherited Variations

In contrast, 1–5% of ASD is believed to be caused by rare genetic mutations (minor 
allele frequency [MAF] less than 5% of general population). These rare gene muta-
tions occur only in a single gene of the high-risk autism-associated gene category. 
Synaptic genes such as neuroligin family (NLGN3 and NLGN4) [74], scaffolding 
protein family (SHANK1, SHANK2, and SHANK3) as well as neurexin family 
(NRXN1 and NRXN3) [94–100], and others such as CNTNAP2, SLC9A9, BCKDK, 
AMT, PEX7, SYNE1, VPS13B, PAH, ADNP, and POMGNT1 [61, 91, 101–103] are 
examples of rare inherited variations (Table 3) [100].

10  Transcriptional Variations

While genomic studies have come far in comprehending the first line of ASD etiol-
ogy, gene expression studies provide proof and form the foundation for discriminat-
ing the altered molecular pathways of ASDs. They could provide support in 
proposing novel genes’ association for comprehensive genetic linkage studies via 

Table 1 CNVs in ASD

CNVs Abnormality References

De novo large CNV duplications, such as 
duplication of 15q, deletions of 22q11.2, 
deletion of Xp22.3, and duplication or deletion 
of 16p11.2 (∼600 kb, comprises around 29 
genes), along with de novo submicroscopic 
CNVs such as duplication of 7q11.23 and 
microdeletion of 16p11.2.

The structural chromosomal 
variation contribution is 
estimated to be between 15% 
and 25% and considered as the 
underlying cause for many 
cases of ASD

[4, 42, 60, 
63, 75–81]

Regions/loci on chromosomes 20p13 and 7q35 
(CNTNAP2) and two loci mapped on 
chromosome 8

Genetic susceptibility, these 
loci are associated with speech 
delay and social responsiveness

[82–85]

Table 2 Common gene variations in ASD

Common variants References

Intergenic variants between CDH9 and CDH10 in chromosome 5p14.1 [79, 87, 88]
Variants in 5p15.31 (between SEMA5A and TAS2R1) [83]
Variants within the MACROD2 gene in chromosome 20p12.1 [79]
Variants in 1p13. 2 within candidate gene TRIM33 [89]
DOCK4 IMMP2L and ZNF533 [90]
Variants in 7q35 (within CNTNAP2) [91–93]
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measuring genes that are dysregulated in the ASD group. Numerous biological 
activities have been shown to be implicated in ASD along with alterations in gene 
expression levels amongst various types of tissues such as postmortem brain, 
peripheral blood lymphocyte (PBL), gastrointestinal tissue, adult olfactory stem 
cells, and scalp hair follicles [104, 105].

In the first comprehensive transcriptome study on the brains of ASD patients, 
444 genes were found to be differentially expressed (DE) among the cerebral corti-
ces of ASD and control brains. Two distinct modules of co-expressed genes associ-
ated with autism were suggested. In the first model, synaptic function and neuronal 
projection were found to be downregulated in ASD cases, while in the second 
model, immune genes and glial markers were found to be overexpressed in 
ASD. These findings are consistent with both synaptic dysfunction and immune 
dysregulation in ASD as a incredibly substantial enrichment for variants genetically 
correlated with ASD was found in the first model, providing the genetic foundation 
of synaptic abnormality in ASD. On the other hand, no proof for a genetic etiology 
for the upregulation of genes of the second model was found [106].

Most gene expression studies have been conducted in common gene structural 
variants or polymorphism regions located next to high-risk areas on the chromo-
somes related to ASDs to investigate their effects and discover integrated gene net-
works for ASDs [106–108].

Alterations in gene expression patterns among ASD patients and healthy indi-
viduals have been determined in several tissues [104, 106, 109–111]. For instance, 
the dysregulation of FOXP1, MAL, and C11orf30 genes has been found to be impli-
cated in the ASD pathogenesis as several variants have been established to be linked 
with language delay and autism [107, 112].

The abnormal gene expression could be utilized in future as technique for ASD 
diagnosis and classifying (Tables 4, 5, and 6).

Table 3 Rare inherited variations in ASD

Genes Descriptions References

Neuroligin family NLGN3 and 
NLGN4

Rare X-linked mutations in ASD males and 
mental retardation in several families

[74]

CNTNAP2, SLC9A9, and BCKDK 
AMT, PEX7, SYNE1, VPS13B, 
PAH, and POMGNT1

Rare recessive mutations in 
consanguineous families were described in 
Amish families as well as Middle Eastern 
families with ASD and epilepsy

[61, 91, 100, 
102, 103]

The scaffolding protein family 
(SHANK1, SHANK2, and SHANK3) 
as well as neurexin family (NRXN1 
and NRXN3) and ADNP

Rare inherited variants have been 
documented in ASD
An association of facial dysmorphism and 
ASD caused by mutations in ANDP

[94–101]
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Table 4 Gene expression studies in ASD

Study description and number of 
samples Tissue source Study findings References

1540 ASD unrelated patients 
(1020 males, 520 females; aged 
7–11 years) and 1490 unrelated 
control children (970 males, 520 
females; aged 7–11 years)

PB mRNA levels of types I, II, 
and III of NRG1 gene were 
significantly downregulated 
in ASD patient

[113]

87 ASD and 55 control male 
subjects; aged 1–4 years

PB Eight Hc genes (CHD8, 
ARID1A, ASH2L, ACTB, 
NR3C2, SUV420H1, 
ADPN, and MYO9B) were 
DE in leukocytes acquired 
from ASD and control
Four other Hc genes 
(CUL3, SYNGAP1, NAA15, 
and ARID1B) were 
upstream regulators of the 
PPI candidate genes, and 
CUL3, SYNGAP1, and 
NAA15 were also DE in 
postmortem brain tissue
DE in leukocytes, such as 
CHD8, ARID1A, AKT1, 
beta-catenin (CTNNB1), 
SMAD3, CREB1, and 
NOTCH1, and/or in 
postmortem brain tissue 
(TCF4, CREB1, SMAD3, 
CAMK2A, LIMK1, NCOA3, 
CCNE1, and BRD2)

[114]

82 ASD children (mean age 
5.5 years) and 64 controls (mean 
age: 7.9 years)
Group 1 comparison of ASD 
children to children of younger 
fathers
Group 2 comparison of ASD 
children to children of older 
fathers
Group 3 comparison of children 
of older fathers to children of 
younger fathers

PBL Group 1 findings: 
significantly under- 
expressed and 641 
significantly overexpressed
Group 2 findings: 593 
genes were underexpressed, 
and 145 genes were 
overexpressed in both, i.e., 
overlapped
Group 3 findings: 1476 
significantly 
underexpressed and 764 
significantly overexpressed

[115]

Nine ASD and eight controls ACG, MC, THL 28 genes showed brain 
region-specific decreased 
expression in ASD

[116]

(continued)
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Table 4 (continued)

Study description and number of 
samples Tissue source Study findings References

Part I: compared total gene 
expression profiling analysis 
between 16 ASD male (age range 
4–18 years) and 16 male control 
subjects (age range 18–67 years)
Part II: compared transcript level 
of one particular gene (FOXP1) 
between 83 ASD male patients 
with and 83 male healthy controls

LCL derived from 
the EBV 
transformation of 
lymphocytes of 
peripheral blood

202 genes were DE in the 
ASD group including 89 
overexpressed and 113 
under-expressed

[112]

16 from young postmortem males 
(2–14 years, 9 ASD, 7 control) 
and 17 adult males (15–56 years, 
6 ASD, 11 control)

DLPFC 2017 genes across all 
autistic and control cases 
independent of age

[117]

Nine adults with severe autism 
and low to very low 
developmental disabilities and 
two adults with mild or moderate 
autism and no or mild cognitive 
abilities (Asperger syndrome or 
high-functioning autism) paired 
with 11 matched controls (age 
and gender)

Adult nasal 
olfactory stem 
cells

156 genes that were DE in 
at least one ASD patient, of 
which 31 were 
dysregulated in more than a 
third of the cohort

[118]

Nine ASD and nine controls BA19 (occipital) 
brain tissues

876 uniquely marked genes 
amongst ASD and control 
brain tissue

[119]

60 infants and toddlers at risk for 
ASDs (autistic disorder and 
pervasive developmental 
disorder), 34 at risk for LD, 17 at 
risk for DD, and 68 TD children

PBMCs 154 probes showed 
significant dysregulation in 
ASD

[120]

27 ASD and 30 controls DLPFC Three genes under- 
expressed and one gene 
overexpressed in ASD 
samples

[121]

30 idiopathic ASD cases (24 
males, 6 females) aged 
3–11 years (mean age of sample 
6.86 years) and 30 matched 
controls (age and gender)

Peripheral blood 23 DE, 10 overexpressed, 
13 under-expressed

[122]

13 ASD and 13 controls Cerebellar cortex Seven genes [123]
Ten ASD (3F,7M; ranged from 4 
to 15 years of age), 11 controls 
(4F,7M; ranged between 5 and 
16 years of age)

CB, BST, CG, 
ORC, PT, Wer

15 genes showed brain 
region-specific 
dysregulated expression in 
ASD samples

[124]

(continued)
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Table 4 (continued)

Study description and number of 
samples Tissue source Study findings References

20 ASD probands and 20 
unaffected sibling pairs (5 
proband–sibling pairs to the same 
gender, i.e., males, while 15 pairs 
of the different gender including 
12 male and 3 female probands) 
and 18 unrelated control (11 
males, 7 females) individuals

Peripheral blood 163 unique genes were 
significantly altered 
amongst probands and 
siblings

[125]

Group 1: 21 young adults ASD 
(17 males and 4 females; aged 
26.7 ± 5.5 years, age range: 
18–38 years)
Group 2: 21 age- and gender- 
matched healthy controls aged 
27.0 ± 5.5 years, age range: 
19–39
Group 3: 21 healthy mothers 
having children with ASD 
(ASD-MO), aged 
44.7 ± 6.7 years, age range: 
33–58 years
Group 4: ASD-MO control, aged 
44.7 ± 6.7 years, age range: 
31–59 years

Peripheral blood ASD/control: 19 genes 
significantly dysregulated 
(18 overexpressed and 1 
under-expressed);
ASD-MO/ASD-MO 
control: 57 genes 
significantly dysregulated 
(17 overexpressed and 40 
under-expressed)
Three genes overlapped 
and dysregulated both in 
individuals with ASD and 
in under-expressed

[126]

18 ASD (16 males, 2 females; 
aged 25.61 ± 4.95) and 24 male 
controls (aged 32.60 ± 3.91)

Scalp hair follicles One gene [127]

Two separate series of sib-pairs 
totaling 36 children and 
adolescents between 4 and 
18 years of age from the Italian 
Autism Network (ITAN) cohort

LCLs No significant differences 
amongst ASD and 
non-affected brothers were 
found for RBFOX1

[128]

21 ASD adolescents and adults 
(20 males, 1 female) and 10 
healthy controls (10 males)

Whole blood Three genes DE: NT3, NT4 
significantly under- 
expressed and p75(NTR) 
overexpressed in ASD 
compared to healthy 
controls

[129]

33 ASD boys (mean age 
45.3 months; age range of 
31–60 months) and 51 age- 
matched control boys (mean age 
43.3 months; age range 
28–57 months) gene expression 
versus Hg levels

Whole blood 11 genes [130]

(continued)
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Table 4 (continued)

Study description and number of 
samples Tissue source Study findings References

ASD group: three females (6, 11, 
and 13 years old) and two males 
(5 and 12 years old) and five 
unrelated controls age- and 
sex-matched

LCL-derived 
RNAs

57 genes [131]

51 children with ADHD, 26 
children with ASD (19/26 
comorbid with ADHD), and 39 
controls

Whole blood cells Two genes [132]

37 ASD children (32 males, 5 
females; average age 
44.2 ± 10 months) compared to 
15 (11 males, 4 females; average 
age 41.2 ± 6 months)

Whole blood 31 genes [133]

19 ASD and 17 controls STG, prefrontal 
cortex (BA9) and 
cerebellar vermis

444 genes DE in autism 
cortex samples, 2 genes DE 
in cerebellum

[134]

25 ASD gastrointestinal 
(ASD-GI) children (23 males and 
2 females, 16 had; mean age 
5.08 years)
Three control groups:
(1) 15 non-ASD with no chronic 
GI symptoms children (six males 
and nine females; mean age 
12.263.07 years)
(2) Eight non-ASD with Crohn’s 
disease (three males and five 
females; mean age 12.97 years)
(3) 5 non-ASD with ulcerative 
colitis (all females; mean age 
12.06 years)

Tissue specimen 
from seven 
anatomic locations 
(from terminal 
ileum to rectum)

Ileal mucosa: ASD-GI/
controls:1409 DE
Colonic mucosa: ASD-GI/
controls:
1189 DE
ASD-GI (ileum and colon)/
TD Overlap between both 
sets ASD-GI:178 DE

[135]

15 ASD-GI children (mean onset 
age 13.4+/25.4 months, median 
age at biopsy 4.5) and 7 
control-GI (median age at biopsy 
4.0)

Ileum and cecum Six genes [136]

35 ASD (mean age 12.9 years 
±12.4 SD) and 35 healthy 
controls (mean age 34.8 years 
±9.7 SD)

LCLs Two genes [137]

Ten ASD and ten controls Cerebellar cortex Four genes [138]

(continued)

New Horizons for Molecular Genetics Diagnostic and Research in Autism Spectrum…



58

Table 4 (continued)

Study description and number of 
samples Tissue source Study findings References

Reanalyzed sex-specific gene 
expression from a recent large 
transcriptomic study [139]; 57 
(31 males and 26 females), 
including 39 with both 
hemispheres; age, 5.7 post- 
conceptual weeks to 82 years

Transient prenatal 
structures and 
immature and 
mature forms of 
16 brain regions

37, 123 genes DE in female 
and male, respectively

[140]

PBL peripheral blood lymphocytes, LCL lymphoblast cell line, PBMCs peripheral blood mono-
nuclear cells, ACG anterior cingulate gyrus, MC motor cortex, THL thalamus, DLPFC dorsolateral 
prefrontal cortex, CB cerebellar, BST brain stem, CG cingulated gyrus, ORC orbitofrontal cortex, 
PT putamen, Wer Wernicke’s, STG superior temporal gyrus

Table 5 Overlapping of gene expression changes in ASD in various tissues

Gene symbol Expression change in ASD References

Gene expression changes in ASD in blood/LCL and brain tissue across studies
ABHD3 Over-expressed [125, 141]
ANXA1 Over-expressed in Garbett et al. 2008 and Ziats et al. 2013 

Under-expressed in Chien et al. 2013
[112, 134, 141, 
142]

CHI3L1 Over-expressed in Garbett et al.  
Under-expressed in Chien et al.

[112, 141]

CMKOR1 Over-expressed [36, 134, 141]
CTNNB1 Over-expressed in Kong et al. 2013  

Under-expressed in Chow et al. 2012
[117, 125]

CX3CR1 Over-expressed [110, 142, 143]
CXCL10 Over-expressed [112, 117]
CXCR4 Over-expressed [112, 117]
DNASE1L3 Under-expressed [112, 117]
FOSL1 Over-expressed in Chow et al. 2012  

Under-expressed in Ivanov et al. 2015
[117, 122]

GAD1 Under-expressed [112, 138]
GPR56 Over-expressed [110, 119]
GRIA3 Under-expressed [112, 117]
HIST1H3H Over-expressed in Chow et al. 2012  

Under-expressed in Nishimura et al. 2007
[36, 117]

KIF1B Over-expressed in Garbett et al. 2008 and Talebizadeh et al. 2014  
Under-expressed in Hu et al. 2006

[131, 141, 144]

MeCP2 Over-expressed in Kuwano et al. 2011 and Zhubi et al. 2014 
Under-expressed in James et al. 2014

[123, 126, 138]

NDUFB5 Over-expressed in Talebizadeh et al. 2014  
Under-expressed in Anitha et al. 2012

[116, 131]

PARP9 Over-expressed in Garbett et al. 2008  
Under-expressed in Glatt et al. 2012

[120, 141]

PITPNC1 Over-expressed in Nishimura et al. 2007 Garbett et al. 2008  
and Voineagu et al. 2013  
Under-expressed in Hu et al. 2009

[36, 104, 134, 
141]

(continued)
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Table 5 (continued)

Gene symbol Expression change in ASD References

SERPINA1 Over-expressed in Chow et al. 2012  
Under-expressed in Chien et al. 2013

[112, 117]

SLC9A9 Over-expressed [131, 134, 141]
STOM Over-expressed in Garbett et al. 2008  

Under-expressed in Glatt et al. 2012 and Ziats et al. 2013
[120, 141, 142]

SYCE1 Under-expressed [117, 125]
TAP1 Over-expressed in Garbett et al. 2008  

Under-expressed in Glatt et al. 2012
[120, 141]

TNFRSF19 Under-expressed [112, 117]
WWTR1 Over-expressed in Garbett et al. 2008  

Under-expressed in Chien et al. 2013
[112, 141]

Gene expression changes in ASD in brain tissues and intestinal biopsy across studies
ACTG2 Under-expressed [135, 142]
ALAD Under-expressed [117, 135]
LAMP2 Under-expressed [117, 135]
SFTPA2 Over-expressed in Chow et al. 2012  

Under-expressed in Walker et al. 2013
[117, 135]

Gene expression changes in ASD in blood and intestinal biopsy across studies
ATF3 Over-expressed in Hu et al. 2006  

Under-expressed in Walker et al. 2013
[135, 144]

CCL17 Over-expressed [36, 135]
IGF2BP1 Over-expressed in Walker et al. 2013  

Under-expressed in Ivanov et al. 2015
[122, 135]

IL2RA Over-expressed [112, 135]
MIA Over-expressed in Nishimura et al. 2007  

Under-expressed in Walker et al. 2013 (colon)
[36, 135]

UBD Over-expressed [112, 135]
Gene expression changes in ASD only in brain tissue across studies
ADM Over-expressed [134, 141]
AHI1 Under-expressed [134, 141]
AQP4 Over-expressed [134, 141]
BAG3 Over-expressed [134, 141]
C20orf7 Under-expressed [117, 119]
C5orf16 Under-expressed [134, 141]
CLIC1 Over-expressed [134, 141]
CNN3 Over-expressed [134, 141]
COL4A1 Over-expressed [134, 141]
COX7B Under-expressed [116, 119]
CSDA Over-expressed [134, 141]
CYC1 Under-expressed [116, 119]
DLX1 Under-expressed [134, 141]
GADD45B Over-expressed [134, 141]
HIST1H1C Over-expressed [134, 141]
HIST1H2BD Over-expressed [134, 141]
HSPB1 Over-expressed [119, 141]
IFITM2 Over-expressed [134, 141]

(continued)
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Table 5 (continued)

Gene symbol Expression change in ASD References

IFITM3 Over-expressed [134, 141]
MKNK2 Over-expressed [134, 141]
MSI2 Over-expressed [134, 141]
MSN Over-expressed [134, 141]
NDUFA2 Under-expressed [116, 119]
NDUFB3 Under-expressed [116, 119]
NP Over-expressed [134, 141]
P4HA1 Over-expressed [134, 141]
PALLD Over-expressed [134, 141]
PIR Over-expressed [134, 141]
PLEKHC1 Over-expressed [134, 141]
RELN Over-expressed in Khan et al. 2014  

Under-expressed in Chow et al. 2012 and Zhubi et al. 2014
[117, 124, 138]

RPS21 Over-expressed in Garbett et al. 2008  
Under-expressed in Ginsberg et al. 2012

[119, 141]

S100A10 Over-expressed [134, 141]
SCARA3 Over-expressed [134, 141]
SDC2 Over-expressed [141, 142]
SERPINH1 Over-expressed [117, 141, 142]
SERTAD1 Over-expressed [134, 141]
SHANK3 Under-expressed [121, 137]
PTTG1IP Over-expressed [134, 141]
TAGLN2 Over-expressed [134, 141]
TET1 Over-expressed [123, 138]
TIMP1 Over-expressed [134, 141]
TMBIM1 Over-expressed [134, 141]
TNPO1 Over-expressed [134, 141]
YAP1 Over-expressed [134, 141]
ZFP36L1 Over-expressed [134, 141]
Gene expression changes in ASD in blood across studies
ALPK1 Over-expressed [36, 131]
ANKRD22 Over-expressed in Ivanov et al. 2015  

Under-expressed in Glatt et al. 2012
[120, 122]

CD160 Over-expressed [110, 143]
CYFIP1 Over-expressed [36, 131]
DRD4 Over-expressed in Emanuele et al. 2010  

Under-expressed in Taurines et al. 2011
[132, 145]

FAM46C Over-expressed in Chien et al. 2013  
Under-expressed in Nishimura et al. 2007

[36, 112]

GZMB Over-expressed [110, 112, 143]
HCK Over-expressed in Talebizadeh et al. 2014  

Under-expressed in Hu et al. 2006 and Chien et al. 2013
[112, 131, 144]

HLA-DQA1 Under-expressed [110, 130]
IGHA1 Over-expressed [110, 112]
IGHG1 Over-expressed in Chien et al. 2013 and Gregg et al. 2008 

Under-expressed in Hu et al. 2006
[110, 112, 144]

IL2RB Over-expressed [110, 143]
ITGB2 Over-expressed [110, 143]



61

Gene symbol Expression change in ASD References

KIR3DL2 Over-expressed [110, 143]
KSP37 Over-expressed [110, 143]
LRP6 Under-expressed [112, 131]
NEURL3 Over-expressed in Chien et al. 2013  

Under-expressed in Kong et al. 2013
[112, 125]

NKG7 Over-expressed [110, 143]
P2RX5 Over-expressed [112, 144]
PAM Over-expressed [110, 143]
PRF1 Over-expressed [110, 143]
PTGDR Over-expressed [110, 143]
PXDN Over-expressed in Chien et al. 2013  

Under-expressed in Stamova et al. 2011
[112, 130]

SH2DIB/EAT2 Over-expressed [110, 143]
SLC38A2 Over-expressed [125, 144]
SPON2 Over-expressed [110, 143]
TBX21 Over-expressed [110, 143]
TMEM40 Under-expressed [122, 125]

Table 5 (continued)

11  Epigenetic Variations

Epigenetic changes, including DNA methylation, histone methylation, and acetyla-
tion, are known to be altered in response to either genetic mutations or environmen-
tal exposure and regulate the expression of many genes without changing the 
primary DNA sequence. Genomic imprinting, for instance, is a common way of 
controlling of gene expression through epigenetic variations that is parent in origin.

One of the most frequent epigenetic mechanisms is DNA methylation (DNAm) 
which is now believed to be a vital player in ASD etiology. This imprinting mecha-
nism regulates gene expression that can lead to apparent specific gene expression. 
Vital proof documented significant variations in DNAm patterns in ASD-discordant 
monozygotic (MZ) twins having both identical genotype and environmental inter-
actions [147]. Furthermore, DNAm is now known to be implicated in disorders like 

Table 6 Gene expression studies in postmortem brain tissue

Findings Studies

Involvement of glutamate neurotransmitter system in autism [146]
Increased expression of immune genes (mainly cytokine 
regulatory pathway)

[141]

Identification of distinct neuronal and immune modules [106]
Specific enrichment of immune system and M2 microglial 
genes in autism brain

[107]
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FXS and RS (which present along with autistic traits) [148]. Epigenetic profiling of 
autism showed the hypomethylated and hypermethylated regions enriched for 
immune system and synaptic genes, respectively [149]. Ladd-Acosta et al. 2013 and 
2014 [150, 151] documented numerous crucial differentially methylated regions 
(DMRs) in the brains of ASDs.

In another epigenetic profiling study on ASD, brain tissue analysis demonstrated 
lesser temporal distinction with regard to DNA methylation and the occurrence of 
hypomethylated and hypermethylated regions enriched for the immune system and 
synaptic genes, respectively [149]. Increased paternal age has also been associated 
with the development of ASD. DNAm errors during spermatogenesis could describe 
this phenomenon. DNAm in paternal sperm has been associated with early risk of 
ASD in children [152].

In an animal model, sperm analysis revealed substantial reduction of methylation 
in older mice compared to a younger group. Comparable transcriptional abnormal-
ity and behavioral matters were noticed in their offspring as well [153].

Behnia et al. 2015 have also connected hypermethylation of the ASD candidate 
gene such as OXTR with preterm birth (PTB) that has been well known earlier as a 
greater ASD risk [154]. In spite of the fact that the precise impact of epigenetic 
alterations in the etiology of ASD is yet to be defined, that it is a crucial player in 
disease development is evident.

Zhubi et al. 2014 documented an increase in DNA hydroxymethylation at the 
GAD1 and RELN promoter in cerebella from ASD patients. This modification was 
co-occurred by elevated binding of the methyl-CpG binding protein 2 (MeCP2) 
which contributes in gene silencing. Current evidence suggests that GAD1 is a good 
candidate gene that could be epigenetically misregulated by in utero environment, 
predisposing one to ASD [138]. EN2 has also been found to be involved in the regu-
late of pattern genesis during neurodevelopment. The EN2 promoter had elevated 
levels of DNA methylation in ASD cerebella compared to asymptomatic controls 
[155]. DNA methylation profile in lymphoblastoid cells of autistic patients showed 
decreased expression of the retinoic acid-related orphan receptor alpha gene (RORA) 
and B-cell lymphoma 2 (BCL-2) [156].

Epigenetic dysregulations have been correlated with ASD, for instance, with the 
mutation of the methyl-CpG binding protein 2 (MeCP2) in RTT, parental imprinting 
of numerous chromosomal regions (transcriptional regulation of either the maternal 
allele or the paternal allele) such as AS, PWS, and TS and common regions with 
microduplications or microdeletions such as 15qllql3 [157–159]. In addition, sev-
eral studies reported an association between common variant SNPs in genes directly 
involved in methylation and ASD [160, 161].

Several regions that are subject to genomic imprinting on chromosomes are 
15q11–13, 7q21–31.31, 7q32.3–36.3, and perhaps 4q21–31, 11p11.2–13, and 
13q12.3, with the loci on chromosomes 15q and 7q representing the most compel-
ling proof for an association of genetic and epigenetic components that attribute to 
ASD risks. Genes in the imprinted cluster on chromosome 15q11–13 include 
MKRN3, ZNF127AS, MAGE12, NDN, ATP10A, GABRA5, GABRB3, and GABRG3. 
Genes in the imprinted cluster on chromosome 7q21.3 include SGCE, PEG10, 
PPP1R9A, DLX5, CALCR, ASB4, PON1, PON2, and PON3 [162] (Table 7).
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12  Mitochondrial DNA (mtDNA) Dysfunctions

Mitochondrial DNA (mtDNA) dysfunction has been also described in ASD. Several 
studies have showed that mitochondrial abnormality may be one of the most fre-
quent medical disorders correlated with ASD [172, 173].

Lombard et al. 1998 hypothesized that ASD may be a condition with aberrant 
mitochondrial function [174]. Clinical and biochemical studies have revealed an 
emerging connection amongst mtDNA abnormality and neurodevelopmental disor-
ders, including ID [175], childhood epilepsy, and ASD [173]. Moreover, mtDNA 
abnormality has been correlated with some patterns of syndromic ASD [172, 175]. 
For instance, biochemical changes such as increased levels of creatine kinase, lac-
tate, pyruvate, carnitine, ammonia, and alanine were described in the serum of ASD 
patients [175–177]. Abnormal respiratory chain enzyme activities [178] or under- 
expression of OXPHOS genes was described in the ASD brain [179], revealing 
abnormal or altered mitochondrial function.

Impairment of the OXPHOS pathway was documented in ASD individuals, as 
discussed by Napoli et al. 2014 [180] and examined by Valenti et al. 2014 [175]. 
Oliveira et al. 2005 revealed that 7% (7/100) of ASD children who were clinically 
indistinguishable from other children affected by ASD, presented with mitochondrial 
respiratory chain disorder [177]. Weissman et al. 2008 also suggested that abnormal 
mitochondrial OXPHOS may be a complementary key pathogenic component in a 
group of ASD [181].

Notwithstanding proof of changed mitochondrial function in some ASD indi-
viduals it is not known whether mitochondrial impairment is a cause or an effect of 
ASD. Although a mitochondrial subgroup in ASD could be found [182], Rossignol 
and Frye 2011 and 2012 identified that even in this subgroup the underlying genetic 
factor could be detected in a portion of cases (23%). In cases of non-syndromic 
ASD, mitochondrial impairment without mtDNA modifications has been often seen 
[172, 173].

Rossignol and Frye 2012 reported that Mitochondrial disease (MD) was seen in 
5% of ASD children. In this ASD/MD subset, mtDNA aberrations were noticed in 
23% of patients. These evidences indicate that primary MD may be present in a 
subset of ASD children [173].

On the other hand, mtDNA deletions in ASD individuals have been also docu-
mented [176, 183–185]. Single mtDNA deletions have a role in numerous pediatric- 

Table 7 Epigenetic biomarkers

RELN, PRRT1, ZFP57, 
GAD1, RORA, BCL-2, 
TSPAN32/C11orf21, OXTR, 
EN2, MTHFR, and MECP2

ASD-specific methylation biomarkers
Histone acetylation changes, i.e., misregulated 
patterns of splicing sites and chromosome 
remodeling complex modifications, have also 
been documented in ASD

[123, 138, 
149, 151, 
155, 156, 
163–170]

ENO2 15% of ASD patients have hypermethylation of 
the ENO2

[171]
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and adult- onset primary MDs such as Kearns–Sayre syndrome, Pearson syndrome, 
and  progressive external ophthalmoplegia [186]. Multiple mtDNA deletions appear 
often as a result of pathogenic mutations in genes accountable for intergenomic con-
nection. However, they are frequently associated to ageing or unhealthy environ-
mental factors as well as mtDNA has a inadequate DNA repair system [187, 188].

A recent study on 60 ASD patients and 60 healthy individuals screened for com-
mon mtDNA mutations showed that mtDNA deletions were established in 16.6% 
(10/60) of ASD (mtdel-ASD). In 90% of these mtdel-ASD children, rare SNVs 
were found in ASD-related genes (one of those was pathogenic). In the interge-
nomic panel of this cohort, one likely pathogenic variant was present. Mutations 
and variants of uncertain significance (VUS) in genes responsible for mtDNA main-
tenance were also found more commonly in MD patients than mtdel-ASD or other 
comparison groups. Only VUS were also discovered in healthy controls and in 
patients without an mtDNA deletion [189].

13  Noncoding RNA

Noncoding RNAs (ncRNAs) are defined as RNA transcripts that are not translated 
into proteins and are known for their connection with numerous disorders.

NcRNAs are commonly split into the following types: (1) small and (2) long 
ncRNAs. The small ncRNAs contain a diverse group of ncRNA that are (a) transfer 
and ribosomal RNA, (b) small nuclear RNAs (snRNA), (c) small nucleolar RNAs 
(snoRNA), (d) microRNAs (miRNAs), (e) piwi-interacting RNAs (piRNAs), (f) 
small interfering RNAs (siRNAs), and (g) small Cajal body-specific RNAs (scaRNAs).

Several studies showed that overexpression and knockdown of noncoding RNA 
studies have vital functions in controlling a variety of mechanisms: splicing, tran-
scription, localization, and organization of subcellular compartments. LncRNAs are 
also implicated in the regulation of chromatin structure and conformation through  
their connection with regulatory proteins. There are several studies that have showed 
the implication of ncRNA in ASDs, and several databases document these findings, 
i.e., important types of ncRNA and their relation to ASDs. These ncRNAs have rela-
tively high tissue specificity and regional transcriptional homogeneity in ASD when 
compared with controls.

MicroRNAs (miRNAs) are a group of small noncoding RNA molecules, 18–25 
nucleotides in length. The ASD-related miRNAs comprise a conserved type of 
ncRNA that can differently control gene expression. Several miRNAs in are 
expressed in the brain tissues and display controlling role for a variety of biological 
mechanisms relevant to neurogenesis, brain maturation, and synaptic plasticity 
[190, 191].

Stamova et al. 2015 showed that there are distinct expression profiles of miRNA 
that differ significantly in different regions across the brain, specifically the superior 
temporal sulcus (STS) and the primary auditory cortex (PAC). There are fewer dif-
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ferences of miRNA and snoRNA in the two areas in the human superior temporal 
gyrus: the STS and the PAC in ASD brain postmortem tissue. There was an absence 
of the regular age-related changes, while miRNA and snoRNA differed markedly 
between STS and PAC in healthy individuals, and specific expression patterns were 
noticed [192].

An updated study showed there is sexual dimorphism and identified 20 small 
ncRNAs that are DE in STS of ASD females compared to control females but only 
eight abnormally regulated in the STS of ASD males compared to control males. 
Moreover, eight small ncRNAs were DE in PAC of ASD females compared to con-
trol females and three small ncRNAs abnormally regulated in PAC of ASD male 
compared to control males. Thus, there are commonly more impairment of regula-
tion small ncRNA in ASD females compared to ASD males. This could be attributed 
to a greater genetic load in females, a female protective effect, and perhaps greater 
plasticity of female ASD brain. A study identified few sexually dimorphic dysregu-
lated miRNAs [193]. These specific miRNAs are miR-219 and miR-338 that are 
abnormally regulated in STS of female ASD brain. They are correlated with oligo-
dendrocyte differentiation that could relate to sexual dimorphism of white matter 
tracts. Also, miR-488 could correlate to more anxiety in females; finally, miR-125 
and miR-181 involved in neuronal growth may be sexually dimorphic.

In another study matching the postmortem cerebellar brain tissue derived from 
ASD individuals with healthy age- and gender-matched individuals, 28 miRNAs 
were documented as being notably DE. However, there are some concerns about the 
statistical method in the study that may in turn indicate unreliable results [194–196].

Another study on cultured lymphoblastoid cell lines (LCL) by Talebizadeh et al. 
2008 showed that 9 of the 470 miRNAs were DE in ASD samples compared with 
controls. In an updated study by Sarachana et al., 2010 three of the nine miRNAs 
were replicated with similar overexpression of miR-23a and miR-23b and under-
expression of miR-132, and 43 miRNAs were DE in LCLs in ASD when compared 
to controls. Abu-Elneel et al. 2008 studied 466 miRNAs in 13 postmortem cerebel-
lar cortex tissues from ASD and found that 13 and 16 miRNA were found to be 
under- and over- expressed, respectively. Dysregulation of miR-23a and miR-106b 
in the autistic cerebellar cortex was also found in LCLs. These results support the 
claim that abnormally regulated of miRNA in peripheral blood cells can replicate at 
least some miRNA alterations occurring in the brain, thus offering support to the 
use of LCL as a surrogate tissue to study miRNA expression in individuals with 
ASD. In addition, the DE miRNAs could be related to both neurological and comor-
bid features of ASD such as developing gastrointestinal diseases, circadian rhythm 
signaling, steroid hormone metabolism, and receptor signaling [194, 197, 198].

Novel and reported DE miRNAs such as miRNA-107, miRNA-106a-5p, 
miRNA- 10a-5p, miRNA-136-5p, and miRNA-155-have been identified in ASD 
postmortem brains and the role of miRNA-21-3p as its transcripts revealed enrich-
ment for ASD candidate genes and genes under-expressed in ASD cortex [199].

Mundalil Vasu et  al. 2014 identified the potential of 13 miRNAs in serum as 
likely biomarkers of ASD.  Five miRNAs (miRNA-181b-5p, miRNA-320a, 
miRNA-572, miRNA-130a-3p, and miRNA-19b-3p) were considered predictive. 
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These miRNAs have been implicated in the pathogenesis of ASD [200]. Kichukova 
et  al. 2017 [201] have also showed that miRNA- 365a-3p, miRNA-619-5p, and 
miRNA-664a-3p are the most overexpressed types and miRNA-3135a, miRNA-
328-3p, miRNA-197-5p, miRNA-424-5p, and miRNA-500a-5p are under-expressed 
in the serum of ASD patients.

miRNAs can also be found in different body fluids such as plasma and saliva. 
Plasma has the highest number of unique miRNA species and is followed by saliva 
[202]. Hicks et al. 2016 showed that 14 miRNAs are DE in saliva of mild ASD with 
no history of neurologic disorder, preterm birth, or known chromosomal abnormal-
ity, ten miRNAs were found to be overexpressed upregulated, and four were under- 
expressed in ASD compared to controls. These miRNAs are widely and highly 
expressed in the developing human brain. Most of these miRNAs were found to be 
significantly correlated with Vineland neurodevelopmental scores [203].

Using a different source of tissue/cells, Nguyen et al. 2016 carried out a study on 
olfactory mucosal stem cells from ASD patients and controls which represented a 
neurologically appropriate tissue. They discovered four miRNAs markedly dysreg-
ulated in the ASD patients: one miRNA, miRNA-146a overexpressed, and three 
other miRNAs under-expressed, i.e., miRNA-221, miRNA-654-5p, and 
miRNA-656 [204].

The role of several miRNAs such as miRNA-125b, miRNA-13, miRNA-137, 
and miRNA-138 has been documented in regulation of dendritic spine density, 
structure, and morphology in ASD and other psychiatric disorders [205].

In contrast to miRNA, fairly less is known about the potential function of 
snoRNA and piRNAs in ASD. snoRNAs are crucial in modifications and processing 
of another small ncRNA [206]. Numerous snoRNAs have been found to be brain- 
specific, and their influence on neurological development has already been 
described. Remarkably, brain-specific snoRNAs are found not to be involved in the 
alteration of typical snoRNA targets. In animal models, snoRNAs in mice have 
shown the possible association of two brain-specific snoRNAs in learning and 
memory: MBII-48 and MBII-52. The human homolog of MBII-52 seems to be 
implicated in the regulation of the 5-HT2C receptor subunit mRNA, and increased 
blood serotonin (5-HT) levels were acknowledged as a biomarker in ASD [206–
210]. On the other hand, piRNAs were identified to regulate memory-related synap-
tic plasticity in neurons. Thus, further to miRNA, both snoRNA and piRNA may be 
also implicated in the development of neurodevelopmental, psychiatric, and neuro-
degenerative diseases, like ASD [211].

Long ncRNAs (lncRNAs) are more than 200 nucleotides in length. LncRNAs 
have been recognized as being crucial to the development, maintenance, and func-
tion of the brain, more particularly, neurogenesis, synaptogenesis, and GABAergic 
interneuron function [212].

Ziats et al. 2013 showed that there is abnormal expression of lncRNAs in ASD 
patients’ postmortem brain tissue. More than 200 lncRNAs were found to be DE 
among ASD and control. 82/222 were unique to the prefrontal cortex and 143/222 
were unique to the cerebellum. In addition, the number of lncRNAs was found to be 
more DE in control brain rather than ASD brain tissues. This finding could explain 
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that there are fewer specialized regions in autistic brains than in the brains of healthy 
subjects in imaging studies [142, 213].

These lncRNAs were enhanced for genes particularly related with neuronal 
migration and gene targets for miR-103/miR-107. Furthermore, intraindividual dif-
ferences in the expression of the abovementioned lncRNA amongst the prefrontal 
cortex and cerebellum were also documented in small sample size of two ASD 
individuals and two controls [142].

Another study by Kerin et al. 2012 showed that lncRNAs MSNP1AS contribute 
to ASD risk and are highly overexpressed (12.7-fold) in the postmortem cerebral 
cortex of ASD individuals than in those from controls. MSNP1AS is transcribed 
from the antisense strand of MSNP1 (moesin pseudogene 1) from the 5p14.1 chro-
mosomal region. This region contains the SNP rs4307059, which was found to have 
a strong connection with ASDs. MSNP1AS was found to be 94% same and anti-
sense to the X chromosome transcript MSN. MSN encodes a protein (moesin) that 
regulates neuronal architecture and immune response. ASD-associated rs4307059 T 
allele have elevated expression of MSNP1AS. MSNP1AS, which binds to MSN, 
was highly expressed in postmortem cerebral cortex samples from ASDs individu-
als. Such high levels of expression could decrease the production of MSN tran-
scripts, the moesin level, and the number and length of neuritis [88, 214].

The influence of MSNP1AS on neuronal formation and gene expression was also 
further studied by DeWitt et al. 2016 using human neural progenitor cells. They 
showed that MSNP1AS functions precisely by modulating the translation of the 
MSN transcript to moesin protein but not altering the expression of the MSN tran-
script. This indicates that upregulation of MSNP1AS changes the expression of 
genes that attribute to chromatin organization jointly with genes that are implicated  
in translation more comprehensively [215]. The two genes DISC1 and ST7, along 
with their antisense transcripts DISC2 and ST7OT1-2, have also been associated 
with ASDs [216, 217]. These findings deliver a new point of view on the profile and 
function of lncRNAs that are related with ASDs.

DE lncRNAs were also acknowledged in peripheral blood samples of 25 paired 
ASD controls. A total of 3929 lncRNAs were detected to be DE ASD peripheral 
lymphocytes, 2407 lncRNAs were overexpressed, and 1522 lncRNA were under- 
expressed. Dysregulated LncRNA affects 13 pathways, like the inflammatory, syn-
aptic vesicle cycling, and long-term potentiation pathways, crucial in the ASD 
group. These DE lncRNAs were found to be transcribed from the HOX gene or 
HOX-related genes, signifying a crucial role of HOX gene in the development of 
ASD and are termed lncHOXs that could serve as a new set of biomarkers for 
ASD. Additionally, the DE lncRNA SHANK2-AS and BDNF-AS, transcribed from 
corresponding genes SHANK and BDNF, respectively, were also documented to be 
different in ASD patients. The impact of lncRNAs in downregulated pathways is 
more pathogenic than in upregulated pathways [218].

Parikshak et al. 2016 conducted postmortem genome-wide transcriptome analy-
sis of the largest cohort of samples that showed 60 lncRNA DE among the 48 ASD 
and 49 controls. A set of 20 lncRNAs were found to interact with microRNA 
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(miRNA)–protein complexes, and nine with FMRP, whose mRNA targets are 
enriched in ASD risk gene. Two lncRNAs LINC00693 and LINC00689 were found 
to interact with miRNA processing complexes, were naturally under-expressed dur-
ing development, and were found to be overexpressed in ASD as compared to con-
trols. Thus, dysregulation of lncRNAs is an essential module of the transcriptomic 
signature of ASD [219].

In 2017, Gudenas et al. 2017 identified 14 novel candidate lncRNAs associated 
with ASD. These lncRNAs are DE in brain tissues of ASD individuals, specifically 
during the development of cortex, that are vital for the synaptic signaling and trans-
mission of signals, immune responses, and lipid transport pathways. These lncRNAs 
were found to be overexpressed in synaptic transmission and under-expressed in 
immune response and lipid transport pathways [220].

Overlying spliced lncRNAs (PTCHD1AS1, PTCHD1AS2) were identified to 
regulate PTCHD1  in the X-chromosome through several molecular processes, 
including alteration of chromatin, transcriptional regulation, and posttranscriptional 
alteration in ASD and intellectual or learning disability. Mutations in the 
X-chromosome PTCHD1 gene were reported in seven families with ASD and in 
three families with intellectual disability [221]. Another candidate gene RAY1 in 7 
(7q31) was also proposed in ASD. Four ncRNAs were described as potential regula-
tory RNAs that may be involved in ASD [216].

Velmeshev et  al. 2013 identified another antisense lncRNA analogous to the 
SYNGAP1 locus (SYNGAP1-AS) that is significantly over-expressed in prefrontal 
cortex and superior temporal gyrus but not in the cerebellum of patients with ASD 
compared to controls [222]. A recent study investigating the role of lncRNA 
MALAT1 and AGO2 in 30 ASD patients and 41 healthy controls from peripheral 
whole blood samples showed a significant direct correlation between MALAT1 and 
AGO2, indicating their interactive network. However, the altered expressions 
between MALAT1 and AGO2 were not strong enough to be significant. Thus, further 
studies using lager sample sizes and specific subsets of white blood cells are still 
needed to strengthen these findings [223] (Table 8).

Table 8 Noncoding RNAs findings in ASD

Noncoding RNA: LncRNA: MSNP1AS, Evf2, RPPH1, 
NEAT1, and MALAT1, C210orf121, AK128400, 
FTHL3, and LST1
SEC1, COAS3, SDHA PMS2L4, SYP-AS1, 
STXBP5-AS1, STX8, SHANK2-AS, BDNF-AS, 
MSNP1AS, DISC2, HAR1, and others
MiRNA hsa-miR-21-3p, hsa-miR-29b, hsa-miR- 
219-5p, miR-146a, miR-221, miR-654-5p, and 
miR-656 miR-133b/miR-206 miRNA-365a-3p, 
miRNA-619-5p, miRNA-664a-3p miRNA-3135a, 
miRNA-328-3p, miRNA-197-5p, miRNA-424-5p, 
miRNA-500a-5p

Found to be more likely 
involved in the 
molecular function and/
or regulation of the 
specific ASD risk genes

[103, 142, 
197, 199, 
214, 215, 
217–220, 
223–231]
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14  Conclusion and Perspective

Nowadays, studies suggest that ASDs are frequently caused by genetic factors and 
heritability is estimated to be more than 80% instead of the previous 50% reported 
in studies.

The advancement of genomic technologies and the substantial multitude of 
efforts in the direction of sharing and reanalyzing large datasets of ASD have helped 
make rapid progress in identifying the risk genes of ASD and correlating genotype–
phenotype based on ASD patients’ genetic background. Further studies are still 
needed for understanding genotype–phenotype correlations along with functional 
validations to advance our understanding of the molecular mechanisms of ASD.

The combination of genetics with clinical phenotypes and other functional 
genomic studies such as transcriptomics and epigenomics will contribute to a better 
comprehending of the molecular processes implicated in ASD and eventually 
inform clinical care. In addition, there is still a need to understand more about ASD 
neurobiology via establishing genetic animal models of ASDs, including novel 
techniques such as genome editing, modulation of neuronal activity, biological net-
work studies, and stem cell approaches.

Current genetic results have markedly advanced our understanding of the genetic  
underlying of ASD. However, establishment of phenotypic markers is still challeng-
ing due to phenotypic and genotypic diversity.
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1  Introduction

Autism spectrum disorders (ASD) are a group of highly heterogeneous disorders 
characterized by repetitive behaviors, impaired social interactions and a wide spec-
trum of neurodevelopmental and physical comorbidities. While the overall 
 prevalence of ASD is estimated at 1 in 68 children [1], this may not represent an 
increase in incidence as much as it represents a widening of the scope of disorders 
that fit under the ASD umbrella in an era of improving clinical ascertainment. As a 
spectrum disorder, ASD may present as an isolated set of symptoms or with multi-
ple comorbidities, including but not limited to intellectual disability, developmental 
delay, epilepsy, gastrointestinal complications, cardiac problems, immune disor-
ders, etc. [2]. This heterogeneity is apparent even in the settings of identical genetic 
backgrounds (e.g., monozygotic twins discordant for co-morbidities), underscoring 
the complexity of understanding ASD on the molecular level.

While ASD disproportionately affects males (male: female ratio of 3.4:1), the 
reasons for this remain poorly understood. In fact, the search for a molecular etiol-
ogy is further complicated by the interplay of both genetic and environmental fac-
tors which together contribute to pathogenesis. Importantly, high incidence despite 
the significant impairment of reproductive fitness means that the cause of ASD is 
likely different among most cases of ASD, i.e., unrelated patients will rarely share 
the same mutation or even the same gene. Despite that, it is clear that ASD has a 
major heritable component, with siblings of ASD patients usually having a one in 
five risk (ten-fold higher than population average) of developing ASD themselves 
[3]. Further, concordance between monozygotic twins ranges from 30% to 99%, 
and the overall heritability is estimated between 0.5 and 0.8 [4–8].

This complex landscape has made the search for and discovery of genetic factors 
using traditional methods very difficult in the general population, mainly due to 
studies being underpowered to detect causal variants in small sample sizes. As 
expected by the limitations imposed by previous technologies, the majority of loci 
identified were in the form of chromosomal abnormalities, with few individual 
genes identified. The subsequent introduction of high-throughput microarrays 
enabled the investigation of smaller chromosomal abnormalities termed copy num-
ber variations (CNVs), and study of associations between common variants and the 
trait of interest. Signals detected from these three approaches (linkage, karyotyping 
and microarrays) rarely produced single-candidate genes; usually narrowing the 
search space to several kilobases or megabases, in which the search for causative 
genes was iterative and time-consuming. Alternatively, some mutations could be 
found by resequencing genes known to cause similar phenotypes in model organ-
isms in a larger patient cohort.

Subsequent technological improvements led to the advent of next-generation 
sequencing (NGS), which has transformed the field profoundly, allowing the dis-
covery of different classes of variations (e.g., single nucleotide variants (SNVs) and 
insertions/deletions (indels)) genome-wide. This enabled making discoveries from 
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nuclear families in the absence of multiple affected or large pedigrees to establish 
linkage. The proliferation and accessibility of NGS technologies mean the bottle-
neck is no longer the ability to detect variants in a cost-effective manner, but the 
ability to amass cohorts that are large enough to capture a significant proportion of 
the genetic and phenotypic heterogeneity underlying ASD in the general population.

This chapter summarizes gene discovery in ASD in the pre- and post-sequencing 
era, explaining the significance of these discoveries, and framing them in the larger 
context of the potential impact that genomics will have on ASD diagnosis and care 
in the future.

2  Pre-NGS Era

2.1  Introduction

Next-generation sequencing (NGS) refers to advancements in technology that have 
enabled large-scale sequencing of many DNA fragments at the same time. These 
advancements have allowed the interrogation of variation at many loci in the genome 
in parallel at reasonable speed and cost, thus increasing the efficiency of genetic 
research. While NGS technologies began to appear in academic environments over 
a decade ago [9], their proliferation and adoption into the mainstream was not until 
more than a decade later. Importantly, while several different technologies appeared 
initially to compete for adoption, it was Illumina’s short-read sequencing technol-
ogy that was able to capture the biggest market segment with a combination of price 
point, accuracy and speed. And while today the price of a single human genome is 
around $1000, the price was significantly higher up until just a few years ago, ren-
dering large-scale studies still very costly. This section covers discoveries made in 
autism genetics prior to the introduction to NGS to study this condition, whereas the 
next chapter will cover discoveries made when large-scale genomic assessment 
became increasingly affordable, in what is known as the post-“genomic” or 
post- NGS era.

2.2  Linkage Studies

Due to the paucity of multiplex or extended pedigrees with ASD, linkage approaches 
were not a robust approach to gene discovery in ASD. Nevertheless, numerous stud-
ies were performed (reviewed in [10]), revealing few loci in total. Notably, of these, 
only two were ever replicated successfully in an independent study. These include 
linkage to chromosome 7q35, containing the CNTNAP2 gene [11], and to chromo-
some 20p13, containing the four genes [12].
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2.3  Association Studies

The development of cheap high throughput microarray genotyping technologies 
with higher marker density empowered a flurry of genome-wide association studies 
(GWAS) in a wide variety of human diseases. The discovery of markers by GWAS 
has two main limitations. First, they indicate loci with small effect size on the trait, 
sometimes increasing odds ratio by as little as 0.05 [13]. Second, they require very 
large sample sizes to have sufficient power to discriminate alleles between cases and 
controls. For ASD, large cohorts were not possible to amass for sufficient power, 
and therefore while GWAS were attempted over the past 10 years, few were ever 
replicated [12–17]. This is in contrast to studies of other neurodevelopmental condi-
tions such as Schizophrenia for which cohorts could be amassed in the tens of thou-
sands to discover tens of loci that replicate in independent cohorts. For ASD, only 
two loci have been implicated using GWAS to date, including a locus on 5p14.1 
(containing the CDH9 and CDH10 genes), and another on 20p12.1 (MACRO2 
gene) [15, 16]. Importantly, consistent with the genetic heterogeneity and the need 
for very large numbers, neither of these loci has been replicated.

2.4  Chromosomal Abnormalities Studies

The association of ASD with other syndromic comorbidities such as Fragile X and 
intellectual disability was a first indicator that chromosomal-level events could be 
underlying a subset of the condition. The concurrent evolution of microarray tech-
nologies introduced the ability to rapidly detect structural copy number variations in 
human genomes at scale. Together, karyotyping and CNV analysis have uncovered 
tens of chromosomal segments involved in ASD, including duplication of 15q [18], 
deletion of 22q11.2 [19, p., 200], deletion of 16p11.2 [20] and deletion of Xp22.3 
[21]. In addition, several recurrent hotspots of de novo CNVs with ASD include 
duplications on 7q11.2 and deletions of 16p11.2, the latter also associated with 
schizophrenia [22, 23].

A key feature of CNVs is that they range widely in size from single-gene dele-
tions to large regions encompassing tens to hundreds of genes. Consistent with 
multi-genic contribution to other phenotypes, patients with multiple de novo CNVs 
or large chromosomal abnormalities usually have more severe, syndromic pheno-
types [24, p. 2], [25].

As cohort sizes grow, it has also been shown that CNV-affected genes predomi-
nantly comprise candidates from three key pathways, including neuronal signaling, 
synaptic function, and chromatin remodeling [26], [27, p.  201]. Together, these 
studies not only identify novel loci, but demonstrate that de novo CNVs are strongly 
associated with ASD [28] and that recurrent CNVs point to shared architecture with 
other diseases.
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2.5  Candidate Gene Resequencing Studies

In contrast to the paucity of discovery from linkage studies, work from both other 
syndromes and CNV studies identified several candidate human ASD genes that 
could be screened by resequencing in larger cohorts. By assessing larger cohorts for 
mutations in these genes, the following genes were all found to harbor damaging 
point mutations in ASD subjects: MECP2 (Rett syndrome), TSC1 and TSC2 (tube-
ros sclerosis), CACNA1C (Timothy syndrome), NLGN3 and NLGN4 (X-linked 
mental retardation), and CNTNAP2 (7q35 deletion), SLC9A9 and BCKDK 
 (epilepsy), etc. [29–31]. Other genes also discovered to carry rare damaging  
variants by resequencing include SHANK1, SHANK2, SHANK3, NRXN1 and 
NRXN3 [32–36].

2.6  Conclusion

In conclusion, the pre-NGS era relied mainly on candidate gene resequencing and 
association studies to link genes and loci to Autism. Unlike other monogenic disor-
ders, linkage analysis was not a very successful approach to finding genes linked to 
Autism primarily due to the requirements of large pedigrees or multiple kindreds 
segregating the same locus, which are difficult to find considering the genetic het-
erogeneity underlying Autism and the detrimental effect it has on reproductive 
fitness.

3  The NGS Era

3.1  Next-Generation Sequencing as a Tool to Study Genetic 
Disease

Over the past decade, there have been numerous tools developed for next- generation 
sequencing (NGS) (Table 1). At its core, NGS may be broadly classified into two 
categories: whole genome sequencing (WGS), and targeted NGS. While the former is 
concerned with reading the entire content of an organism’s genetic material, targeted 
NGS methods focus on selectively sequencing a group of genes (“gene panels”), usu-
ally selected based on specific selection criteria, e.g., having been identified in smaller 
cohorts or in animal studies, or genes within the same pathway(s) as well-established 
candidate disease genes. These gene panels may be customized to include any number 
of genomic fragments of interest, including, for example, all coding regions—com-
monly known as whole exome sequencing (WES). Typical WES experiments also 
capture flanking regulatory regions, enabling discovery of variants affecting splice 
junctions and untranslated promoter and downstream sequences [37].

Genomics of Autism



88

Ta
bl

e 
1 

C
om

pa
ri

so
n 

of
 d

if
fe

re
nt

 s
eq

ue
nc

in
g 

te
ch

no
lo

gi
es

Te
ch

no
lo

gy
M

ax
im

um
 

re
ad

s 
pe

r 
ru

n
R

ea
d 

le
ng

th
 

pe
r 

ru
n 

(b
p)

A
cc

ur
ac

y 
(s

in
gl

e 
re

ad
 

no
t 

co
ns

en
su

s)
T

im
e 

pe
r 

ru
n

C
os

t p
er

 1
 

m
ill

io
n 

ba
se

s 
(i

n 
U

S$
)

A
dv

an
ta

ge
s

D
is

ad
va

nt
ag

es
R

ef
er

en
ce

s

Se
qu

en
ci

ng
 b

y 
sy

nt
he

si
s 

(S
B

S)
Il

lu
m

in
a

M
iS

eq
 s

er
ie

s
25

 m
ill

io
n

2 
×

 1
50

99
.9

%
4–

55
 h

0.
05

 to
 $

0.
15

Po
te

nt
ia

l f
or

 
hi

gh
 

se
qu

en
ce

 
yi

el
d 

de
pe

nd
s 

on
 s

eq
ue

nc
er

 
m

od
el

 a
nd

 
de

si
re

d 
ap

pl
ic

at
io

n

Sy
st

em
 c

an
 b

e 
ve

ry
 e

xp
en

si
ve

. 
R

eq
ui

re
s 

hi
gh

 
co

nc
en

tr
at

io
ns

 
of

 D
N

A

[9
]

N
ex

tS
eq

 s
er

ie
s

40
0 

m
ill

io
n

12
–3

0 
h

H
iS

eq
 s

er
ie

s
5 

bi
lli

on
<

1–
3.

5 
da

ys
 

(H
iS

eq
 

30
00

/4
00

0)
7 

h–
6 

da
ys

 
(H

iS
eq

 2
50

0)
H

iS
eq

 X
 s

er
ie

s
6 

bi
lli

on
<

3 
da

ys
Se

qu
en

ci
ng

 b
y 

se
m

ic
on

du
ct

or
T

he
rm

o 
Fi

sh
er

 
Sc

ie
nt

ifi
c

Io
n 

to
rr

en
t

up
 to

 8
0 

m
ill

io
n

20
0–

40
0

98
%

2–
4 

h
$1

L
es

s 
ex

pe
ns

iv
e 

eq
ui

pm
en

t
Fa

st

H
om

op
ol

ym
er

 
er

ro
rs

Io
n 

pr
ot

on
12

5

Si
ng

le
-m

ol
ec

ul
e 

re
al

-t
im

e 
se

qu
en

ci
ng

Pa
ci

fic
 

B
io

sc
ie

nc
es

a

Se
qu

el
 s

ys
te

m
Pa

cB
io

 R
S 

II
10

,0
00

–
15

,0
00

 
m

ax
im

um
 

re
ad

 le
ng

th
 

65
,0

00
 b

as
es

50
,0

00
 p

er
 

SM
R

T
 c

el
l, 

or
 

50
0–

10
00

 
m

eg
ab

as
es

87
%

 
si

ng
le

-r
ea

d 
ac

cu
ra

cy

30
 m

in
 to

 
6 

h
$0

.1
3–

$0
.6

0
L

on
ge

st
 r

ea
d 

le
ng

th
. F

as
t. 

D
et

ec
ts

 
4 

m
C

, 5
 m

C
, 

6 
m

A

M
od

er
at

e 
th

ro
ug

hp
ut

. 
E

qu
ip

m
en

t c
an

 
be

 v
er

y 
ex

pe
ns

iv
e

O
xf

or
d 

N
an

op
or

e
M

in
IO

N
G

ri
dI

O
N

 X
5

Pr
om

et
hI

O
N

Sm
id

gI
O

N

D
ep

en
de

nt
 o

n 
lib

ra
ry

 
pr

ep
ar

at
io

n,
 

no
t t

he
 d

ev
ic

e,
 

so
 u

se
r 

ch
oo

se
s 

re
ad

 
le

ng
th

 (
up

 to
 

20
0 

kb
 

re
po

rt
ed

)

D
ep

en
de

nt
 

on
 r

ea
d 

le
ng

th
 

se
le

ct
ed

 b
y 

us
er

~9
2–

97
%

 
si

ng
le

 r
ea

d 
(u

p 
to

 
99

.9
6%

 
co

ns
en

su
s)

D
at

a 
st

re
am

ed
 in

 
re

al
 ti

m
e.

 
C

ho
os

e 
1 

m
in

 to
 

48
 h

$5
00

–9
99

 p
er

 
flo

w
 c

el
l, 

ba
se

 c
os

t 
de

pe
nd

en
t o

n 
ex

pe
ri

m
en

t

V
er

y 
lo

ng
 

re
ad

s.
 

Po
rt

ab
le

 
(p

al
m

 s
iz

ed
)

L
ow

er
 

th
ro

ug
hp

ut
 th

an
 

ot
he

r 
m

ac
hi

ne
s.

 
Si

ng
le

 r
ea

d 
ac

cu
ra

cy
 in

 9
0 

s

a O
n 

1 
N

ov
em

be
r 

20
18

, I
llu

m
in

a 
en

te
re

d 
in

to
 a

 p
ur

ch
as

e 
ag

re
em

en
t t

o 
bu

y 
Pa

cB
io

 f
or

 ~
$1

.2
B

 in
 to

ta
l

K. A. Fakhro



89

Whole genome sequencing (WGS), on the other hand, covers both WES regions 
as well as non-coding and inter-genic regions. It is usually faster and more uniform 
because it does not require target panel capture, and thus can be performed with 
minimal sample preparation, resulting in sequences that are evenly distributed 
across all chromosomes. This distribution of sequencing coverage means that vari-
ants can be confidently assigned at average depth of sequencing as low as 
20X. Conversely, whole-exome and other panel sequencing requires target enrich-
ment and PCR amplification, often resulting in highly variable coverage profiles 
with some regions (e.g., repetitive elements or GC-rich content) being missed due 
to the technical limitations. Another important advantage of WGS’s even coverage 
is the ability to discover genome-wide structural variants (including copy number 
variants). Given the number of human disorders (including ASD) in which struc-
tural variants play a significant role, a single test that can assess both large and small 
genomic variation is often cited a reason to use WGS despite its slightly higher cost 
vis-à-vis using a combination of microarray and WES for each patient.

3.2  Bioinformatics and Variant Interpretation

One important aspect of the NGS approach is the generation of large quantities of 
data, often requiring sophisticated computational tools (bioinformatics) to interpret. 
Specifically, bioinformatics pipelines share three major steps in common, irrespec-
tive of the NGS technology used: read alignment to a reference genome, variant 
calling versus the reference, and variant interpretation to determine pathogenic from 
benign variation.

Genetic variants may belong to several different classes, including: single nucle-
otide variants (SNVs, including single nucleotide polymorphisms (SNPs)), multi- 
nucleotide variants (MNVs, including small insertions and deletions (indels)), and 
structural variations (SVs, including copy number variations (CNVs)). For all three 
variant classes, a number of statistical considerations need to be taken into account 
to sort out likely true positive variants from noise, including: depth of sequencing, 
sequencing quality, the number of times mutations are observed, and the likelihood 
that such a change is true rather than an artifact of sequencing [38]. Importantly, the 
joint steps of read alignment and variant calling may themselves introduce error into 
the experiment, e.g., for fragments coming from highly repetitive genomic seg-
ments [39, 40].

The most challenging aspect in bioinformatics pipeline is variant interpreta-
tion—the step where tens to hundreds of variants may require in-depth manual scru-
tiny to determine putative effect on disease. Robust variant interpretation requires a 
well-annotated reference genome (for both coding and non-coding elements) and a 
large number of control individuals to accurately discriminate putative disease caus-
ing variants from population-specific polymorphisms (that may rarely appear in 
public databases because inadequate numbers of population-matched controls are 
available) [41–45].
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3.3  NGS Suitability in Routine Clinical Care

As NGS technologies become more widely adopted in academic hospital settings, 
there is a growing need to establish gold-standard pipelines to allow for genomics 
to enter routine clinical testing [46, 47]. While some guidelines do exist, especially 
for diagnostic laboratory settings, these guidelines vary widely and currently still 
require orthogonal validation before they are deemed actionable [46, 48]. The role 
of a clinical-grade pipeline is primarily to demonstrate processing and interpretation 
in a highly reproducible manner, thus ensuring disease management is not compro-
mised from this approach [47]. These steps, however, are non-trivial—they would 
need to account for influences on data quality and sources of error, for example, 
sample prep using protocols, sequencing instruments and batch effects, ensuring all 
genes in a panel are adequately captured, errors in sequencing chemistry and noise 
from the sequence alignment and variant calling steps.

Further, these tasks scale in complexity with the number of samples being studied 
and the databases from which annotations are being drawn. Of key consideration, for 
example, is the large number of variant sites produced per NGS run (three to four mil-
lion per genome). Amongst these, hundreds or thousands of variants would be consid-
ered variants of unknown significance (VUS) whose interpretation and relevance to 
health and disease is completely unknown [46, 49]. In many cases, the recruitment of 
parents and siblings could help with sorting through these variants, but still tens to 
hundreds remain “private” variants with unknown function. For NGS to be adopted in 
routine care, clinical platforms must deal with such cases systematically, bearing in 
mind not to discard these variants because they may have future value as the genome 
is better annotated in the academic literature. Moreover, clinical platforms should take 
into consideration the constantly evolving annotations of genes, e.g., >200 new genes 
and hundreds of variants are being linked to diseases each year [50–53], and thus vari-
ant sharing as part of consortia may mitigate the absence of variants in the publication 
record. Such considerations need to be taken into account when designing clinical 
NGS pipelines, to ensure that genetic testing of patients is accurate, reproducible and 
safe. Only by controlling for these factors in a statistically robust framework would it 
be possible to ensure reproducibility and standardization, thereby enabling precision 
in data interpretation in disease settings.

4  Successful Application of NGS to Autism Spectrum 
Disorder

4.1  Sample Size and Cohort Considerations

The evolution of NGS thus enables the assessment of single families and single 
cases at a rate not performed before. The biggest challenge lies in discriminating 
rare alleles from population-specific polymorphisms, a challenge that can only be 
adequately addressed by sequencing a large enough number of both patients and of 
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ethnic/population-matched controls. This is especially important in the setting of 
high genetic heterogeneity, where it is unlikely to find individuals sharing mutations 
in the same gene, let alone the same pathogenic variant. In recent studies, for exam-
ple, sample sizes of >2000 families were required to identify recurrent gene and 
copy number regions shared between individuals [20, 23, 27, 54].

Conversely, in settings with high consanguinity, the approach of finding reces-
sive variants is boosted by the usual availability of affected siblings or additional 
cousins (in multiplex families) who share the same homozygous mutations in can-
didate genes. However, the identification of recessive genes causing ASD has been 
limited so far by the type of families studied—mostly outbred simplex families with 
unrelated parents. In rare cases where families with multiple affected siblings were 
identified, they were found to have two different de novo causative variants rather 
than the same recessive variant [55]. This is expected due to the high levels of 
genetic heterogeneity underlying ASD.

However, this presents an important opportunity for consanguineous populations 
attempting ASD studies, with some initial reports reporting promising results 
[56–59].

4.2  Exome and Genome Sequencing

Due to the paucity of studies in ASD families from areas of high consanguinity, 
recessive variants causing ASD have only been identified so far in the following 
genes: AMT, BCKDK, CNTNAP2, PEX7, SLC9A9, SYNE1, VPS13B, PAH and 
POMGNT1 [60]. In contrast to the few recessive genes discovered, the vast majority 
of families studied to date have been outbred, in which single affecteds (simplex) 
are born to unaffected, unrelated parents. In these cases, the genetic architecture is 
usually driven by de novo mutations, or rare inherited variants; however, even when 
multiple siblings are found in the same family, they are sometimes found to harbor 
separate de novo variants, stressing the importance of this type of variation in ASD 
etiology. There are approximately 800 genes affected by de novo variants in ASD 
(not counting genes within de novo chromosomal abnormalities) [10]. Altogether, 
the contribution of de novo mutations in ASD is estimated to be between 15% and 
25% [61].

In 2012, four groups published concurrent studies using exome-sequencing to 
identify de novo gene disrupting variants in ASD patients. Only approximately 20 
of these genes were recurrently hit across the cohorts, including: ADNP, ANK2, 
ARID1B, BCL11A, CACNA2D3, CHD8, CUL3, DSCAM, DYRK1A, GRIN2B, 
KDM5B, KDM6B, KMT2C, KMT2E, KMT5B, NCKAP1, PHF2, RIMS1, SCN2A, 
SYNGAP1, TBR1, TCF7L2, TNRC6B, and WAC [22, 54, 62–67]. However, the 
majority of the other genes identified were singletons (only observed in a single 
patient without replication), but their potential role in ASD was supported by their 
impacting critical pathways in neurological development, such as cognition, synap-
tic formation, and regulation of transcription of brain-specific genes [54, 67, 68]. 
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In addition to de novo variants affecting genes directly, more recent studies have 
found an enrichment of de novo and private disruptive mutations in DNAse I hyper-
sensitivity sites in regions close to some of the genes that have been implicated in 
ASD [69]. This indicates that ASD genes disruption is not only through mutations 
that may alter function but also those that may alter gene regulation. Notably, one 
recurrent theme across most studies is that de novo point-mutations are predomi-
nantly paternal in origin, with the rate of de novo mutations increasing with 
paternal age.

Despite advances in WES, less than 10% of known patients receive a genetic 
diagnosis in ASD. This is far lower than the solve rate of neurodevelopmental dis-
orders as a whole, with diagnoses above 30% of cases. Nevertheless, the utility of 
WES and WGS extends beyond simple diagnostic value, as it has allowed the iden-
tification of genes underlying more complex syndromes shared with ASD.  For 
example, de novo mutations in the SWI-SNF-related gene ADNP causes a syn-
dromic form of ASD with unique facial dysmorphism [70], whereas mutations in 
the NatA complex subunit NAA15 cause a syndromic form of ASD with multiple 
congenital anomalies including craniofacial, neuromuscular, and cardiac complica-
tions [71]. Such families may not have been individually identified a priori to share 
similar genetic underpinnings prior to the advent of NGS technologies, which now 
enable patients to be stratified more precisely based on their genetic abnormality 
rather than phenotypic variability.

Importantly, accurate genetic diagnosis is critical for determining potential ther-
apeutic approaches for patients with ASD. One area where the impact has been 
most recognizable is in ASD related to branched-chain amino acid deficiencies, for 
example, branched-chain keto-acid dehydrogenase kinase deficiency, in which 
mutations in BCKDK were identified. These mutations cause loss of function of 
BCKDK, itself a repressor of branched-chain amino acid degradation, and there-
fore patients have a concurrent deficiency of BCAAs. In murine models, supple-
mentation of knockout mice with BCAAs significantly improved their neurologic 
phenotypes, suggesting that patients with BCKDK mutations may benefit from 
dietary supplementation of BCAAs to counteract the elevated degradation caused 
by the genetic mutation [31]. Similarly, ASD patients with a wide variety of comor-
bidities (e.g., sleep disorders, seizures and metabolic and immune abnormalities) 
have been found to have imbalances in compounds that could easily be rectified by 
dietary intervention, such as folate, carnitine, cobalamin, etc. [72]. More recently, 
one case–control randomized trial has demonstrated that supplementation with 
essential fatty acids, carnitine, digestive enzymes, and a hypoallergenic diet (e.g., 
gluten, soy, and casein- free) all improved ASD symptoms, including non-verbal IQ 
and nutritional status [73]. Therefore, as more cohorts of patients continue to be 
evaluated at the genomic and epidemiological levels, the future of ASD research 
can lead to novel tools and therapies that improve stratification and clinical man-
agement of patients based on their genomic information, ushering in an era of 
personalized medicine for ASD.
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5  Conclusion

Autism spectrum disorders (ASD) are a heterogeneous group of disorders charac-
terized by clinical comorbidities and extreme genetic heterogeneity. While a lot has 
been achieved to understand the molecular and genetic etiology, there is still a long 
way to go to understand how perturbations in genes ultimately lead to an ASD phe-
notype. Importantly, further studies may also reveal genetic markers of the develop-
ment of different physical comorbidities, which can help in patient stratification and 
early intervention in cases predicted to become severe. Thus, as future studies are 
conceived, they ought not to only focus broadly on ASD patients across the entire 
spectrum, but also on important concepts such as data sharing and collaborations to 
aid in the interpretation, and eventually treatment of ASD across the globe.
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Abstract Autism spectrum disorder (ASD) is a complex heterogeneous consortium 
of pervasive development disorders (PDD) which ranges from atypical autism, 
autism, and Asperger syndrome affecting brain in the developmental stage. This 
debilitating neurodevelopmental disorder results in both core as well as associated 
symptoms. Core symptoms observed in autistic patients are lack of social interac-
tion, pervasive, stereotyped, and restricted behavior while the associated symptoms 
include irritability, anxiety, aggression, and several comorbid disorders.

ASD is a polygenic disorder and is multifactorial in origin. Copy number varia-
tions (CNVs) of several genes that regulate the synaptogenesis and signaling path-
ways are one of the major factors responsible for the pathogenesis of autism. The 
complex integration of various CNVs cause mutations in the genes which code for 
molecules involved in cell adhesion, voltage-gated ion-channels, scaffolding pro-
teins as well as signaling pathways (PTEN and mTOR pathways). These mutated 
genes are responsible for affecting synaptic transmission by causing plasticity dys-
function responsible, in turn, for the expression of ASD.

Epigenetic modifications affecting DNA transcription and various pre-natal and 
post-natal exposure to a variety of environmental factors are also precipitating fac-
tors for the occurrence of ASD. All of these together cause dysregulation of gluta-
matergic signaling as well as imbalance in excitatory: inhibitory pathways resulting 
in glial cell activation and release of inflammatory mediators responsible for the 
aberrant social behavior which is observed in autistic patients.

In this chapter we review and provide insight into the intricate integration of vari-
ous genetic, epigenetic, and environmental factors which play a major role in the 
pathogenesis of this disorder and the mechanistic approach behind this integration.
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1  Introduction

Autism spectrum disorder (ASD) is an intricate syndrome that has been character-
ized by a diverse category of neuropsychiatric disorders which affect the brain dur-
ing its development. The symptoms usually become manifested by the time the 
child is three years old. The Diagnostic and Statistical Manual of Mental Disorders, 
5th Edition (DSM-V), encompasses various disorders under the umbrella of ASD 
such as autistic disorder, Asperger’s syndrome, pervasive developmental disorder 
not otherwise specified (PDD-NOS), childhood disintegrative disorder, and Rett 
syndrome [1]. According to reports by the US Center for Disease Control and 
Prevention, there has been an increase in the prevalence of autism in children from 
1 in 88 in 2010 to 1 in 68 in 2014. World Health Organization (WHO) reports of 
2017 show that one in 160 children are suffering from ASD worldwide [2]. In India 
approximately 23 out of every 10,000 children have autism, according to reports 
from India’s first rigorous estimate of autism prevalence [3]. ASDs show significant 
skewness in occurrence in boys as compared to girls by a ratio of 4:1 [4–7]. ASD 
shows high heritability of approximately 80% [8]. It is a genetically heterogeneous 
disorder in which 10–25% of the cases suffer from a genetic disorder either occur-
ring as a result of single gene mutation such as fragile X syndrome, tuberous scle-
rosis (TSC), Rett syndrome, Angelman syndrome or aberrations in chromosomes 
and imbalances in genome. These are also known as syndromic ASDs. Remaining 
cases for which the causes are unknown come under the category of idiopathic 
ASDs [9, 10]. Idiopathic autism is also sometimes referred to as non-syndromic 
ASD and includes those cases where autism is the primary diagnosis and is not 
secondary or part of an existing condition caused by a genetic syndromes like Rett 
syndrome, Fragile X syndrome, tuberous sclerosis, or Angelman syndrome.

ASD is characterized by core as well as associated symptoms. The primary 
symptoms associated with autism are lack of individual’s ability to communicate 
and engage in social interaction. Such patients also show restriction, repetition, per-
vasiveness, and stereotypy in their behavior and activities. Along with the primary 
symptoms, ASD also results in symptoms such as aggressive behavior, irritable 
nature, and anxiety as well as some accompanied disorders like attention deficit 
hyperactivity disorder (ADHD), epilepsy, and disorders affecting the processing of 
sensory information [1, 11–14].

In this chapter we bring forth the role of the complex amalgamation of genetic 
factors and factors affecting environment in the pathogenesis of autism spectrum 
disorders (ASDs). This article has been divided into sections and sub-sections high-
lighting the following:

 (a) Genetic factors involved in ASD
 (b) Epigenetic modifications of genes involved in ASD
 (c) Pre-natal and post-natal environmental factors affecting neurodevelopment and 

leading to ASD
 (d) Mechanism of integration of genetic, epigenetic, and environmental factors 

affecting synaptic transmission and glial activation
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2  Pathogenetic Mechanisms: Role of Genetic, Epigenetic, 
and Environmental Factors

2.1  Genetic Factors in ASD

ASD is a polygenic disorder. Its estimated heritability is approximately 80% [8, 15, 
16]. Our focus here is on understanding the genetic mechanisms underlying the 
disease pathology.

The first section dealing with genetic factors involved in pathogenesis of ASD 
has a sub-section on monogenic autism, i.e., autism which results from mutation in 
a single gene. Under monogenic autism we explain copy number variations (CNVs), 
which are one of the reasons for the occurrence of monogenic autism. These can 
occur in the genes involved in synapse formation, such as genes for the cell adhe-
sion molecule, scaffolding proteins, cytoskeletal proteins, signaling pathways, ion 
channels, and cell signaling molecules. Mutation in these genes disrupts regulatory 
or coding regions which contribute to the pathogenesis of ASD by affecting synapse 
formation, plasticity as well as transmission. All such genes have been discussed in 
the sub-section on Genes regulating synaptic plasticity and transmission covering 
mutations in several genes at the synapse which code for cell adhesion molecules 
(Neuroligin, Neurexins, Contactins, NrCAM, and Cadherins), ion-channels (sodium 
channel (Nav1.1), calcium channel (Cav1.2), and potassium channel (Kir4.1 and 
BKCa)), scaffolding proteins (Shank, SHANK2, and SHANK3) and cytoskeletal 
proteins, and the abnormalities in the PI3K/AKT/mTOR pathway or the RAS path-
way which lead to the aberrant synaptic protein synthesis. This in turn leads to the 
development of autism. Figure 1 depicts various genetic factors which have been 
described below.

2.1.1  Monogenic Autism

Autism which results from mutation in a single gene is known as monogenic autism. 
Monogenic mutation can be a part of either syndromic autism or part of non- 
syndromic autism which might involve many genes or environmental factors as 
likely causes of its etiology [17]. Monogenic mutations can be a result of mutations 
in genomic DNA or de-novo mutations as a result of copy number variations (CNVs) 
as well as single nucleotide polymorphisms (SNPs). These mutations, which occur 
as a result of CNVs or SNPs, can either affect synaptic transmission and plasticity 
by causing mutations in genes encoding for molecules causing cellular adhesion, 
voltage-gated ion-channels, scaffolding proteins, cytoskeletal proteins, and PTEN 
and mTOR signaling pathways [18] or occur in genetic syndromes such as Fragile 
X syndrome (FMR1 gene [19, 20], tuberous sclerosis (TSC1 and TSC2 genes) [21]) 
and Angelman syndrome (UBE3A gene [22, 23]) by affecting a particular gene 
resulting in the development of major intellectual disability disorders of which 
autism is a part.
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Fragile X syndrome (FXS) occurs as a result of abnormal CGG repeats in the 
FMRP gene located at a specific locus, i.e., Xq27.3. The abnormal repeats result in 
transcription silencing of this gene by abnormal methylation and ultimately reduce 
cerebral proteins [20, 24]. Tuberous sclerosis (TSC) is a disorder affecting autosomes 
in which tumor like lesions occur in multiple organs. TSC occurs as a result of muta-
tions in either of the two genes, i.e., TSC1 or TSC2 which are present at two different 
loci, i.e., 9q34 and 16p13.3, respectively [21, 25]. The incidence of ASD in FXS is 
18–33%, while in TSC it is 25–60% [21]. Angelman syndrome is a neurodevelop-
mental disorder leading to severe intellectual disability, seizures, speech impairment, 
abnormal gait, cognitive impairment, and stereotypic mannerisms typical of autistic 
patients [26, 27]. Primary cause of this syndrome is the deletion or inactivation of 
UBE3A gene present on maternally inherited copy of chromosome 15 [22, 23].

Copy number variations are the structural variations in the DNA segments. The 
size range of these is from 50 base pairs to several megabases. The size of the 
affected DNA segment has to be larger than 1 kb to be classified as copy number 
variant. They occur as a result of mutation, i.e., deletion, duplication, insertion, 

Fig. 1 Classification of the genetic factors associated with ASD. This figure illustrates the genes 
responsible for the development of ASD associated phenotype. Nav1.1—sodium channel type 1, 
Cav1.2—voltage dependent L-type Ca2+ channel, Kir4.1, and BKCa2+—potassium channels
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inversion or complex recombination of the segments of chromosomes [28, 29]. They 
are a lesser or large number of copies of a particular sequence and occur with a fre-
quency of 6–10% in ASD population. CNVs are known as de-novo CNVs if they are 
present spontaneously in offspring germ cells or somatic cells or are considered to 
be  inherited if they arise in parental germ cells. In somatic cells, de-novo CNVs 
influence the degree of functional deficits during development [30]. These CNVs 
play an integral part in the development of ASD depending on the location at which 
they are present on the chromosomes, like duplication at loci 15q13 or microdeletion 
at loci 16p11.2, 15q11-13, 22q11.2, and 1q21.1 [31, 32]. CNVs are involved in 
monogenic forms of autism. However, there are also multigenic CNVs [33]. Menashe 
et al. [34] have indicated in their comprehensive analysis of CNV data from genetic 
database known as AutDB that there are 11 CNV loci either present on chromosome 
16, 22, 15, 13, 9, 4, 3 or 1. These loci contain a total of 166 genes and cover 15,610 kb 
of genome. Out of these 11 CNV loci, there are seven multigenic loci and four 
monogenic loci. Sanders et  al. [35] analyzed copy number variations via exome 
analysis in a cohort consisting of simplex ASD families known as Simons Simplex 
Collection. It consists of 2591 families. This exome analysis replicated the initial 
findings indicating strong connection with ASD and confirmed the identification of 
six specific loci considered as “risk loci.” These risk loci are present on chromosome 
1, 3, 7, 16, 15, 13, and 22. When data was added from prior published data from the 
Autism Genome Project (AGP), Simons Simplex Collection as well as Autism 
Sequencing Consortium (ASC), it indicated that genes within small de-novo dele-
tions include high-effect ASD risk genes, whereas large de-novo CNVs include only 
medium-effect risk genes. Thus, Sanders et al. [35], through their exome analysis of 
de-novo CNVs in ASD, brought forth that 50% of de-novo CNVs arbitrate risk of 
ASD. There are 200 CNV loci and 800 genes considered as risk loci and risk genes, 
respectively, which are susceptible to de-novo mutations and 11% of these cases in 
the cohort are a result of de-novo mutations. They identified 71 independent ASD 
risk loci which comprised of 65 risk genes and six risk loci of ASD, many of which 
are either targeting chromatin biology or are involved in synaptogenesis. Iossifov 
et al. [36] performed exome analysis in 2500 simplex families each of which had a 
child suffering from ASD. They compared affected vs unaffected siblings. Exome 
analysis was done at Cold Spring Harbor Laboratory, Yale School of Medicine and 
University of Washington. The results indicated that 13% of de-novo missense muta-
tions and 42% of de-novo likely gene disrupting mutations contributed to 12% and 
9% of diagnoses, respectively. Their results estimated that 40% of the simplex fami-
lies were at high-risk. There was no role of de-novo mutations in high-risk families. 
Hence, de-novo mutations contributed to 60% of Simon Simplex Collection families.

CNVs in the genes which code for scaffolding proteins, cytoskeletal proteins, sig-
naling pathways, ion channels, and cell signaling molecules cause disruption of the 
regulatory as well as coding regions that are responsible for pathogenesis of disease [9].

Synaptic dysfunction occurs at multiple levels in ASD. There are a number of 
genes regulating various cell adhesion molecules, ion-channels, neurotransmitter 
receptors, scaffolding and cytoskeletal proteins and genes affecting the PTEN/TSC/
mTOR signaling pathways. These mutations are part of idiopathic or non-syndromic 
autism where gene mutation is not part of the syndrome and can be a result of 
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 epigenetic changes occurring as a result of various environmental factors. Genetic 
mutations in the upstream targets of mTOR pathway, i.e., PTEN, TSC1/2, NF1 and 
the loss of fragile-X-mental retardation protein (FMRP) as a result of mutation of 
FMRP gene leads to hyperactivity of the mTORC1-eIF4E pathway. This is associ-
ated with the development of ASD as these genes are responsible for the integrity 
and function of the synapse [37, 38]. Mutation in this pathway, when affecting the 
TSC1/2 or FMRP, leads to syndromic ASD as it is a part of tuberous sclerosis or 
Fragile X syndrome. Figure 2 depicts various sites at the synapse which are involved 
in the mutation of the genes coding for synaptic proteins that regulate synaptogen-
esis and synaptic transmission.

2.1.2  Cell Adhesion Molecules in Synaptogenesis

The following cell adhesion molecules are involved in synaptogenesis. The muta-
tion in the genes encoding for these molecules is one of the plausible causes of the 
pathogenesis of ASD:

a. Neuroligins: Neuroligins (type 1 membrane proteins required for cell adhe-
sion) are found on the post-synaptic membrane of the glutamatergic or GABAergic 
synapse and are responsible for its formation [41, 42]. Neuroligins (NLGNs) act as 
ligands for pre-synaptic neurexins [43]. Neuroligins are involved in signaling by 
differentiation, maturation and stabilization of synaptic components [44] (Fig. 2).

Fig. 2 (continued) ion-channels like sodium, potassium, and calcium channels, cytoskeletal pro-
teins (HOMER and CORTACTIN) and receptors such as NMDAR, TyrK, mGluR present post- 
synaptically as well as signaling pathways (such as mTOR pathway) responsible for the 
maintenance of synaptic plasticity and function. In the pre-synaptic assembly, the ion-channels 
like calcium channels are closely present to synaptic vesicles like glutamate and BDNF vesicles. 
This entire pre-synaptic assembly is in close proximity to the post-synaptic assembly with the help 
of cell adhesion molecules like neuroligin and neurexin located at post and pre-synaptic locations, 
respectively, for the maintenance of synapse function. At post-synaptic sites, neuroligin binds to 
the cytoplasmic scaffolding proteins like PSD-95, PSD-93, SAPAP which are enriched in post- 
synaptic densities for the maintenance of architecture of synapse. HOMER and SHANK along 
with PSD-95 serve as a link between the post-synaptic receptors like mGluR, TrkB and their 
downstream signaling components. Shanks are the post-synaptic scaffolding proteins which are 
enriched in post-synaptic densities (PSDs) and are responsible for stabilizing the PSD-95/SAPAP/
SHANK/HOMER complex. It also interacts with NMDA receptors and actin regulatory proteins, 
Cortactin. Thus, Shank and HOMER stabilize the post-synaptic density as well as receptors like 
NMDAR, AMPAR, mGluR. TrKB (tyrosine kinase receptor) triggers the RAS/RAF/MAPK path-
way and PI(3)K/AKT/mTORC1 pathway by the action of BDNF on them. These are responsible 
for the triggering of CAP-dependent translation and elongation of mRNA. Mutations in the genes 
coding for these synaptic components like cell adhesion molecules such as (Neuroligin, Neurexin, 
Cadherins, Contactins, NrCAM), cytoskeletal and scaffolding proteins like Shank, HOMER, PSD- 
95, ion-channels like calcium channel, sodium channel, and potassium channel, and the down-
stream and upstream signaling components of mTOR pathway like (mutations in PTEN, NF-1, 
TSC1/2, eIF4E, and 4E-BP) will lead to improper protein-protein interactions resulting in abnor-
mal synaptic activity, loss of neuronal function precipitating ASD phenotype [39, 40]
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Fig. 2 Illustrates the various sites at the synapse which are involved in the genetic mutation of the 
genes coding for various synaptic proteins regulating synaptogenesis and synaptic transmission. 
Star marked indicates genes which are mutated. There are varieties of synaptic proteins which have 
been linked with ASD. This figure is a depiction of an assembly of various pre- as well as post- 
synaptic proteins present at the glutamatergic or GABAergic synapses. These synapses consist of 
both pre-synaptic and post-synaptic elements that work in partnership to maintain synaptic func-
tionality and plasticity. Any disruption occurring in this synaptic assembly will result in neurodevel-
opmental disorder like ASD. This glutamatergic synapse is composed of various components such 
as neurexin, neuroligin, cadherins, and NrCAM, scaffolding proteins (such as PSD-95 and SHANK),
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NLGNs consist of an extracellular domain which bears homology to acetylcho-
linesterases. But NLGNs lack esterase activity due to lack of critical residues in 
their active site. Neuroligins are present in humans, drosophila, C. elegans, and 
mice [45–48]. NLGN genes involved in humans include NLGN1, NLGN2, NLGN3, 
NLGN4X, and NLGN4Y [46, 49]. Neuroligin 1 is present at the glutamatergic syn-
apses. Neuroligin 2 is present at the GABAergic and other inhibitory synapses [43]. 
Neuroligin 3 is expressed in CNS neurons in the excitatory and inhibitory synapses 
as well as in the glial cells in rats and mice. Neuroligin 4 is present at the postsyn-
aptic site of glycinergic neurons [41, 42, 46, 50, 51]. Genes encoding NLGN3 and 
NLGN4 are present in humans on the X-chromosome. Humans also have a NLGN 
gene on Y chromosome complementary to NLGN4 gene which is referred to as 
NLGN4Y or NLGN5 gene [52]. The neurodevelopmental stage requires appropri-
ate balance of excitatory and inhibitory (E/I) inputs known as the E/I ratio. This 
imbalance of the E/I ratio is responsible for the pathogenesis of ASD [53].

Experimental studies clearly indicate the involvement of NLGNs in synapse 
maturation, maintenance, and function [9, 42, 54, 55]. Neuroligin dysfunction 
occurs in ASD as a result of mutation in the genes coding for NLGN [31, 56]. These 
mutations can be point mutations, frameshift mutations, missense, or deletions and 
can lead to impaired synaptic cell adhesion molecules [57]. In humans, mutations of 
NLGN3 or NLGN4X gene can occur. These genes are present on the X-chromosome 
and autism occurring as a result of mutation in these genes has been referred to as 
X-linked autism [58]. Various studies conducted on knockout mice, Drosophila, and 
C. elegans gave clear indications of the involvement of NLGN3 and NLGN4 muta-
tion in ASD.  It has been observed that when mutated NLGN3 gene R451C was 
inserted in mice, it showed impairment in social interaction, enhancement of synap-
tic transmission across inhibitory synapses and spatial learning disabilities [58–60]. 
This mutation caused the mutant protein to be retained in the endoplasmic reticulum 
and thus its binding to neurexin was reduced. Similarly, NLGN3 and NLGN4 
knockout mice showed behavioral alterations and vocalizations similar to those 
observed in ASD patients [9, 61]. NLGN1 and 2 also result in the reduction of 
inhibitory synapse transmission.

b. Neurexins: These are pre-synaptic cell adhesion molecules that help glue neu-
rons together. Their extracellular domain interacts with neuroligins. They are 
encoded by three genes, i.e., Nrxn1, Nrxn2, and Nrxn3  in humans [62]. Each 
neurexin gene is regulated by α and β promoters resulting in α-Nrxn1-3 and 
β-Nrxn1-3 [63]. Intracellular domains are identical for α and β neurexins but have 
different extracellular domains. β-Neurexins act as receptors for neuroligin. 
C-terminus of the short intracellular section of both types of neurexins binds to 
synaptotagmins and PDZ domains CASK and MINT [PDZ is an acronym combin-
ing the first letters of three proteins—post-synaptic density protein (PSD95), 
Drosophila disc large tumor suppressor (Dlg1), and zonula occludens-1 protein 
(zo-1)]. These interactions are responsible for forming connections between intra-
cellular synaptic vesicles and fusion proteins [64]. Nrxns are required for synaptic 
maintenance and functions and these interact with neuroligins to form a synapse 
between two neurons [65]. De-novo copy number variations occurring in Nrxn1 are 
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also one of the plausible reasons for ASD phenotype [31, 66]. There have been sev-
eral experimental studies describing phenotypes resulting from knocking out these 
genes. Some of these studies such as Dachtler et al. [67] have reported that as a 
result of mutation in NRXN2 gene, (Nrxn2α) protein is deficient and knockout 
experiments in mice have shown the development of core symptoms of autism like 
deficits in social interaction, social novelty preferences and social preference over 
novel object. These mice also showed anxiety-like and pervasive behavior as indi-
cated by their experiments on elevated plus-maze and open-field tests. They also 
showed less tendency to explore novel objects. As the Nrxn2α protein is necessary 
for synaptogenesis, it affected the pre-synaptic vesicle release, as indicated by the 
results showing a decrease in protein expression in excitatory and inhibitory trans-
mission across synapse. Rabaneda et  al. [68] have reported in Cell Reports that 
transgenic mice, which they produced by causing mutation in neurexin-1β gene, 
resulted in phenotype similar to that of autism patients, as indicated by various spe-
cific behavioral tests like tests for sociability, repetitive self-grooming and olfactory 
habituation–dishabituation. These mice also showed alteration in transmission 
across the glutamatergic synapse, indicating the important role of neurexin in syn-
aptogenesis and showing how impairment of circuits was responsible for the devel-
opment of autistic phenotype. Etherton et al. [69] have also indicated that knock out 
of Neurexin-1α gene resulted in significant reduction of the frequency of occurrence 
of miniature excitatory post-synaptic currents (mEPSCs) in mice. These mice also 
showed significant behavioral alterations specific to the autistic phenotype like 
repetitive self-grooming, pervasive behavior and decrease in prepulse inhibition. 
Wang et al. [70] have indicated through their study in Chinese population that vari-
ants of neurexin gene family are linked to ASD. Thus, neurexins are involved in 
synaptogenesis and synaptic transmission, and any mutation in the genes encoding 
neurexins could lead to the development of autistic phenotype.

c. Contactins: Contactins (CNTN) are proteins which belong to the super family 
of immunoglobulin (Ig) which are widely and exclusively expressed in the 
CNS. They do not have transmembrane or an intracellular domain but are attached 
to the cell membrane with the help of a glycophosphatidylinositol (GPI)-anchor 
[71]. They are involved in synaptogenesis, plasticity and myelination [10, 72]. 
There is no report in the literature about the role of CNTN1 and CNTN2  in 
ASD. There are reports, e.g., [73] about the deletion in the gene CNTN3. Human 
BIG-2/contactin-4 and contactin-3 gene present at loci 3p25-p26 are involved in 
ASD. Mutations in CNTN4 and CNTN3 genes alter the formation and function of 
synapse [74, 75]. There are reports about the occurrence of mutations in genes 
CNTN4, CNTN5, and CNTN6 and the involvement of CNTN4 in ASD [31, 76, 77]. 
Mutations concerning CNTN4 are either a result of removal of the distal end of one 
of the arms of chromosome 3 or are a result of copy number variations (CNVs) of 
the gene, as reported by Pinto et al. [78] using results of patient data of the Autism 
Genome Project. Results from the Utrecht patient cohort study have also revealed 
the occurrence of de-novo CNVs and gene deletions in CNTN5 as well as CNTN6 
genes [78, 79].
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d. Neuronal cell adhesion molecule: NrCAM is a protein encoded by the NrCAM 
gene which is important for cellular interactions occurring during the development 
of the brain and is known to be expressed in the cerebral cortex, striatum, hippocam-
pus, and cerebellum in rodents [80–82]. It is capable of interacting with Contactin-1, 
Contactin-2, and Neurofascin. Patients with mutations like deletions in the gene 
located on chromosome 7q which encode for NrCAM or having SNPs are presented 
with autism [83, 84] and show obsessive-compulsive behavior [85]. There have 
been studies on mice which are deficient in NrCAM. Such mice have shown reduc-
tion in the size of cerebellum [86] as well as anxiety like behavior [87]. NrCAM-
null mice have been used by Moy et al. [88] to study the role of these neuronal cell 
adhesion molecules in the pathogenesis of autism. They observed that the loss of 
NrCAM resulted in the lack of sociability, reversal learning and sensorimotor gating 
deficit in male mice while female mice, in addition to the above, showed anxiety, 
motor in-coordination and deficit in acquisition task of the Morris water maze. 
Another study by Mohan et al. [89] has indicated the involvement of the neuronal 
cell adhesion molecule in regulating density of dendritic spines of pyramidal neu-
rons in the medial and visual frontal cortex. These results provide strong indication 
that these neuronal cell adhesion molecules have a role in autism. NrCAM has been 
also linked to the disruption of visual acuity in autism spectrum disorders (ASDs) 
as its deletion has been known to alter the thalamocortical connections to the visual 
cortex [90].

e. Cadherins: Cadherins (CDH) are Ca2+ dependent glycosylated transmembrane 
proteins which are involved in the cell adhesion [91]. These are required for the 
proper synapse function and formation [92]. CDHs are involved in the intracellular 
signaling pathways [93, 94] and are associated with various neuropsychiatric disor-
ders [94, 95]. Cadherin dysfunction has been associated with ASD [96]. The genes 
involved in ASD belong to the classes of both classic cadherins as well protocadher-
ins [97]. The genes belonging to the class of classic cadherins associated with ASD 
are CDH15 [98], CDH5 [99], CDH8, CDH9, and CDH10 [100, 101] which are 
present on chromosome 5; also CDH13, which is present at 16q23 loci, is involved 
in the pathogenesis of ASD because of the deletion of the gene occurring at this loci 
[32, 102]. The genes encoding protocadherins, which are involved with ASD as well 
as some of its associated symptoms such as epilepsy, are PCDH10 [73], PCDH19 
[103, 104], and PCDHb [99]. They have been identified after several gene mapping 
and linkage studies in cohorts. Thus, this class of cell adhesion molecules (CAMs) 
are involved in the pathogenesis of autism.

Having provided an overview of the mutations in the genes encoding for cell 
adhesion molecules, we will now describe, in brief, the mutations involving voltage 
gated sodium, potassium, and calcium channels. These present post- and pre- 
synaptically, respectively, and are responsible for the conduction of action potential.

Ion Channels Associated with the Development of ASD Phenotype: Ion-channels 
are the transmembrane proteins essential for regulation and maintenance of  neuronal 
excitation by conduction of action potentials. The three major ion-channels associ-
ated with the development of ASD phenotypes are sodium channel type 1 (Nav1.1), 
voltage-dependent L-type Ca2+ channel (Cav1.2), and potassium channels (Kir4.1 
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and BKCa2+). The genes associated with these channels are SCN1A (Nav1.1), 
CACNA1C (Cav1.2), KCNMA1 (BKCa2+), and KCNJ10 (Kir4.1) [9, 105, 106]. A 
brief description of their association with ASDs is given below:

a. Sodium channel: Studies have identified the presence of SCN1A haplosuffi-
ciency to be responsible for the development of autism [107]. Mutation in SCN1A 
gene results in haplosufficiency resulting in altered Na+ channel activity, impaired 
GABA signaling, concurrent occurrence of Dravet syndrome (myoclonic epilepsy 
in infants) and behavioral abnormalities associated with ASD like impaired social 
interaction, ADHD, and cognitive deficits [108, 109]. SCN2A gene is also strongly 
associated with ASD and encodes for Nav1.2 sodium channel. This sodium channel 
is expressed at the site in neurons where the action potential is initiated and at the 
nodes of Ranvier during the early developmental stage. Ben-Shalom et  al. [110] 
have characterized the effect of 11 de-novo mutations in SCN2A gene occurring in 
ASD patients through exome sequencing. They have indicated that SCN2A gene 
mutations such as nonsense, missense, and frameshift mutations (11 de-novo muta-
tions) result in inhibition of the function of Nav1.2 sodium channel. Mutations in the 
SCN2A gene in the cortical pyramidal excitatory neurons result in deficit of neuro-
nal excitability in the early stage of development of the human brain. Sanders et al. 
[111] have also indicated two de-novo loss-of-function (LoF) variants in SCN2A 
gene among 200 ASD families from the Simons Simplex Collection. De Rubeis 
et al. [112] used exome sequencing analysis to show rare coding variation in 3871 
patients suffering from ASD and 9937 ancestry-matched or paternal controls from 
the Autism Sequencing Consortium (ASC) and have indicated that SCN2A gene 
had a 99% chance of being a true autism gene.

b. L-Type voltage gated Ca2+ channels are responsible for intracellular signaling 
and the activation of various transcription factors. CACNA1C and CACNA2D4 are 
two genes coding for this channel. CACNA1C codes for the alpha-1 subunit of volt-
age gated Ca2+ channel and CACNA2D4 is a member of the alpha-2/delta subunit. 
Mutations in the genes coding for these channels result in neurological complica-
tions, developmental deficits, and autism [113, 114]. Copy number variations 
(CNVs) of CACNA1C and CACNA2D4 result in 2p:12p chromosomal transloca-
tion resulting in the deletion of 12p. This leads to the removal of one copy of 
CACNA1C and CACNA2D4 genes as indicated by FISH analysis. CNVs for these 
genes occur in the 12pter-p25.2 region of the chromosome and involves 27 genes 
causing ASD like phenotype in such patients [115]. The G406R codon is affected by 
mutation of CACNA1C resulting in Timothy syndrome associated with autism 
[116]. There are other genes which code for this channel and have been implicated 
in ASD like CACNB2, CACNA1H, CACNA1G. Missense mutations in CACNB2 
have been identified in families affected by ASD causing calcium channel dysfunc-
tion [117]. Some of the other mutations are associated with gene CACNA1H and 
CACNA1G.  Splawski et  al. [118] have reported that mutant allele of gene 
CACNA1H is present in patients affected by ASD. On the other hand, the CACNA1G 
gene contains single nucleotide polymorphisms (SNPs) at the locus 17q11-q21, a 
susceptible region for ASD [119].
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c. Kir4.1 and BKCa2+: Potassium channels Kir4.1 and BKCa2+ are found in neu-
rons and astrocytes. Mutations in these channels are involved in pathogenesis of 
ASD.  Kir4.1 is the inward rectifier potassium channel extensively found in the 
brain, encoded by the gene KCNJ10 present on chromosome 1q22 and its missense 
mutation results in the upregulation of Kir4.1. It has been found in locus coeruleus 
neurons of MECP knockout mice and is involved in pathogenesis of Rett syndrome 
with concurrent occurrence of autism and epilepsy. Mutations of KCNJ10 gene 
occur in the regions of pR18Q and pV84M and are responsible for the replacement 
of amino acid residues [120]. Another potassium channel associated with ASD is 
BKCa2+ encoded by gene KCNMA1. Mutations in both these genes result in the 
development of poor social interaction, intellectual disability, haploinsufficiency, 
and other phenotypic characteristics associated with ASD due to excessive ion- 
channel activity as these channels play an important role in the regulation of neuro-
nal function and synaptic plasticity [105, 121].

Mutations such as copy number variations (CNVs) or single nucleotide polymor-
phisms (SNPs) can occur in the genes encoding for scaffolding proteins and are 
responsible for the development of autistic phenotype. These have been dis-
cussed below.

Scaffolding Proteins in the Pathology of ASD: Scaffolding proteins are post- 
synaptic proteins like SHANK. These create a link between the post-synaptic recep-
tors and the downstream components of signaling pathways along with the regulation 
of actin cytoskeleton [122]. There are varieties of scaffolding proteins which are 
involved in the regulation of various signal transduction pathways like KSR in RAS/
MAPK pathway, HOMER (calcium signaling), BCl-10 (MAPK pathway), and 
SHANKs (Fig. 2).

Shanks are a family of scaffolding proteins which are a major component of PSD 
(post-synaptic density) of all excitatory glutamatergic synapses in the brain [123]. 
Shanks have three genes encoding for their proteins, i.e., SHANK1, SHANK2, and 
SHANK3. These are expressed at the brain and the products of these genes are 
found at the synapse [124]. Shank proteins are rich in PSDs and they interact with 
other proteins like PSD-95, HOMER, and SAPAP via proline rich regions, PDZ 
domain, ankyrin repeats, SH3 domains and alpha motif domains forming PSD-95/
SAPAP/SHANK/HOMER complex [123]. Shanks also interacts with NMDA and 
metabotropic glutamate receptors (mGluRs) forming and stabilizing NMDA/
PSD-95/GKAP complex besides its interaction with Cortactin [124]. Shank pro-
teins are responsible for shaping the morphology of dendritic spines using 
HOMER. The role played by mutant SHANK genes in the pathology of ASD is 
described below:

(a) SHANK1: It was first reported by Hung et al. [125] that SHANK1 has a role 
in the development of the ASD phenotype. It was observed that SHANK1 mutations 
resulted in reduced spine density and smaller and thinner PSD by targeting exons 
14-15/PDZ in mutant mice. It was also observed that AMPA receptor-mediated 
transmission was reduced. SHANK1 mutation resulted in reduced social sniffing, 
reduction in reciprocal social interaction, increased repetitive behavior, reduction in 
scent-marking behavior and enhanced special learning and memory task and aber-
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rations in cognitive function and alteration in expression of BDNF in hippocampus 
[40, 125–127].

(b) SHANK2: SHANK2 gene mutations resulted in reduction in NMDA receptor 
function and basal synaptic transmission. Mutations in SHANK2 gene also resulted 
in reduction in spine density and social behavior, reduction in ultrasonic vocaliza-
tion, increased anxiety-like behavior, impaired nesting behavior, reduction in spatial 
learning/memory and occurrence of repetitive behavior, hyperactivity and enhanced 
motivation leading to dysfunction of striatal neurons in mutant mice [40, 128, 129].

(c) SHANK3: Mutations of SHANK3 were the first to be described and are con-
sidered to be the best-characterized SHANK mutation in humans for ASD [40, 124, 
130, 131]. De-novo point mutations occurring in SHANK3 gene are of the type, 
missense, frameshift, deletion, and splice site mutations. They are involved in syn-
aptogenesis and synaptic plasticity. The SHANK3 gene is also involved in 22q13.3 
deletion syndrome along with other genes and is responsible for the development of 
autism-like behavior in this syndrome [132]. Several studies conducted on SHANK3 
mutant mice targeting several exons like exons 4-9, 4-7, 13-16, and 11 indicated 
reduction in synaptic protein like GKAP, GluA1, GluN2A, SAPAP3, HOMER1, 
PSD-93, and increase in GluN2B. It has been observed that spine volume, thickness 
of PSD and dendritic spines are reduced [133, 134]. Synaptic physiology indicated 
a reduction in synaptic transmissions and long-term potentiation (LTP) [135–137]. 
Social behaviors in knockout mice indicated reduced interest in social sniffing, 
impairment of social interaction, reduced interest in novel mice, repetitive behavior, 
reduced ultrasonic vocalizations (USVs) and impairment of acquisition, reversal 
and novel object recognition [40]. Duplications have also been observed in SHANK3 
resulting in hyperactivity suggesting that SHANK3 is also responsible for mainte-
nance of excitatory and inhibitory balance in neurons [138].

The pathogenetic mechanisms of ASD also involve mutations in the genes cod-
ing for the downstream or upstream components of the signaling cascades such as 
mTOR pathway or the RAS pathway. We will now discuss the various components 
of these signaling cascades, mutation of which can lead to the development of autis-
tic phenotype.

2.1.3  Signaling Pathways mTOR, PI3K/AKT, and RAS/MAPK

Genes coding GTPase-activating proteins (GAPs), guanosine exchange factors 
(GEFs), and tuberous sclerosis (TSC1/TSC2) are responsible for the structural and 
functional regulation of actin filaments. Alteration in the structure and function of 
the cytoskeleton, specifically microtubules and actin filaments, is a hall-mark of 
autism. Mutation in TSC1 or TSC2 results in the alteration of the structure of micro-
tubules, actin filaments and dendritic spine structure (Fig. 3). KATNAL2 is another 
microtubule-associated protein that is considered to play an important role in the 
development of ASD [9, 140].

A description of the abnormalities in the components of the mTOR/PI3K/AKT/
RAS/MAPK pathways and their role in ASD has been detailed below:
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Fig. 3 Pathogenesis of mTOR signaling in autism spectrum disorders [139]: Akt, also known as 
PKB, protein kinase B; ASD: autism spectrum disorder; 4E-BP2, eIF4E-binding protein2; E/I: 
excitation/inhibition; ERK: extracellular signal regulated kinase; FMRP: fragile X mental retarda-
tion protein; CYFIP1: FMRP interacting protein1; MEK: mitogen-activated protein/ERK kinase; 
MnK: transcription factor activated by ERK/MAPK; mGluR: metabotropic glutamate receptor; 
mTOR: mammalian target of rapamycin ; mTORC1: mTORcomplex1; NF1: neurofibromatosis1; 
NLGN: neuroligin; NMDAR: NMDA receptor; PDK: phosphoinositide dependent kinase; PI3K: 
phosphoinositide-3kinase; PTEN: Phosphatase and tensin homolog; Raptor: regulatory associated 
protein of mTOR; LST8: mammalian lethal with SEC13 protein 8 Rheb: Ras homologen enriched 
in brain; TRKB: receptor tyrosine kinase; S6K1: p70 ribosomal S6 kinase1: TSC1/2: tuberous 
sclerosis complex 1 and 2. Star marked indicates genes which are mutated
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The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase 
which plays an important role in synaptogenesis as many components of signaling 
cascade are present at the synapse [37, 141–143]. The normal physiological role of 
mTOR signaling cascade is that it gets inputs from different receptors such as 
NMDAR, AMPA-R, mGluR, and tyrosine receptor kinase B (TRKB) which are 
necessary for the maintenance of synaptic plasticity [144–148]. Various ligands of 
these receptors trigger two major signaling cascades like RAS-MAPK pathway and 
PI(3)K pathway, both of which converge to regulate the activity of mTORC1 com-
plex consisting of a catalytic subunit mTOR, a regulatory associated protein of 
mTOR (Raptor), mammalian lethal with SEC13 protein 8 (LST8) which is an 
mTOR complex subunit and some non-core components [141, 149–151]. The 
downstream signaling cascade of mTOR performs phosphorylation of 4E-BP and 
p70S6 kinases by mTOR. The disassociation of 4E-BP, which are initiation factor 
binding proteins, from the initiation factor, i.e., eIF4E, results in CAP-dependent 
translation and mRNA elongation [152, 153].

PI3K converts PIP2 to PIP3, for which phosphatase and tensin homolog (PTEN) 
are the negative regulators [154]. PDK1 activates AKT or protein kinase B which 
inhibits TSC1/2, an mTOR protein synthesis regulator. TSC1/2 is a GTPase activat-
ing protein for GTPase Rheb and is responsible for the conversion of Rheb-GTP to 
inactive Rheb-GDP for the regulation of protein synthesis during extreme condi-
tions like oxidative stress and DNA damage. Rheb-GTP activates mTOR to induce 
mRNA translation [155].

MAPK/ERK also have an inhibitory role on TSC1/2. The RAS/MAPK cascade 
is a protein kinase activated by RAS. RAS activates RAF which further phosphory-
lates MEK and MAPK [139]. MAPK is also known by the name of extracellular 
signal regulated kinases (ERK) and it phosphorylates MNK which is a transcription 
factor. It also phosphorylates CREB, responsible for phosphorylation of eIF4E 
[139]. MAPK is responsible for phosphorylation of 40S ribosomal protein S6 kinase 
(S6K1) which phosphorylates ribosomal protein S6 [139, 156].

Abnormalities in the PI3K/AKT/mTOR pathway or the RAS pathway lead to 
aberrant synaptic protein synthesis and the development of autism [38, 157–159]. 
Approximately 8–10% of the cases of ASD are due to a faulty mTOR signaling 
pathway [37, 160]. In ASD, these downstream and upstream signaling cascades are 
affected by various gene mutations. Mutations in the genes coding for proteins 
which are negative regulators of mTORC1 activated by PI3K pathway are TSC1/
TSC2, NF1, PTEN. It leads to the development of syndromic ASD [37, 160–163]. 
Phosphatase and the tensin homolog (PTEN) gene are present on chromosome 10 
and have a significant role in brain development [154, 155]. The rate of ASD occur-
rence in patients who suffer from PTEN gene mutation is 1–17% [164], while 1–2% 
of ASD cases are a result of mutations in the gene coding for PTEN and TSC1/
TSC2 [164, 165]. PTEN gene mutation results in the overgrowth of synapse and has 
been associated with the development of macrocephaly, social behavioral deficits, 
anxiety, and learning deficits [166, 167]. TSC1 or TSC2 gene mutations result in 
tuberous sclerosis complex (TSC) and the rate of prevalence of autism is 25–50% 
[168–170]. These precipitate hypertrophy of the synapse resulting in macrocephaly, 
seizures, and learning deficits [171–173].

Neuropsychopathology of Autism Spectrum Disorder: Complex Interplay of Genetic…



112

mTORC1, a principle regulator of downstream translation, promotes translation 
of mRNA by the recognition of initiation factor eIF4E. This 4E-BPs (eIF4E-binding 
protein 2) is the initiation factor-binding protein which inhibits the initiation of 
translation. It is the phosphorylation of binding proteins by mTORC1 which pro-
motes eIF4E release and initiates mRNA translation [37, 142, 174, 175]. If a single 
nucleotide polymorphism (SNP) occurs in the promoter region of the initiation fac-
tor, i.e., eIF4E, it enhances the promoter activity of eIF4E resulting in the increased 
translation of neuroligins and disruption of excitatory/inhibitory balance leading to 
the development of ASD phenotype [176–179]. The protein 4E-BP2 also competes 
with eIF4G for eIF4E binding and inhibits translation. Its removal can also lead to 
enhanced CAP dependent translation [158, 159].

It was also observed by Gkogkas et al. [158] in their study on Eif4ebp2 knockout 
mice that if the gene which codes for 4E-BP2 is deleted, it leads to the development 
of the autistic phenotype. This occurs as a result of increased translation of NLGNs 
due to over expression of eIF4E leading to altered synaptic excitation/inhibition 
ratio resulting in ASD. The treatment of these mice with eIF4E inhibitor resulted in 
reduction in the levels of NLGNs.

Mutations in the FMR1 gene led to the lack of production of fragile X mental 
retardation protein (FMRP) in turn leading to fragile X syndrome. This could be a 
result of hyperactivity of mTORC1–eIF4E pathway [161, 180–182] suggesting that 
downstream mTOR signaling might be one of the probable mechanisms in 
ASD.  Approximately, 2–8% of the cases of autism are a result of fragile X 
Syndrome [183]. FMR1 gene contains CGG trinucleotide repeats which are sub-
jected to mutations resulting in abnormal repeats ranging from 200 to 1000 times. 
This causes gene silencing and loss of FMRP protein [184]. CYFIP1 is a cytoplas-
mic and functional protein that works in partnership with FMRP. CYFIP1 is also 
known as the FMRP interacting protein 1. FMRP directly binds to CYFIP1, prohib-
iting eIF4E- dependent initiation and hence, affecting translation [185]. FMRP con-
trols translation of target mRNAs at synapses and is responsible for impaired 
synaptic plasticity. Along with FMRP, this causes repression of protein synthesis in 
neurons. When TRKB receptors or mGluRs are activated, CYFIP1 is released from 
eIF4E and the translation begins. Thus, CYFIP1 inhibits local protein synthesis and 
favors actin remodeling [185, 186]. CYFIP1 is located at loci chr15q11.2, which is 
considered a hot spot for ASD. Any deletions or duplications in this region result in 
ASD [187]. The connection between FMRP, mTOR, and translation either involves 
CYFIP1 or S6K, which is an important substrate of this cascade, and can phos-
phorylate and regulate the mRNA binding activity of FMRP [188]. Animal studies 
have also indicated dysregulation of mTOR signaling in Fmr1 KO [189, 190] sug-
gesting that genetic changes in both downstream and upstream signaling cascades 
might be one of the probable reasons for the development of the ASD phenotype 
(Fig. 3).

In the next section, epigenetic modifications of genes involved in ASD will be 
discussed.
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2.2  Epigenetic Modifications of Genes Involved in ASD

Epigenetic modifications share a deep relationship with ASD [191, 192]. Several 
genes involved in autism spectrum disorders undergo epigenetic modifications 
under environmental and other pathogenic influences, i.e., DNA methylation or 
post-translational modifications of histones [191, 193–195].

2.2.1  Environment and Epigenetics

Epigenetic modifications are deeply influenced by the environment in which the 
gene is present. Thus, epigenetics refers to the link between the susceptible genes 
and the environmental influences [192, 196]. Positive correlation has been estab-
lished between the development of autism and pre-natal as well as post-natal expo-
sure to air emissions like nitrogen dioxide, particulate matters, heavy metals like 
lead, nickel, arsenic, chromium, cobalt, cadmium, benzene, radiation, peroxisome 
proliferators, and tobacco smoke which lead to epigenetic modifications [197]. Pre- 
natal exposure to sodium valproate and other anti-epileptic medications and bisphe-
nol A [198, 199] affect genes of various receptors such as oxytocin, estrogen, and 
vasopressin by causing epigenetic regulation of these genes resulting in the devel-
opment of ASD phenotype [200–203]. There are other chemicals like PBDEs (poly-
brominated diphenyl ethers), exposure to which affects brain-derived neurotropic 
factor (BDNF), calcium-calmodulin kinase II (CAMKII), and GAP-43 (growth 
associated protein 43) which are essential for the function and survival of neurons 
and efficient synapse formation [204]. Such epigenetic modifications result in the 
development of ASD by altering the levels of serotonin, axon-thinning, and immune 
activation. Epigenetic modifications also occur as a result of post-natal exposure to 
valproic acid, estradiol, and citalopram [32]. Even maternal vitamin D deficiency 
during gestation is associated with an increased risk of development of ASD in 
children [205, 206]. It has been found that mothers having mid-gestational defi-
ciency of vitamin D had more than a two-fold increase in the risk of developing 
ASD [207]. Histone modifications occurring via enzymes like histone acetyltrans-
ferases and deacetylases of the VDR (vitamin D receptor) have also been reported 
in the pathogenesis of ASD [205, 206, 208–210].

Epigenetic modifications such as DNA methylation or histone modifications can 
take place in the genes responsible for regulation of synaptic plasticity and trans-
mission. These can either code for cell adhesion molecules, ion-channels, scaffold-
ing proteins or are involved in signaling pathways.

2.2.2  DNA Methylation

Epigenetic modifications of genes such as methylation of DNA take place at several 
loci on the chromosomes. These epigenetic changes can potentially play a signifi-
cant role in the development of ASD [191]. Several genes of interest are as follows: 
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OXTR, AFF2, NLGN3, NRXN1, SHANK3, AUTS2, SLC6A4, GABRB3, BCL2, 
Ubiquitin protein ligase E3A, and Reelin [195, 211–213]. DNA methylation of the 
promoter region of oxytocin receptor gene leads to the inhibition of this gene 
expression by blocking transcription [214, 215]. Epigenetic changes in oxytocin 
receptor lead to the development of ASD phenotypes as oxytocin regulates various 
social behaviors [200]. The genes responsible for synaptogenesis and regulation of 
synaptic plasticity also undergo epigenetic modifications. It has been observed that 
various genes that code for cell adhesion molecules like SHANK3 and neuroligins 
(NLGN3 and NLGN4) undergo epigenetic modifications like DNA methylation. 
SHANK3 specifically undergoes epigenetic regulation. SHANK3 gene comprises 
of five CpG islands which undergo methylation [213, 216]. This DNA methylation 
at the CpG dinucleotides is essential for the proper functioning of genome. It has 
been observed that expression of SHANK3 has been epigenetically regulated by 
DNA methylation of CpG-island2, resulting in a specific expression of SHANK3 
[216]. Methylation rate of CpG-island2 peaks at two weeks after birth and the 
expression of SHANK3 changes as the synapse matures [213, 217, 218]. SHANK3 
is a scaffolding protein and is associated with neuroligin, necessary for synapse 
formation and maintenance. NLGNs, especially NLGN3 and NLGN4, also undergo 
epigenetic regulation [58, 219]. Other genes which undergo epigenetic regulation 
are Bcl-2 genes and RORA genes [220, 221]. It is the hypermethylation of particular 
CpG sites in the promoter regions of these genes that is responsible for their involve-
ment in ASD. Bcl-2 is necessary for the regulation of anti-apoptotic processes, and 
its alteration leads to the development of decreased cognitive functions. RORA 
gene, a nuclear receptor, is involved in neuronal oxidative stress [214, 221–223]. 
Nardone et al. [224] performed DNA methylation analysis in the cortical region of 
ASD individuals and found that DNA methylation and expression of gene are 
inversely correlated. Genes which are hypomethylated are overexpressed.

2.2.3  Histone Modifications

There are several kinds of post-translational modifications in histone proteins such 
as acetylation of lysine residues, ubiquitinylation, sumoylation, phosphorylation, 
and methylation which occur in the amino and carboxy tail of histone proteins 
[225]. These modifications basically occur in either lysine, arginine, serine, or pro-
line. It has been observed that the methylation of lysine residues of H3 histone 
protein (H3K4) results in altered social interaction, stereotype, and repetitive behav-
ior which are characteristic of autism phenotype [226, 227]. This histone protein is 
encoded by gene SMCX which also regulates other genes associated with this dis-
order such as genes coding for type-1 sodium channel (Nav1.1), L-Ca2+ channel 
(CACNA1H), and BDNF gene [228]. Acetylation of histone proteins of the genes 
coding for oxytocin and vasopressin has also been associated with ASD like behav-
ior, as indicated by the increase in the up-regulation of these receptors after the 
administration of histone deacetylase inhibitors [192, 229]. Sun et al. [230] studied 
effect of histone modification in brain of patients suffering from autism spectrum 
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disorders. They performed the immunoprecipitation sequencing technique of 
H3K27 chromatin protein on post-mortem brain samples of 275 ASD patients and 
compared this with control brain samples. Their results showed that acetylation of 
the histone protein is widespread in the cerebral cortex and cerebellum of ASD 
patients. James et al. [231] also indicated that trimethylation levels were reduced in 
H3K27 in the cerebellum of patients suffering from autism as compared to control 
subjects. Autism spectrum disorders are associated with changes in neurons of the 
pre-frontal cortex and these are responsible for behavioral and cognitive deficits 
occurring as part of autism. Shulha et al. [227] studied the structure of chromatin of 
pre-frontal cortex neurons of ASD patients in order to check for the presence of any 
epigenetic modifications in histone proteins which might be responsible for the 
pathogenesis. They collected 15 billion base pairs of tri-methylated H3K4 histone 
protein enriched sequences from 32 brains (16 = autistic brain and 16 = brain of 
control subjects). They observed changes in the H3K4 histone proteins indicating 
that autism results in changes in structure of chromatin.

The forthcoming section of the chapter is about environmental factors which 
bring changes at the genetic and epigenetic levels leading to the development of the 
autism phenotype and several behavioral abnormalities associated with this disorder.

2.3  Pre-natal and Post-natal Environmental Factors Affecting 
Neurodevelopment and Leading to ASD

We have discussed in a previous section about mutations in genes encoding for vari-
ous synaptic proteins regulating synaptogenesis and synaptic transmission. 
Epigenetic changes caused by various environmental factors in these genes have 
also been discussed. In this section, we will discuss various pre-natal and post-natal 
environmental risk factors and how they can affect the genes encoding for proteins 
regulating synaptogenesis and synaptic transmission. There are several environ-
mental factors which have become a major cause of concern for a neurodevelop-
mental disorder like autism. ASD is largely a genetic disorder involving multiple 
genes. But factors affecting environment also contribute to the alteration of genes 
associated with ASD. Environmental risk factors responsible for the development of 
ASD can be divided into pre-natal and post-natal risk factors (Fig.  4). Pre-natal 
exposure of the developing fetus to these environmental risk factors leads to ham-
pered neurodevelopment, becoming one of the major causes of ASD in chil-
dren [232].

In utero exposure of fetus to pre-natal infections like influenza, rubella, and 
CMV put the new-born at a risk for developing ASD. Exposure of the mother to 
these infections during pregnancy affects the immune system of fetus as placenta is 
the most important stem cell source for the fetus [233]. Altered immune system of 
fetus, circulating cytokines, and HLA antigens have been linked to the develop-
ment of autism in the developing fetus [234]. The likelihood of pre-natal infection 
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being a risk factor for autism depends on the maternal immune system and that of 
the fetus. The plausible reason for this is placental barrier between mother and 
fetus which acts as a source of hematopoietic stem cells and might be responsible 
for deregulation of immune system of fetus [233, 235]. Deficiencies of Zn2+, vita-
min D, and abnormal levels of melatonin in the mother have also been linked to 
autism. Deficiency of various metal ions during pregnancy can lead to cognitive 
diseases and neurological deficits in the fetus as these are essential for the proper 
functioning of the brain. Zn2+ deficiency affects maturation of neurons. Enzymes 
requiring Zn2+ as a co-factor are impaired, and this can lead to impairment of learn-
ing and memory as well as dysfunction of brain [236]. There are various clinical 
reports indicating Zn2+ deficiency in the autistic children. It has been found that 
excess of Cu2+ can lead to Zn2+ deficiency. Many autistic children suffer from this 
deficiency [237]. Yasuda et al. [238] reported that hair samples of autistic children 
indicated zinc deficiency in the infants up to 3 years of age. This in turn indicated 
a connection between zinc deficiency and autism. Zinc deficiency can lead to cog-
nitive  impairment, behavioral deficit as well as glutamate excitotoxicity in autistic 
children [136, 239]. Zinc deficiency has been linked to autism as it affects the PSD 
scaffold by affecting SHANK2 and SHANK3 gene, thus affecting the regulation of 
synaptogenesis. It also affects the immune system of the fetus and glutamatergic 
synapses by affecting Nrxn-Nlgn-Shank pathway [239, 240]. Apart from this, there 
are other genes which are affected by zinc deficiency such as COMMD1 (COMM 
domain- containing protein 1), ERK1 (extracellular signal-regulated kinase 1), 

Fig. 4 Various environmental risk factors that might be responsible for development of autism 
spectrum disorders by affecting various genetic hits
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TrkB (tyrosine- related kinase B), MTF1 (metal regulatory transcription factor 1), 
and metallothioneins (MTs) [99, 111, 241, 242]. Hence, zinc might act as a ful-
crum for gene-environment interactions and its deficiency in mother during gesta-
tion might act as a risk factor for autism. Melatonin, a neurohormone, is essential 
for the regulation of the biological clock and for maintenance of synaptic plasticity. 
Melatonin levels were decreased in children suffering from autism. Apart from 
this, these children also have sleep problems such as prolonged latency to onset of 
sleep, increase in the frequency of waking up during night and reduction in the 
duration of sleep [243]. Abnormalities in circadian rhythm in autism can occur as 
a result of mutations in genes coding for enzymes involved in melatonin synthesis. 
Hence, it has been observed that deletion of gene encoding for acetylserotonin 
O-methyltransferase) has been found in autistic individuals and might be the result 
of abnormalities in circadian rhythm [244]. Environmental factors such as Zn2+ 
deficiency or maternal stress can also affect synthesis of melatonin leading to mela-
tonin deficiency during pregnancy and are considered to be risk factors for the 
development of ASD [245, 246].

Maternal diabetes, prenatal stress and parental age are other risk factors in the 
pathogenesis of ASD [247]. Prenatal stress can have a detrimental effect on the 
developing fetus and increased exposure of mother to prenatal stress can increase 
the risk of developing ASD in the child [248]. The plausible mechanism behind this 
is abnormal activation of HPA axis, causing a reduction in the volume of hippocam-
pus. When the volume of the hippocampus is reduced, there is increased secretion 
of cortisol [249]. Cortisol levels are normally elevated during pregnancy, but abnor-
mal activation as a result of stressful conditions alters the development of the fetus 
leading to reduction in volume of the hippocampus and amygdala. During excessive 
stress, excessive release of corticotrophin-releasing factor (CRF) from placenta 
affects the fetus by crossing the blood–brain barrier [249]. Advanced parental age is 
another risk factor associated with the development of autism [250]. Advanced age 
of either mother or father is considered to be a risk factor, but the relative risk of 
developing autism with advanced age is more with paternal age as compared to 
maternal age. Risk of developing ASD was 5.75 times higher in child born to fathers 
who are more than 40 years of age as compared to fathers of 30 years or younger 
[251]. There are increased chances of developing de-novo mutations with advanced 
parental age especially in the case of fathers as sperm production continues through-
out lifetime and these small de novo mutations can accumulate over time in com-
parison to ova [252]. Advanced maternal age is a risk factor as there can be certain 
complications during pregnancy or as a result of maternal activation of immune 
system and development of autoimmune disorders, these risks increase with 
advanced age. Immune system activation can lead to increased release of pro- 
inflammatory cytokines and chemokines affecting the developing brain of the fetus 
[247]. Exposure of the fetus to various toxins, pollutants, pesticides and heavy met-
als, known as teratogens, can lead to the development of ASD. The exposure of 
fetus to drugs like valproic acid causes neurodevelopmental deficits like non-social 
behavior, anxiety, deficits in motor performance, repetitive and perseverative behav-
ior specific to autism. Valproic acid is used as an anticonvulsant for the treatment of 
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epilepsy and is a histone deacetylase inhibitor causing changes in epigenetic regula-
tion resulting in altered gene expression [253–256]. Valproic acid exposure has been 
found to significantly decrease expression of mRNA of Neuroligin3, in the CA1 
region of hippocampus and somatosensory cortex and dentate gyrus. Neuroligin3 is 
a cell-adhesion molecule found on the post-synaptic membrane of glutamatergic or 
GABAergic synapse and interacts with neurexins. We have described NLGN3 and 
neurexin gene mutations previously in the article [257]. Thalidomide, used as an 
anti-emetic during pregnancy, was banned because of its tendency to cause birth 
defects [258]. It has immunomodulatory action and modulates the cytokine levels 
affecting the activation of T-cell and NK cells. Hence, maternal immune stimulation 
increases the levels and expression of fetal cytokines, thus affecting microarchitec-
ture of fetus brain [259]. Prenatal exposure to organophosphate pesticides like 
chlorpyrifos, diazinon and organochlorine pesticides like endosulfan is neurotoxic 
and may lead to development of autism. Roberts et al. [260] indicated that women 
who were exposed to these organochlorine pesticides in their second trimester of 
pregnancy were several times more likely to give birth to children suffering from 
autism. The post-natal exposure to heavy metals like cadmium, nickel, mercury, and 
ethanol not only results in epigenetic modifications in DNA methylation and acety-
lation but also causes post-translational histone modifications. There is a large body 
of evidence suggesting that even pre-conceptual exposure to mercury, cadmium, 
nickel, vinyl chloride, and trichloroethylene can result in de novo point mutations as 
these are mutagenic and thus, increase the risk for development of autism. Exposure 
to these chemicals results in production of reactive oxygen species (ROS) respon-
sible for oxidative damage of DNA. These chemicals also inhibit pathways respon-
sible for repair of damaged DNA. They cause depletion of endogenous antioxidants 
such as glutathione and superoxide dismutase which normally protect cells from 
damage. Hence, DNA is damaged as a result of oxidative damage by ROS. They 
increased point mutations, and it resulted in chromosomal aberrations [261, 262]. 
Increased exposure to synthetic chemicals and fragrances that disrupt endocrine 
functions are emerging as risk factors for autism [263]. Glyphosate is a widely used 
herbicide as it is considered to be non-toxic, but it can indirectly affect human popu-
lation as it inhibits the shikimate pathway of gut-microbes. This pathway is respon-
sible for production of aromatic amino acids which are precursors for synthesis of 
neurotransmitters such as serotonin and dopamine. It kills good bacteria in the gut 
and results in overgrowth of pathogenic bacteria of the Clostridia and Bacteroides 
species responsible for leaky gut phenomenon in autistic patients. These gut bacte-
ria also produce excess amount of short-chain fatty acids such as propanoic acid 
(PPA) which can further cause biochemical, behavioral, and neurochemical 
 alterations in the autistic individuals [264, 265]. Exposure to aluminum has also 
been linked to ASD. Aluminum has been used as an adjuvant in vaccines. Mold 
et  al. [266] have found through post-mortem brain analysis of autistic brain that 
aluminum content was very high in the neurons as well as non-neuronal cells such 
as microglia and astrocytes. Microglia cells were loaded with aluminum and this 
results in their dysfunction, hence affecting synaptic pruning. Aluminum was also 
found in other cells such as meninges and grey and white matter. Thus, excess expo-
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sure to aluminum pre- or post-natally might be a risk factor for development of 
ASD. Exposure to these environmental toxins, pesticides, and chemicals not only 
results in de novo mutations by affecting various genes involved in synaptogenesis 
but also results in activation of microglia and astrocytes resulting in the release of 
pro-inflammatory cytokines. This can have a detrimental effect on the fetus during 
development as it is during gestation that neurodevelopment and immune system 
development takes place [267].

Post-natal exposure to gastrointestinal bacteria and acquired mitochondrial dys-
function also results in ASD. Propanoic acid (PPA) is present in various foods like 
cheese and is also present as preservative in processed foods. Propanoic acid (PPA) 
and other short-chain fatty acids are also produced as a result of fermentation by gut 
bacteria such as Clostridia, Bacteroides as well as Desulfovibrio and are associated 
with ASD. Short-chain fatty acids can affect gut, brain, and behavior. The gut-brain 
cross talk in ASD is emerging as a new concept in autism. There is a bidirectional 
communication between the gut and brain as the excitotoxicity, free radical genera-
tion, and neuroinflammation can alter gut microflora composition on the one hand. 
While, on the other hand, the products of these altered microbiota can also affect the 
function of brain. This is the cause of “leaky gut phenomenon” occurring in children 
with autism. As a result, they have increased gastrointestinal permeability resulting 
in the production of microbiota products such as short-chain fatty acids (SCFAs) to 
cross the blood–brain barrier and reach brain after entering into blood stream. These 
will then stimulate the immune system and worsen the symptoms of autism [268, 
269]. There have been reports that when PPA is administered by ICV to the brain, it 
results in various neurochemical changes similar to those associated with autism. It 
causes neuroinflammation, ROS production, glutathione depletion, and changes in 
acylcarnitine, resulting in acquired mitochondrial dysfunction [270–274].

2.3.1  How Environmental Factors Affect the Genetic Hits?

There is a strong interconnection and cross-talk between several environmental and 
genetic factors. We had also explained earlier in the chapter under section Genetic 
Factors in ASD that synaptogenesis and synaptic transmission might be altered as a 
result of copy number variations (CNVs) or single nucleotide polymorphisms 
(SNPs) in the genes encoding for cell adhesion molecules. Examples include 
Neuroligins, Neurexins, Contactins, NrCAM, Cadherins or ion-channels such as 
sodium channel (SCN1A/SCN2A gene), L-type voltage-gated Ca2+ channel, and 
potassium channel or scaffolding proteins of the ProSAP/Shank family and  signaling 
pathways such as mTOR-PI3K/Akt pathway or RAS/MAPK pathway. These can 
lead to changes in a number of receptors or their composition, affecting mGluR/
NMDAR/AMPAR.  Environmental risk factors affecting ASD are interconnected 
with each other. Immune system abnormalities can occur as a result of pre-natal 
stress, pre-natal viral infection, advanced parental age, environmental toxins, mela-
tonin deficiency, and Zn2+ deficiency. Zn2+ deficiency can occur as a result of mal-
nutrition or copper overload or melatonin deficiency [264]. Hence, immune system 
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deregulation and zinc deficiency may act as central environmental risk factors (other 
factors converge into them). Zinc deficiency, toxins, and parental age (discussed 
earlier) may act on genetic factors and are involved in the cross-talk between genes 
and environment. Zinc deficiency causes reduction in SHANK3 and levels of 
NMDA receptors. It affects the PSD scaffold by affecting SHANK2 and SHANK3 
gene [239, 275]. This in turn will affect synaptic transmission via Neuroligin- 
Neurexin complex and mGlu5 signaling. Valproic acid exposure has also been 
found to significantly decrease expression of mRNA of Neuroligin3, in the CA1 
region of the hippocampus and somatosensory cortex and dentate gyrus [257]. 
Exposure to various environmental toxins as well as parental age can also cause de- 
novo point mutations in the genes. Regulation of synaptic components occur via 
signaling cascades such as p38MAPK and ERK pathway. The ERK pathway is 
responsible for synaptic delivery of AMPA receptor and modifications of the den-
dritic spine. Zinc deficiency affects ERK kinases, and it is ERK2 which affects 
social behaviors [242]. Zinc deficiency also affects GPR39 signaling and alters the 
composition of glutamatergic synapses [276]. Moreover, immune system deregula-
tion results in release of pro-inflammatory cytokines, chemokines, and NO release 
leading to oxidative stress. Immune cells infiltrate the CNS activating the microglial 
cells and resulting in upregulation of pro-inflammatory cytokines such as IL-18, 
IL-6, IL-β, and TNF-α which in turn act on NMDA, AMPA, and mGlu receptors of 
excitatory glutamatergic synapses, thus modulating p38MAPK and ERK signaling 
[277, 278]. Hence, immune system dysfunction can cause alteration of NMDA 
receptor mediated synaptic plasticity and transmission. Therefore, either genetic 
mutations in the various components of excitatory synapses or immune system 
deregulation or zinc deficiency can lead to disruption of balance of excitatory and 
inhibitory pathway which is already known to be disrupted in ASD.

In the concluding section of this chapter we have discussed the complex mecha-
nisms of integration of genetic, epigenetic, and environmental factors and their sub-
sequent consequences. As a result of this integration there is glutamate excitotoxicity, 
mitochondrial dysfunction as well as activation of microglia, astrocytes, as well as 
oligodendrocytes in ASD.

3  Plausible Complex Mechanism of Integration of Genetic, 
Epigenetic, and Environmental Factors Affecting Synaptic 
Transmission and Glial Activation

There is a complicated integration of genetic, epigenetic, and environmental factors 
associated with the pathogenesis of ASD. A predisposing genetic tendency might 
amalgamate with environmental factors and the epigenetic changes brought by them 
might manifest in ASD, a complex neurodevelopmental disorder. A predisposing 
genetic tendency as a result of complex genetic syndromes and de-novo copy num-
ber variations (CNVs) might interact with various environmental factors. 
Environmental factors may precipitate epigenetic regulations like DNA methylation 
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and post-translational histone modifications, which could cause gene silencing of 
various enzymes which scavenge free-radicals. This results in elevation of reactive 
oxygen species (ROS). Environmental factors could also result in oxidative stress 
and neural toxicity by triggering glutamate toxicity and microglial activation and 
dysregulation of miRNA control. These epigenetic alterations, DNA damage, and 
gene silencing of antioxidant enzymes could result in excessive elevation of ROS 
triggering microglial activation and damage neuron-glia interactions. This aggra-
vates the existing neurobiology of ASD. Excessive production of reactive oxygen 
species might lead to the impairment of DNA methylation resulting in a positive 
feedback mechanism. Hence, patients suffering from ASD are more vulnerable to 
oxidative stress and neuronal toxicity (Fig. 5) [191, 279, 280].

We now describe various consequences of the complex integration of genetic, 
epigenetic, and environmental factors.

3.1  Glutamatergic Excitotoxicity & Mitochondrial Dysfunction

Glutamate is an excitatory neurotransmitter. Its concentration is maintained by vari-
ous uptake transporters like EAAT1, EAAT2, EAAT3, EAAT4, and EAAT5 in nor-
mal physiological conditions. Excess glutamate is converted to glutamine after its 
uptake by astrocytes or is involved in GSH synthesis. Glutamine is stored in vesicles 

Fig. 5 Diagrammatic illustration of the complex amalgamation of environment, genetics, and 
epigenetics in the development of phenotype of ASD
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after its conversion to glutamate. During glutamate excitotoxicity, the release of 
GSH is significantly enhanced. Glutamate is responsible for learning and memory 
in the region of cerebellum and hippocampus [281]. Glutamate is also involved in 
the glucose utilization pathway via GLUT-1 in the astrocytes. It has a major role in 
the GSK-3 (glycogen synthase kinase3), which is a part of β-Catenin/Wnt pathway. 
It has been noticed that GSK-3 is involved in mitochondrial dysfunction occurring 
in autistic individuals.

Mitochondrial dysfunction has been involved in ASD that leads to oxidative 
stress. Chronic mitochondrial dysfunction, associated with electron transport chain 
(ETC) complex I and III, has been found in patients suffering from ASD [282, 283]. 
Thus, pathologically glutamate signaling and mitochondrial dysfunction converge 
and lead to the development of ASD phenotype. Abnormal glutamate signaling and 
excitotoxicity occurs as a result of the disruption of neuronal transmission by vari-
ous epigenetic, genetic, and environmental factors. Excitotoxicity triggers the acti-
vation of resting microglia that releases various neuroprotective factors like BDNF, 
free radicals like ROS, NO, pro-inflammatory mediators like TNF-α, NF-kB, IL-β, 
IL-6, IL-12, and excess glutamate. All these interactions between astrocytes, neu-
rons, and glial cells are responsible for the disruption of neuronal connectivity and 
thus are implicated in the abnormal and aberrant social behavior associated 
with ASD.

Glutamate excitotoxicity discussed above leads to neuroinflammation via subse-
quent involvement of activation of microglia and release of inflammatory media-
tors. In the next subsection we discuss, in more detail, the involvement of the 
activation of microglia, astrocytes, and oligodendrocytes in the pathogenesis of ASD.

3.2  The Role of Microglial Dysfunction and Activation 
of Microglia, Astrocytes, and Oligodendrocytes in ASD

Microglial cells are the myeloid progenitor cells that have significant physiological 
functions like synaptogenesis, secretion of various neuroprotective factors like 
BDNF, TNF-α, secretion of synaptic transmission, and neurogenesis. The microg-
lial pathway has been widely implicated in ASD. Microglial activation results in the 
secretion of inflammatory mediators and cytokines like IL-6, IL-8, TNF-α, INF-ϒ, 
NF-kB, GM-CSF as a result of neuronal excitotoxicity [280, 284]. Deficient microg-
lial function has been involved in various syndromes associated with ASD and the 
behavior abnormalities occurring in ASD like repetitive behavior, stereotypy, abnor-
mal social interaction, etc. Rett syndrome involves mutations in MeCP2 gene that 
codes for methyl-CpG–binding protein 2  in microglia resulting in glutamatergic 
toxicity [279, 285].

Activated microglia also results in the activation of TLR-4 and TLR-3 receptors 
causing the production of inflammatory cytokines which have a significant impact 
on the cerebellum, white matter, and cortex of ASD patients. Cytokines affect neu-
rogenesis, synaptogenesis, and ASD-associated behavioral phenotypes. This 
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immune system abnormality is clearly observed during PET scanning of the brains 
of ASD patients where there is enlargement of lateral ventricle and increase in 
microglial cell density in grey matter. Microglial activation also results in the sig-
nificant production of ROS and proinflammatory cytokines affecting mitochondrial 
function. Thus, oxidative stress and ROS production are key features of neurodevel-
opmental disorders [280, 286]. Abnormal fatty acid metabolism, which increases 
peroxisomal-β-oxidation and CD-38 activation, has been linked to the pathogenesis 
of ASD [287]. These are responsible for affecting glutamatergic pathways and 
hence, activation of microglia cells resulting in neurodegeneration. This neuroim-
mune dysfunction in the brains of autistic patients results in neuroinflammation 
which triggers the development of various abnormalities associated with this 
disorder.

Astrocytes are star-shaped neuroglial cells accompanying neurons that are 
responsible for neurogenesis, synaptogenesis, maintenance of synaptic transmis-
sion, involvement of glutamate-glutamine and ROS generation [288–290]. As a 
result of neuroinflammation induced by pathology of autism, these astrocytes 
undergo anisomorphic and isomorphic astrogliosis resulting in the formation of 
glial scar. There are various environmental factors which cause epigenetic changes 
and have an effect on astrocytes resulting in down-regulation of GLAST, reducing 
astrocytes’ uptake of glutamate and the blockage of AMPA receptors. Due to ASD, 
there is inactivation of GSK-3. This results in the lack of the ability to synthesize 
glucose for neurons and induction of apoptosis by hippocampal neurons causing the 
release of TNF-α from astrocytes leading to down-regulation of GLAST. Other pro-
cesses which are controlled by astrocytes are their role in cholesterol metabolism by 
stabilizing OTR receptors, NAD+ metabolism, and the production of inflammatory 
cytokines. All of these abnormalities form part of ASD and result in disturbed 
neuron- glia interactions regulating synaptic plasticity [291].

Oligodendrocytes are the neuroglia cells responsible for myelination and 
mechanical and metabolic support for the axon. Pathogenesis of ASD involving 
oligodendrocytes has been observed as a result of impaired metabolism of N-acetyl 
aspartate and increased myelination in the cortex of ASD patients and NG-2 immu-
noreactivity [292–295].

4  Conclusions

ASD is a complicated diverse neurodevelopmental disease that integrates genetic, 
epigenetic, and environmental mechanisms to form a complex phenotype. Genetic 
predisposition of an individual as a result of single gene disorder, chromosomal 
aberrations and copy number variations (CNVs) disrupt the process of synaptogen-
esis and affect synaptic plasticity. There are various environmental factors which 
bring about epigenetic modifications like DNA methylation and post-translational 
histone modifications resulting in gene silencing and affected transcription. This 
complex integration results in the interplay between the immune processes and syn-
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aptic function. Immune cells play an important role in neuroinflammation. This 
entire integration causes immune system activation and starts a cascade of events 
which triggers the development of behavioral phenotype of ASD. Microglia and 
astrocytes have been found to be activated in the brains of ASD patients and play a 
significant role in synaptic pruning. Increased microglia is present in the brains of 
ASD patients [296–298]. Microglia and astrocytes have a very important role in 
synapse formation and whenever mutations occur in cell adhesion molecules of 
neurons. It clearly indicates that neurons involved in autism are prone to immune 
cell dysfunction. Microglia activation triggers the release of various inflammatory 
cytokines and chemokines like IL-6, IL-12, IL-β, TNF-α, resulting in the excess 
production of iNOS, ROS and altering synaptic plasticity and causing behavioral 
changes associated with ASD. The role of the complex interplay of the immune 
system could provide vital insight into the development of novel pharmacothera-
peutic targeting of the core symptoms of autism.
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Abstract Autism spectrum disorder (ASD) is a rapidly growing global pandemic 
that affects an estimated 1  in 59–68 children. It is a complex disease with both 
genetic and environmental etiologies. Due to the rapid increase in the incidence of 
ASD, environmental causes for ASD are gaining attention. Efforts to probe several 
environmental exposures that could contribute to causing ASD are underway. In this 
regard, this chapter is directed towards understanding prenatal exposure to key envi-
ronmental factors i.e., drugs and dietary nutrients that may act via the same molecu-
lar pathway  - epigenetics as a potential etiological factor for ASD. Epigenetic 
regulation is a molecular mechanism known to be a significant contributor to neuro-
developmental disorders. It also offers a means to explain how environmental expo-
sures can impact genetics. We discuss the impact of maternal exposures to certain 
drugs, and dietary intake, on the developing fetus during pregnancy. Maternal 
Exposure to some drugs during gestation are associated with a higher risk of ASD, 
while exposure to other dietary compounds may offer promise to rescue epigenetic 
regulatory insults related to ASD. However, more work in this important area is still 
required, nevertheless preliminary research already has important implications in 
the understanding, prevention and treatment of ASD.
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1  Introduction to NDs in General and ASD in Particular

Autism spectrum disorder (ASD) is an umbrella term used to describe an expanse 
of neurodevelopmental disorders (NDs), mainly characterized by deficits in social 
interaction and communication and repetitive patterns of behavior (see Box 1 for a 
summarized definition of ASD from the most recent edition of the American 
Psychiatric Association handbook, The Diagnostic and Statistical Manual of Mental 
Disorders (DSM-5), a globally accepted standard [1]). In this context it is important 
to note that ASD is one of several types of NDs. Symptoms found in ASD can also 
be found in other types of ND, notably in intellectual disability (ID) [2], as each is 
an umbrella term encompassing a wide spectrum of disease presentations.

Both ASD and ID are not considered single disorders, rather they are on a spec-
trum defined by a set of common criteria that are broad in nature. ASD often appears 
as a co-morbidity in children primarily diagnosed with ID and vice versa, with 
reports of up to 70% of ASD patients’ having ID [3, 4]. In addition, several other 
co-morbidities, such as; major congenital anomalies, blindness, deafness, motor 
dysfunction, cerebral palsy, and epilepsy for example, are found among patients 
with ID/ASD or both [4]. This is important as it implies that evidence for causation 
of other ND conditions and co-morbidities, when discussing prenatal exposure to 
possible ASD environmental risk factors, may also play a role in the development of 
ASD. Therefore in this chapter, while we will focus on ASD, we will not restrict 
ourselves to it alone, and consider what is known about the role of epigenetics in 
prenatal exposures to the etiology of ND in general, when necessary.

Currently, NDs are among the most commonly diagnosed conditions, globally. 
According to a parental survey, around 15% of children aged between 3 and 17 years 
were affected by NDs, in the USA alone. These include ASD, attention deficit 
hyperactivity disorder (ADHD), learning disabilities, ID, cerebral palsy, seizures, 
stuttering or stammering, moderate to profound hearing loss, blindness, and other 
developmental delays [5, 6]. A study in 2016 found that an estimated 1 in every 68 
children in the USA had ASD [7], and it is currently recognized as one of the most 
common disorders worldwide [8]. However, an update of the estimated prevalence 
of ASD among children in the USA released by the Centers for Disease Control and 
Prevention (CDC) reported a 15% increase from 2012 to 2014 (1 in 68 children in 
2012 to 1  in 59 children in 2014) [9]. Estimated ASD prevalence was at 2.47% 
among US children and adolescents in 2014–2016 (95% confidence intervals, 
2.20–2.73%) [9, 10]. Alarmingly these data do not stand alone, as ASD is currently 
recognized as being a burgeoning global pandemic [11, 12].

Therefore taken together, NDs are among the most prevalent disorders globally, 
and as they appear in childhood, they present an extreme burden of cost of care over 
lifespan, accounting for costs greater than that combined for heart disease, cancer 
and stroke [13]. This underscores the urgent need to find effective prophylactic and 
therapeutic strategies. The first step toward combating any disease condition is to 
understand what causes it. We will now provide an overview of what is known about 
causes and other risk factors for ASD below.
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Box 1 Autism Spectrum Disorder Definition as given by DMS V [1]
ASD is diagnosed when all five of the following major symptoms are present 
in a child.

 A. Persistent deficits in social communication and social interaction across 
multiple contexts.

 B. Restricted, repetitive patterns of behavior, interests, or activities, as mani-
fested by at least two of the following, currently or by history (examples 
are illustrative).

 1. Stereotyped or repetitive motor movements, use of objects, or speech 
(e.g., simple motor stereotypies, lining up toys or flipping objects, 
echolalia, idiosyncratic phrases).

 2. Insistence on sameness, inflexible adherence to routines, or ritualized 
patterns of verbal or nonverbal behavior (e.g., extreme distress at small 
changes, difficulties with transitions, rigid thinking patterns, greeting 
rituals, need to take same route or eat same food every day).

 3. Highly restricted, fixated interests that are abnormal in intensity or 
focus (e.g., strong attachment to or preoccupation with unusual objects, 
excessively circumscribed or perseverative interest).

 4. Hyper- or hypo-reactivity to sensory input or unusual interests in sen-
sory aspects of the environment (e.g., apparent indifference to pain/
temperature, adverse response to specific sounds or textures, excessive 
smelling or touching of objects, visual fascination with lights or 
movement).

 C. Symptoms must be present in the early developmental period (but may not 
fully manifest until social demands exceed limited capacities or may be 
masked by learned strategies in later stages of life).

 D. Symptoms cause clinically significant impairment in social, occupational, 
or other important areas of current functioning.

 E. These disturbances are not better explained by ID (intellectual develop-
mental disorder) or global developmental delay. ID and ASD frequently 
co-occur; to make comorbid diagnoses of ASD and ID, social communi-
cation should be below that expected for general developmental level.

Note: Individuals with a well-established DSM-IV diagnosis of autistic disor-
der, Asperger’s disorder, or pervasive developmental disorder not otherwise 
specified should be given the diagnosis of ASD. Individuals who have marked 
deficits in social communication, but whose symptoms do not otherwise meet 
criteria for autism spectrum disorder, should be evaluated for social (pragmatic) 
communication disorder.

Maternal Prenatal Exposures in Pregnancy and Autism Spectrum Disorder…
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2  ASD Etiology

ASD is considered a complex disorder; one caused by the interaction of genetics 
with the environment. Although ASD is known to be highly heritable [14, 15], only 
10–20% of patients are diagnosed with a definitive genetic cause [15]. Very low 
diagnostic yield despite comprehensive genetic screens has led to a significant 
“missing heritability” problem in ASD research.

The missing heritability conundrum has shifted attention to the environmental 
component as a likely explanation for the increased rates of ASD diagnoses. Several 
environmental risk factors have been suggested to contribute to the development of 
ASD in existing literature, including air pollution, pesticide exposure via food and 
otherwise, plastics, psychosocial and socio-economic factors that influence lifestyle 
and family, maternal obesity and metabolic conditions such as diabetes during preg-
nancy, maternal mental illness, prenatal and delivery complications and the use of 
certain supplements and medications during pregnancy [16, 17]. Importantly, the 
breadth of possible environmental risk factors, taken together with the extremely 
low percentage of ASD caused by 100% penetrant genetic factors (i.e., only a small 
fraction of ASD patients are found to have disease due to purely genetic causes, 
despite it being known to be a highly heritable disorder), emphasizes that ASD is 
truly a complex disorder. Multifactorial “causal pies” [16] comprising of more than 
one environmental and/or genetic factor that act in concert, may often be what 
causes this disorder to manifest.

It is possible that some environmental factors exert their adverse developmental 
effects via mechanisms that influence the genome, in which context a genome regu-
latory mechanism termed epigenetics is of particular interest (see Box 2 for a brief 
primer on Epigenetics). Epigenetics refers to control of the genome by external fac-
tors by a process termed epigenetic regulation. These factors are of two main types: 
(a) enzymes that catalyze epigenetic regulatory reactions, which themselves are 
encoded by genes, such as DNA methyltransferases, which add methyl groups onto 
the DNA strand, and (b) chemical moieties which are substrates (e.g., methyl 
groups, ethyl groups, etc.), that are supplied by the cellular environment. 
Physiological disturbances of either via maternal environmental exposures during 
prenatal developmental, may have the potential to contribute to ND/ASD 
development.

3  Epigenetics and ASD

The initial interest in epigenetic deregulation as a mechanism important in the 
development of ASD was fueled by the observation that several single gene disor-
ders, that include ASD in their presentation, are caused by perturbation of the genes 
that encode enzymes involved in epigenetic regulation [18–20]. The subsequent 
recognition that genes having a role in epigenetic programming are among the most 
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frequently mutated genes related to ASD [21, 22], further shone the spotlight on 
epigenetic deregulation as a possible prime etiological mechanism for ASD/
ND. Recently, epigenetic deregulation was recognized to be as significant a cause 
for ND, as the long-time lead molecular causative mechanism—defects in synapto-
genesis [23]. As genome-wide epigenome screens started becoming more afford-
able, efforts got underway to profile the epigenome (i.e., the DNA methylation 
profile, and histone modification profiles for example) in an attempt to search 
for  etiological clues, with the focus shifting to characterization of epigenomic 
changes, regardless of the underlying genetics, as causative profiles for ND in gen-
eral, and ASD in particular. Epigenetic profile alterations such as DNA methylation 
for example, have been suggested as key contributing factors for ASD development 
at the genome- [24] and gene-level [25]. Eshraghi et al. [26], provide a comprehen-
sive summary of epigenomic profile changes associated with ASD. These include 
DNA methylation changes that are associated with maternal health conditions [27], 
DNA methylation changes in the placenta of subjects with ASD [28], histone acety-
lation changes in syndromic and non-syndromic ASD cases [29], and even RNAi 
signatures associated with ASD [30].

Box 2 Epigenetics Primer
The term Epigenetics comes from the Greek word “epi” for “over/above/on 
top of,” thus, epigenetics refer to heritable traits that are not encoded in the 
DNA sequence, rather they are formed by changes to factors that sit “on top” 
of the genome and thereby regulate gene expression. Epigenetic processes 
include three main components;

 1. DNA methylation
 2. Histone modification
 3. Chromatin remodeling

Together, all three processes cause genes to be either turned on, or shut 
down, as well as control fine-tuning of gene expression via non-coding RNA 
dependent mechanisms [31]. Particularly, histone modification and chromatin 
remodeling act in concert. DNA methylation at gene promoter sites which 
often contain CpG islands, is a driver of both histone modification and chro-
matin remodeling [20]. Figure 1 below is a reproduction of Figure 1 from the 
Zahir and Brown review paper [20] of the impact of epigenetic processes on 
neurodevelopment, and shows the cross-talk between the three pro-
cesses above.

In addition a fourth component, RNAi (RNA interference) is a mecha-
nism by which non-coding RNA interacts with some epigenetic compo-
nents, or with gene transcripts directly in order to regulate genic expression, 
and is gaining prominence in regulation for neurodevelopmental and 
neuro- functional processes. It is often included as a fourth epigenetic pro-
cess; RNA interference based gene expression regulation.
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4  Environmentally Controlled Epigenetic Regulatory 
Impacts in utero and its Role in ASD

As noted previously, epigenetic regulation can be disrupted during the neurodevel-
opmental phase by an environmental stimulus either by altering the enzymes that 
lay down epigenetic marks, or by altering the substrate concentrations. In this 
regard, maternal ingestion of certain substances during pregnancy, such as drugs 
and nutritional supplements, that are suggested to induce epigenetic changes, is of 
prime importance in impacting embryonic and fetal neurodevelopment. We dis-
cuss the evidence of their influence below.

4.1  The Impact of Drugs Taken in utero on Epigenetic 
Regulation During Development

Epigenetic regulation is impacted by drugs primarily via disruption of the enzy-
matic processes involved, while nutritional supplements on the other hand, influ-
ence the concentration of substrate available (see Box 1). However, both drugs and 

Histone modification mark

DNA methylation mark

Histone modification enzymes:

DNA methylation enzymes:

chromatin
modeling factors:
SWI/SNF comples.

DNA methyltransferases (DNMT1,
DNMT3A and DNMT38)
DNA demethylases

Histone acetyl transferases (HATs)
Histone methyl transferases (HMTs)
Histone de-acetylases (HDACs)
Histone de-methylases (KDMs)

Fig. 1 Modified reproduced Figure 1 from Zahir and Brown. Ped. Research. 2011. Caption 
for the image – Interactions between DNA methylation, histone modification and chromatin 
remodeling. The DNA strand is wrapped around histone protein cores to form repeating 
nucleosomes that make up chromatin. Histone tail modifications, are attached to histone 
tails, and DNA methylation marks are attached to the DNA strand. Epigenetic regulators 
that have DNA methylation, histone modification or chromatin remodeling interact with 
each other and display cross-recruitment

Box 2 (continued)
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supplements have been identified and used traditionally, based not on the mecha-
nism of action, but on observed clinical or health outcomes. This is no longer the 
case, especially with respect to drugs. In the past few decades as synthetic drug 
development, fueled by the large and powerful pharmaceutical industry (so called 
“big pharma”), has grown to dominate drug provision world-wide, the focus has 
shifted to mechanism of drug action. This is primarily due to big pharma-led large 
scale efforts to develop advanced targeted synthetic therapeutics [32, 33]. During 
the process of synthetic drug development, the mechanism of action of traditionally 
prescribed drugs was studied and many well-known drugs were found to act via an 
epigenetic mechanism. This, in turn, fueled interest in a new wave of “epigenetic 
drugs” [32, 33]. In Table  1, we present an overview of well-known classes and 
examples for drugs that have been shown to act via epigenetic mechanisms.

As epigenetic deregulation has been highly implicated in the development of 
ND/ASD, it could be hypothesized that maternal intake of drugs that act via epi-
genetic mechanisms during pregnancy may be associated with adverse neurode-
velopmental outcomes. While information is presently scarce due to the novelty of 
the field, some examples of maternal drug treatments during pregnancy that are 
associated with ASD have been suggested in the literature and are discussed below. 
However, we note that with the exception of valproate, there is very limited infor-
mation on the role of possible epigenetic mechanisms that could be induced by the 
drugs discusse below and their association with ASD.

Table 1 Compounds and drugs that act via epigenetic mechanisms

Epigenetic mechanism involved Example compounds/drugs

DNA methyltransferase (DNMT) inhibitors
Reviewed by Yang et al. [34], Gnyszka et al. [35], 
and Ahuja et al. [36]

5-Azacytidine
Decitabine
Zebularine
Non-nucleoside DNMT inhibitors 
(hydralazine and procainamide)

Histone deacetylase (HDAC) inhibitors
Reviewed by Eckschlager et al. [37], Ahuja et al. 
[36], and Goey et al. [38]

Short chain fatty acids such as valproic acid
Benzamides such as entinostat and 
tacedinaline
Hydroxamic acids such as resminostat, 
abexinostat, quisinostat, rocilinostat 
Cyclic tetrapeptides such as romidepsin

Histone acetyltransferases (HAT) inhibitors
Reviewed by Dekker et al. [39]

Anacardic acid and its derivatives

Exact mechanism unclear—Informative studies 
are given next to drug/compound

Methotrexate [40]
Selective serotonin reuptake inhibitors 
(SSRIs) [41]
Thalidomide [42]
Sirtuin modulators such as resveratrol and 
polyphenol [43]
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4.2  Associations of Maternal Drug Treatment in Pregnancy 
with the Diagnosis of ASD in the Prenatally Exposed 
Children

4.2.1  Thalidomide

In a report of 100 thalidomide embryopathy patients, four cases met the criteria of 
autism diagnosis (DSM 3), which was a high prevalence of the disorder at the time 
compared to the general population [44] (Table 2). However, with thalidomide not 
prevalently used  during pregnancy, it would probably account for very few 
cases of ASD.

4.2.2  Anti-Epileptic Drugs 

Animal studies on rats have demonstrated that exposure to AEDs in utero may carry 
an increased risk of the development of autism [55]. In a study of 260 children 
exposed to an anti-epileptic medication (AED) during pregnancy, an increased risk 
of ASD was reported among mothers prenatally exposed to valproate alone, or in 
combination with other AEDs as well as among mothers exposed to carbamazepine 
alone or in combination with other AEDs [56]. However, the strongest association 
in this study was found with valproate exposure. Similarly, 6.3% of children prena-
tally exposed to valproate monotherapy had a diagnosis of ASD, compared to 0.9% 

Table 2 Drug treatments in pregnancy and risk of ASD in the infants

Medications Summary of positive associations

Influential 
studies and 
reviews (R)

Thalidomide Reports of a 100 thalidomide embryopathy patients with 
elevated risk to autistic disorder diagnosis (DSM 3)

[44]

Antiepileptic drugs 
(AEDs)

Associations of several AEDs, including valproic acid, 
with increased risk of ASD and other neurodevelopmental 
outcomes.

[45, 46]

Selective Serotonin 
Reuptake inhibitors 
(SSRIs)

Associations of SSRI use during pregnancy and risk of 
ASD in the infants have been reported in several large 
cohort and case–control studies. However, confounding by 
indication could not be excluded, and most studies that 
have adjusted for indication of use found conflicting 
results.

[47–52]

Acetaminophen An increased risk of ASD is suggested with maternal 
acetaminophen use in pregnancy, but empirical data is 
lacking.

[53]

Β-2 adrenergic 
receptor agonists

An increased risk of ASD is suggested with maternal use 
in pregnancy, but large empirical data is lacking.

[54]
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of children of mothers who did not take antiepileptic medications during pregnancy 
[57]. In a larger, population-based Danish study of mothers prescribed with valpro-
ate monotherapy during pregnancy, elevated risks of ASD among school-aged chil-
dren have also been demonstrated compared to children of mothers unexposed to 
valproate or another AED during pregnancy [58]. Recently, a large systematic 
review and meta-analysis of 29 cohort studies of maternal exposure to AED during 
pregnancy and neurological development of their children concluded that valproate 
monotherapy, or valproate in combination with other AEDs, showed the strongest 
association with adverse neurodevelopmental outcomes. On the other hand, oxcar-
bazepine and lamotrigine in utero exposure were mostly associated with risk to 
ASD in children compared to unexposed healthy mothers [46] (Table 2). In utero 
exposure to valproate is also a recognized risk factor for several developmental 
abnormalities, such as spina bifida, cardiac, skeletal, and craniofacial defects. The 
proposed mechanisms for valproate teratogenicity that have an epigenetic compo-
nent include interference with folate metabolism and inhibition of histone deacety-
lases [59].

4.2.3  Selective Serotonin-Reuptake Inhibitors

Various studies on animals and humans have suggested that increased serotonergic 
activity during fetal brain development may be one of the causal pathways leading 
to the development of ASD [60–62]. As a result, the hypothesis that maternal treat-
ment with a specific type of antidepressant termed selective serotonin reuptake 
inhibitors (SSRIs), during gestation may increase the risk of having a child with 
ASD, has emerged [48]. As SSRIs are the most commonly prescribed antidepres-
sants, the literature has since been expanding with regard to studies suggesting that 
such an association probably exists [50, 63], specifically when mothers take an 
SSRI in the first trimester of pregnancy [49, 64, 65]. A recent, large systematic 
review of the literature and meta-analyses assessing such an association from pre-
conception and across all trimesters of pregnancy included 10 studies, and  con-
cluded that a positive association between SSRI exposure and ASD risk is consistent 
across all trimesters [51]. However, the calculated odds ratio was 1.8, which is still 
considered small at the population level. When partially adjusted by controlling for 
the underlying maternal condition, the association remained significant but with an 
even lower odds ratio of 1.5. In conclusion, and in light of the current evidence, it 
remains difficult to separate the effect of the underlying disease and/or related 
comorbidities, lifestyle and other risk factors from the effect of the medication used 
[52]. Therefore, it is hard to attribute risk to one causal factor when it is more likely 
the interaction of the psychological status, pharmacological treatment, genetic fac-
tors, and other associated factors present in each individual case that determines the 
risk of an adverse outcome [66].
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4.2.4  Other Suspected Drugs Associated with ASD

Acetaminophen is an over-the-counter drug that is currently recommended as a safe 
pain and fever treatment during pregnancy. However, in recent years, studies have 
suggested a possible association between maternal acetaminophen use during preg-
nancy and ASD, but evidence remains controversial [53, 67].

A few reports have indicated a possible association of maternal exposure to β-2 
adrenergic receptor agonists, used for treatment of asthma, during pregnancy and 
risk of ASD [47, 54], but such results need to be replicated in future studies to estab-
lish a definite link.

4.3  Epigenetic Diet: The Impact of Nutritional Supplements 
on Epigenetic Regulation During Development

Nutritional supplements are categorized as part of complementary and alternative 
medicine (CAM) practices: a diverse group of medical and health care systems, 
practices, and products that are not generally considered part of conventional medi-
cine or standard medical care. They include interventions such as massage, acu-
puncture and dietary supplements [68]. Currently, however, very little information 
is available about mechanisms of action for most CAM, precluding an in-depth 
discussion of possible links to ASD etiology.

Nutritional supplements that have epigenetic impacts (termed epigenetic diet 
nutrients) are however,  gaining ground as an emerging area of research [69]. 
Epigenetic diets may influence epigenetic regulation by changing the concentration 
of available substrate for epigenetic regulatory reactions. Contrary to the scenario 
with  drugs taken by pregnant women and the possible adverse effects upon the 
fetus discussed above, the effects on the developing fetus due to maternal epigenetic 
diet are predominantly positive [69, 70]. While a comprehensive review of an epi-
genetic diet is beyond the scope of this chapter, we shall highlight research foci 
showing associations of neurodevelopmental outcomes, especially with respect to 
ASD/ND, and maternal epigenetic diet.

4.3.1  Gestational Intake of Methyl Donors

The earliest report of maternal intake of methyl donors’ ability to alter fetal out-
come was reported in 1998 by Wolff et al., in a seminal paper that paved the way for 
a new area of research. Wolff et al. [71], showed that feeding mice dams a methyl 
supplemented diet was able to alter the coat color of their pups. Albeit the  experiment 
was conducted on a carefully controlled genetic background, it showed that mater-
nal diet can impact fetal development via epigenetic mechanisms.

Subsequently several studies have shown that gestational intake of various forms 
of methyl donors are able to influence fetal development. A recent report from the 
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Maternal Nutrition and Offsprings’ Epigenome (MANOE) study of 115 mother–
infant pairs, found that maternal intake of methyl donor groups, via diet (in this case 
methionine, betaine, choline, folate) and via supplementation (folic acid), both before 
and during pregnancy, was able to significantly alter DNA methylation in cord-blood 
[72]. However, Boeke et al. [73] conducted a similar study in a folate- replete popula-
tion, estimating maternal intake of methyl donors nutrients via vitamin B12, betaine, 
choline, folate, cadmium, zinc, and iron among mother–infant pairs, and found a 
negative association to DNA methylation levels in male offspring. This study is 
important for two reasons: firstly it shows that for a healthy population, there is likely 
no potentially adverse effect due to intake of methyl donor nutrients, and secondly, it 
also highlights a possible sex-specific signature that requires further study.

Additionally, work in animal models has shown that methyl donor supplementa-
tion exerts a protective effect; in chick embryos, it was found that maternal dietary 
zinc addition was able to protect the growing embryo against negative impacts of 
maternal heat-shock, by increasing antioxidant activity in the embryo [74]. While in 
rats, it has been shown that late pregnancy supplementation with folate is able to 
rescue structural and functional defects of the brain [75, 76].

4.3.2  Gestational Intake of Epigenetic Diet Nutrients of Unknown 
Mechanism

As epigenomic profiling techniques become more accessible, researchers are dis-
covering that dietary elements are able to exert DNA methylation and histone acety-
lation profile changes, though the exact mechanism of doing so is unknown. While 
the reader is referred to more comprehensive reviews [77, 78], we highlight selected 
dietary nutrients for which epigenetic profile alterations important in neural devel-
opment and function have been documented, following prenatal exposure.

Fish Oils

Fish oils have long been consumed during pregnancy as a dietary supplement. They 
contain polyunsaturated fatty acids (PUFA) whose role as epigenetic diet nutrients 
important for brain development is increasingly gaining attention [79]. In a large 
scale randomized control trial, Van Dijk et al. [76] investigated epigenetic profile 
changes upon the child following high dose maternal gestational supplementation 
with docosahexaenoic acid (DHA), a long-chain PUFA. They found a sex-specific 
increase in differentially methylated regions genome-wide in children of high-dose 
exposure mothers, interestingly with a higher impact on boys than girls [76]. 
Another group probed changes in DNA methylation due to prenatal DHA exposure, 
using a targeted approach. In two separate publications, they screened for DNA 
methylation differences in a cohort of pregnant Mexican women who were given 
dietary supplements of 400 mg of DHA daily. They showed small changes in DNA 
methylation of imprinted loci and repetitive elements [80, 81].
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Curcumin

Curcumin (diferuloylmethane), is a component of turmeric (Curcuma longa), one of 
the most common Asian spices. Turmeric has been recognized and used for its many 
medicinal properties in both Ayurvedic and Traditional Chinese Medicine for sev-
eral centuries, if not millennia. In the past decade, interest has grown exponentially 
in exploring the pharmacological benefits and pharmacoepigenomical effects of 
curcumin [82, 83]. Currently, epigenetic regulatory roles as a modulator of DNA 
methylation, histone acetylation and epigenetic programming via RNAi have been 
identified [84]. Curcumin health benefits are most documented for cancer. However, 
it also shows therapeutic potential for neurological and inflammatory disorders [84, 
85]. Salehi et al. [86] have presented the most up to date review of clinical trials of 
curcumin, while Lopreseti [83] reviewed evidence for clinical and animal trials of 
curcumin in neuropsychiatric disease. The interested reader is referred to these 
papers. However, while we could find no specific information related to ASD, we 
note that the well-documented effects of curcumin as an anti-oxidative and anti- 
inflammatory agent, coupled with its ability to influence epigenomic programming 
broadly, suggests the hypothesis that curcumin may have an impact on ASD etiol-
ogy, is plausible.

Others

Other important epigenetic dietary components that may impact fetal brain devel-
opment via epigenetic mechanisms include polyphenols such as those found in 
green tea; which was shown to have a potential protective effect. In a mouse model 
of fetal alcohol spectrum disorder, pregnant dams fed on epigallocatechin-3-gal-
late (EGCG), the major anti-oxidative component of green tea [87], showed rescue 
of embryo size back to normal. Trans-resveratrol, another polyphenol, has been 
shown to be able to rescue aberrant epigenetic programming in rats following 
perinatal asphyxia [88], an important finding as perinatal asphyxia may cause 
ND [89].

5  Prevalence of Pregnant Women’s Exposure to Drugs 
with Potential for Adverse Fetal Outcomes, 
and Epigenetic Diet

Given the importance of maternal intake of drugs, that may exert an adverse effect 
on the developing embryo or fetus, and dietary supplements that induce epigenetic 
mechanisms influencing neurodevelopment, we discuss exposures below. 
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5.1  Drug Intake in Pregnant Women and Potential for Adverse 
Developmental Effects

Current evidence has suggested that 65–94% of women take at least one prescrip-
tion drug during pregnancy [90–92]. Lupattelli et al. [93] showed that more than 
80% of the pregnant women in the USA, Europe, and Australia use at least one 
prescribed drug during pregnancy. Importantly, the rate of pregnant women’s expo-
sure to drugs has seen a rapid increase in the past few decades [94]. Furthermore, 
approximately 70% of women have been reported to be taking medication in the 
first trimester (encompassing the period of organogenesis, when the fetus’s impor-
tant organs are developing) [92, 95], including both over the counter drugs and 
herbal medications [90, 92].

Unfortunately there has not been a concomitant increase in the amount of infor-
mation available with respect to the potentially adverse effects of drugs on the 
developing embryo or fetus. This is because the effect of drugs on development 
cannot be studied in humans through clinical trials [91] becuase such studies are 
ethically unacceptable. According to the Automated Teratogen Information System 
(TERIS), the teratogenic risk in human pregnancy is undetermined for 92% of the 
drug treatments approved by the US FDA system between 1980 and 2000 [96]. In 
another review of the safety of 172 drugs approved by the US FDA between 2000 
and 2010, it was found that the teratogenic risk in human pregnancy was undeter-
mined for 98% of drugs, and for 74% there were no available data about the risk in 
pregnancy [97]. However, while clear clinical trials of drug safety in pregnant 
women is often unavailable, information on potentially adverse outcomes is usually 
gathered via a collection of animal and model organism studies and epidemiological 
investigations that usually occur several years after a drug has been put on the market.

Nevertheless, given the growing interest in drugs that act via epigenetic mecha-
nisms (Table 1), and already emerging associations of certain drugs that may act via 
epigenetic mechanisms with ASD (Table 2), we raise a note of caution that further 
studies specific to possible teratogenic effects of drugs with epigenetic mechanisms 
of action are warranted.

5.2  Complementary and Alternative Medicine (CAM) Intake 
During Pregnancy

Parallel to the rise of drug intake among pregnant women, there is also a rising trend 
of CAM use, though it is less well documented. A literature review of CAM usage 
in industrialized countries in 2011, found that 1–87% of pregnant women use CAM 
[98]. On the other hand, a representative survey of pregnant women in the USA, 
published in 2008, found that over half of the respondents used CAM [99]. 
Furthermore, a European study found that approximately 60% of pregnant women 
use a dietary supplement [100].
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Pregnant women use CAM to relieve specific pregnancy related problems such 
as nausea, vomiting, tiredness, and back pain [98, 101]. Examples include the use of 
ginger root, shown to be a safe and effective non-pharmacological option for nausea 
and vomiting during early pregnancy [102], and supplementing with Vitamin B6, 
also considered a safe alternative pharmacological treatment for nausea and vomit-
ing [102, 103].

Thus, the widespread use of CAM during pregnancy, makes it clinically relevant 
[68, 104].

6  Conclusion

Epigenetic mechanisms are a molecular mechanism by which the environment is 
able to impact the genome. Recognizing ASD as a complex condition with a likely 
substantial causative environmental component [16], epigenetic modalities, by 
which the environment may cause disease, is receiving increased research attention. 
However, here we only discuss efforts in this area which focus on a key environ-
ment: that which the developing fetus is exposed to in utero. There are two main 
exposures in this regard: fetal exposure to drugs that may have adverse neurodevel-
opmental potential, and fetal exposure to an epigenetic diet, both of which are 
emerging areas of research.

Additionally, understanding epigenetic modes of action in disease causation 
accurately, is important as there the possibility of correcting them [59, 105]. Indeed, 
the entire field of epigenetic drugs is a direct result of efforts probing how epigen-
etic deregulation can be corrected back to the normal. Such precision-based medi-
cine efforts, where treatment is based on directly addressing the molecular cause of 
disease, have seen success, especially in cancer research [106]. However, in this 
chapter, we drew attention to an overlooked area of epigenetic  drugs: those that 
when injested by a pregnant mother, may impact ASD risk for their unborn child. 
We emphasize that more research is needed to specifically understand both their 
epigenetic mechanism of action and their potential to cause harm to the develop-
ing fetus.

On the other hand, encouragingly, the emerging area of epigenetic diet is gaining 
attention due to its potential for prevention and rescue from adverse effects for the 
developing fetus. Studies in epigenetic diet have focused on elucidating molecular 
mechanisms by which nutritional supplements act, and evidence is growing for pos-
sible epigenetic deregulation rescue outcomes of these “nutraceuticals.” Current 
reports, while few in number, predominantly detail protective and beneficial effects 
on neurodevelopment. Especially important in context of this discussion is the abil-
ity of epigenetic diet components to ameliorate known harmful environmental 
exposures for pregnant women; an area of research we highlight here and for which 
future studies hold promise.

In summary, the significant role epigenetics plays in ASD, as a molecular mecha-
nism translating environment into genomic or genetic control, and the recognition 
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that there are both drugs and diet that a pregnant woman can be exposed to, which 
act via epigenetic mechanisms, highlight the importance of more focused research 
on what such exposures in utero could mean for the baby. Thus, we end this chapter 
calling for further research to understand the epigenetic mechanisms underlying 
gestational exposures to drugs and diet, and highlighting the remarkable potential of 
epigenetic regulatory compounds to serve as therapeutics.
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Abstract Autism spectrum disorder (ASD) is characterized by impairment in 
behavior, communication, and social interaction. Thus, accurate identification, reg-
ular behavioral and other nonmedical interventions would improve the diagnosis, 
management, and treatment of this condition.

In this chapter, we investigate the importance of diagnosing and identifying 
comorbid psychiatric disorders that occur with ASD as these conditions can often 
complicate treatment, and failure to recognize them can result in deficits that can 
persist into adolescence and adulthood. In addition, we explore the impact of com-
prehensive psychological intervention in ASD patients with comorbid psychiatric 
disorders with the ultimate goal of improving overall quality of life.
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Highlights
• Substantial overlapping occurs between autism spectrum disorders (ASDs) and 

psychological disorders.
• Mood disorders, anxiety disorders, and ADHD are among the psychological dis-

orders most frequently related with ASD.
• Symptom presentation is similar whether ASD occurs alone or with other 

conditions.
• Numerous assessments after initial diagnosis of ASD are commonly required.
• The majority of ASD patients had poor QoL.

1  Introduction

Central autism features like behavior, social, and communication impairments are 
well-documented lifetime functional deficits [1].

The role of psychology in ASDs is classically to provide a comprehensive road-
map to evaluate patients’ weaknesses and strengths and provide a guide for treat-
ment in these areas. Subsequent recommendations are based on afflicted patients’ 
cognitive, behavioral, emotional, and academic or vocational needs. The overall aim 
is to improve functioning by identifying and adjusting maladaptive behaviors asso-
ciated with the diagnosis along with helping patients and their families succeed at 
key transition points such as starting school, entering adolescence, and moving into 
adulthood [2].

Each individual with ASD is unique and has a range of strengths and challenges. 
Some individuals with ASD are able to succeed in their traditional schools, hold 
jobs, and perform functions of daily living with varying levels of support. Others 
have substantial intellectual impairments, need to be integrated into special schools, 
and need extensive support and assistance throughout their lives.

The reality of this disorder as a wide spectrum of symptom severity shed light on 
the importance of a dynamic and holistic approach to diagnosis and treatment.

2  Diagnostic Criteria of ASD

One of the biggest changes in the DSM 5 [1] was the introduction of ASD. Previously, 
in the DSM IV [3], autistic symptoms were categorized into four groups: autistic 
disorder, Asperger’s disorder, childhood disintegrative disorder or the broader diag-
nosis of pervasive developmental disorder not otherwise specified. The main reason 
for this shift in diagnostic criteria was to limit the inconsistency in diagnosis across 
medical centers and practitioners, ultimately creating a comprehensive unified 
structure for assessing autism that would allow for greater efficacy in developing 
treatment plans [1]. Table 1 highlights the DSM 5 diagnostic criteria for ASD [1].
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For diagnostic clusters A and B, it is necessary to specify and categorize severity 
of symptoms into three levels based on social communication impairments and 
restricted, repetitive patterns of behavior (requiring support, requiring substantial 
support, requiring very substantial support). Considering the effect of the treatment 
plan, practitioners should also specify if the disorder is:

 – With or without accompanying intellectual impairment
 – With or without accompanying language impairment
 – Associated with a known medical or genetic condition or environmental factor
 – Associated with another neurodevelopmental, mental or behavioral disorder
 – With catatonia

Table 1 DSM 5 diagnostic criteria for ASD

A.  Persistent deficits in social communication and social interaction across multiple contexts, 
as manifested by the following, currently or by history (examples are illustrative, not 
exhaustive, see text)

  Deficits in social-emotional reciprocity, ranging, for example, from abnormal social approach 
and failure of normal back-and-forth conversation; to reduced sharing of interests, emotions, 
or affect; to failure to initiate or respond to social interactions

  Deficits in nonverbal communicative behaviors used for social interaction, ranging, for 
example, from poorly integrated verbal and nonverbal communication; to abnormalities in eye 
contact and body language or deficits in understanding and use of gestures; to a total lack of 
facial expressions and nonverbal communication

  Deficits in developing, maintaining, and understanding relationships, ranging, for example, 
from difficulties adjusting behavior to suit various social contexts; to difficulties in sharing 
imaginative play or in making friends; to absence of interest in peers

B.  Restricted, repetitive patterns of behavior, interests, or activities, as manifested by at least two 
of the following, currently or by history (examples are illustrative, not exhaustive; see text)

  Stereotyped or repetitive motor movements, use of objects, or speech (e.g., simple motor 
stereotypies, lining up toys or flipping objects, echolalia, idiosyncratic phrases).

  Insistence on sameness, inflexible adherence to routines, or ritualized patterns or verbal 
nonverbal behavior (e.g., extreme distress at small changes, difficulties with transitions, rigid 
thinking patterns, greeting rituals, need to take same route or eat food every day)

  Highly restricted, fixated interests that are abnormal in intensity or focus (e.g., strong 
attachment to or preoccupation with unusual objects, excessively circumscribed or 
perseverative interest)

  Hyper- or hypo-reactivity to sensory input or unusual interests in sensory aspects of the 
environment (e.g., apparent indifference to pain/temperature, adverse response to specific 
sounds or textures, excessive smelling or touching of objects, visual fascination with lights or 
movement)

C.  Symptoms must be present in the early developmental period (but may not become fully 
manifest until social demands exceed limited capacities or may be masked by learned 
strategies in later life)

D.  Symptoms cause clinically significant impairment in social, occupational, or other important 
areas of current functioning

E.  These disturbances are not better explained by intellectual disability (intellectual 
developmental disorder) or global developmental delay. Intellectual disability and autism 
spectrum disorder frequently co-occur; to make comorbid diagnoses of autism spectrum 
disorder and intellectual disability, social communication should be below that expected for 
general developmental level
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3  Comorbid Psychological Conditions in ASDs

While the DSM 5 goes some distance to standardize the method for assessing 
impairments or medical and neurodevelopmental disorders that co-occur with 
autism, it fails to do the same for psychological comorbidities. In fact, the DSM 5 
remains dependent on categorical definitions of psychological disorders rather than 
dimensional classifications [4].

This limitation in the DSM 5, i.e., lack of standardized assessment of comorbidi-
ties, generates a major gap in the ability to create an effective treatment plan that 
adequately meets the individual needs of each patient, and subsequently improve 
functioning. A burgeoning area of research has attempted to document the impor-
tance of identifying comorbidities in ASD. In a twin study in Sweden, Lundstrom 
et al. [5] found that half of the 272 ASD patients he studied had four or more coex-
isting disorders and that only 4% did not have a comorbid diagnosis. Talisa et al. [6] 
found that some neuropsychiatric and behavioral conditions were related to anxiety 
and not autism, indicating that failure to diagnose this would result in an inability 
to adequately improve function. Practitioners should become attuned to spotting 
signs of existing comorbidities like severe and incapacitating problem behavior, 
worsening of symptoms or abrupt changes from baseline and not responding to 
treatment as expected. Should these issues arise, a thorough assessment of psycho-
logical comorbidities should be undertaken using standardized assessment 
tools like:

 – Young Mania Rating Scale (YMRS)
 – Inventory of Depressive Symptomatology (IDS)
 – Structured Clinical Interview for DSM IV for personality disorders (SCID-II)
 – Structured Clinical Interview for DSM IV Childhood Diagnoses (Kid SCID)

Psychological conditions that commonly occur with ASDs are diverse, compris-
ing of mood disorders (depression and bipolar), anxiety disorders, obsessive- 
compulsive disorder, and attention-deficit/hyperactivity disorder (ADHD). These 
conditions were found to be biologically based and situationally induced. In the 
following sections, each of these disorders will be discussed and will also be pre-
ceded by their DSM 5 diagnostic criteria.

4  Depression and Bipolar Disorder

In the DSM IV, depressive disorders and bipolar disorders were grouped under the 
category of “mood disorders”; however, in the DSM 5 these were reclassified into 
separate categories. Despite this, the diagnostic criteria for major depressive disor-
der (MDD) and bipolar I and II have remained more or less the same and changes 
were mostly conceptual in nature. Tables 2, 3, and 4 four outline the DSM 5 diag-
nostic criteria for MDD and bipolar disorder I and II, respectively.
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Postorino et al. [7] reported the prevalence of co-occurrence of mood disorders 
(such as bipolar and depression) in ASDs to be between 1.4% and 70% [8–38]. 
Previous studies used different criteria and different assessment tools, both self- 
report and clinician administered which can greatly alter diagnosis, especially when 

Table 2 DSM 5 criteria for major depressive disorder

Major depressive disorder

The individual must experience five or more symptoms during the same 2-week period and at 
least one of the symptoms should be either (1) depressed mood or (2) loss of interest or 
pleasure
 1. Depressed mood most of the day, nearly every day
 2.  Markedly diminished interest or pleasure in all, or almost all, activities most of the day, 

nearly every day
 3.  Significant weight loss when not dieting or weight gain or decrease or increase in appetite 

nearly every day
 4.  A slowing down of thought and a reduction of physical movement (observable by others, 

not merely subjective feelings of restlessness or being slowed down)
 5.  Fatigue or loss of energy nearly every day
 6.  Feelings of worthlessness or excessive or inappropriate guilt nearly every day
 7.  Diminished ability to think or concentrate, or indecisiveness, nearly every day
 8.  Recurrent thoughts of death, recurrent suicidal ideation without a specific plan, or a suicide 

attempt or a specific plan for committing suicide

Table 3 DSM 5 criteria for bipolar disorder I

Bipolar disorder I

 A.  Characterized by the occurrence of one or more manic or mixed episodes (the manic 
episode may have been preceded by and may be followed by hypomanic or major 
depressive episodes, but these are not required for diagnosis)

 B.  Distinct period of abnormally and persistently elevated, expansive, or irritable mood, and 
increased goal-directed activity or energy lasting ≥1 week (any duration if hospitalized), 
present most of the day, nearly every day

 C.  During the mood disturbance and increased energy or activity, at least three (or four if 
irritable mood only) of the following

   –  Inflated self-esteem or grandiosity
   –  Decreased need for sleep
   –  Pressured speech
   –  Racing thoughts or flight of ideas
   –  Distractibility
   –  Increased activity
   –  Excess pleasurable or risky activity
 D.  Marked impairment not due to a substance or medical condition. In addition, these 

symptoms
   a.  Do not meet criteria for a mixed episode
   b.  Cause functional impairment, necessitate hospitalization, or there are psychotic 

features
   c.  Are not related to substance misuse
   d.  Are not due to a general medical condition
   e.  Are not caused by somatic antidepressant therapy
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taking into account the capabilities of the child [39]. The wide variance of this 
prevalence highlights the importance of a single standardized diagnostic method 
and assessment for psychiatric disorders.

There is evidence to support that mood disorders are associated with greater 
adaptability in ASD. Several studies found that symptoms of depression and mania 
are directly correlated with higher levels of functioning and adaptation, more insight 
or self-awareness of own impairments, and a higher cognitive level of functioning 
[24, 40]. Similarly, Vickerstaff et al. [20] found that there are significant associa-
tions between self-perception of social competence and depressive symptoms. In 

Table 4 DSM 5 criteria for bipolar disorder II

Bipolar disorder II

 A.  Never had a full manic episode; at least one hypomanic episode and at least one major 
depressive episode

 B.  Distinct period of abnormally and persistently elevated, expansive, or irritable mood, and 
increased goal-directed activity or energy lasting ≥4 but <7 days, and clearly different from 
usual nondepressed mood, present most of the day, nearly every day

 C.  During the hypomanic episode, at least three (or four if irritable mood only) of the 
following

   –  Inflated self-esteem or grandiosity
   –  Decreased need for sleep
   –  Pressured speech
   –  Racing thoughts or flight of ideas
   –  Distractibility
   –  Increased activity
   –  Excess pleasurable or risky activity
 D.  Episode is unequivocal change in functioning, uncharacteristic of person, and observable 

by others
 E.  Not severe enough to cause marked impairment, not due to substance or medical condition, 

and no psychosis (if present, then this is mania by definition)
 F.  During the major depressive episode, at least five of the following symptoms are present 

during the same 2-week period and represent a change from previous functioning. At least 
one of the symptoms is either depressed mood or loss of interest or pleasure

   –  Depressed mood most of the day, nearly every day
   –  Markedly diminished interest or pleasure, nearly every day
   –  Significant weight loss when not dieting or weight gain, or decrease or increase in 

appetite, nearly every day
   –  Insomnia or hypersomnia, nearly every day
   –  Psychomotor agitation or retardation, nearly every day
   –  Fatigue or loss of energy, nearly every day
Feelings of worthlessness or excessive or inappropriate guilt (which may be delusional), nearly 
every day
   –  Diminished ability to think or concentrate, or indecisiveness, nearly every day
   –  Recurrent thoughts of death (not just fear of dying), recurrent suicidal ideation with or 

without a specific plan
 G.  In addition, these depressive symptoms
   –  Cause functional impairment (e.g., social, occupational)
   –  Are not better explained by substance misuse, medication side effects, or other 

psychiatric or somatic medical conditions
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addition, high-functioning autism (HFA) patients were found to be predominantly 
afflicted with mood disorders [11, 14, 17, 20, 25, 30, 31, 41]. The rates of these 
comorbid mood disorders were found to be even higher in adolescent and adult HFA 
patients [19, 22, 24, 28, 35].

Conversely, other reports have indicated that with more severe symptoms of 
autism, patients are more vulnerable to stressors as well as to the development of 
depression [41, 42]. This is compounded further by Mazurek et al.’s [43] findings 
that poorer quality of friendship is correlated with higher levels of anxiety and 
depression indicating the importance of protective factors against general stressors. 
Depression-induced regression was found to be noticeably present mainly in low- 
functioning autism patients who are characterized by loss of language, social with-
drawal, loss of eye contact, moodiness, tantrums, fearfulness, obsessiveness, 
stereotypies, hyperactivity, and occasionally self-injurious behaviors [40, 44].

Age was also found to be a significant predictor of comorbid depression as 
symptoms were found to increase with age, with emotional age being a more reli-
able predictor of the development of depression than chronological age [20]. Several 
studies also showed that the age of onset of co-occurrence of depression is predomi-
nantly around pre-adolescence and adolescence. This could be attributed to the tran-
sition period of ASD patients becoming more conscious of their own social skills as 
well as awareness of lower self-perceived social competence [9, 20, 26, 31, 40].

The diagnosis of depression is substantially based on self-reported feelings and 
how those feelings impact daily functioning. This is often difficult to obtain in the 
ASD population due to inherent impairments in social interaction and verbal 
communication.

From a clinical point of view, the diagnosis of depression in ASD remains a chal-
lenge despite characteristic symptoms like depressed mood, irritability, anhedonia, 
sleep or appetite disturbances, cognitive problems like impaired concentration, 
indecision, feelings of hopelessness, morbid thoughts, and somatic complaints 
being recognized. Other symptoms like aggression, mood lability, hyperactivity, 
decreased self-care, decreased level of functioning, regression, changes in core 
symptoms, increased compulsions, self-injurious behavior, and catatonia, and over-
all changes in adaptive functioning are often neglected in the observation of ASD 
patients [45]. The failure to identify these symptoms as depression and assuming 
them to be an extension of the ASD diagnosis can lead to a loss of the patient’s abil-
ity to learn new skills that might greatly improve their ability to live with ASD and 
may lead to missing suitable interventions that could help tackle these problems.

5  Anxiety Disorders

Anxiety disorders in the DSM 5 include separation anxiety disorder, selective mut-
ism, specific phobia, social phobia, panic disorder, agoraphobia, and generalized 
anxiety disorder (GAD). The common symptoms across each of these diagnoses are 
best explained by the diagnostic criteria for GAD in Table 5.
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Due to the nature of ASD heavily impairing social and communication skills, 
school-age children and adolescents are often commonly affected by anxiety-related 
concerns [40]. Simonoff et al. [18] supported this further with findings showing that 
41.9% of 112 ASD children aged from 10 to 14 years met the criteria for at least one 
anxiety disorder.

Reported prevalence of anxiety in ASD varies widely, with estimates ranging 
from 13.6% to 84.1% [14, 46–49]. A recent systematic review obtained from 31 
studies [50] identified that clinically significant levels of anxiety were present in 
39.6% of a pooled sample of 2121 individuals under the age of 18 with ASD. Although 
findings are inconsistent, the most frequent anxiety disorders in ASD appear to be 
specific phobias, generalized anxiety disorder, separation anxiety disorder, and 
social phobia with social anxiety being the most prevalent in ASDs (29.2%) [10, 
49, 51–55].

Sukhodolsky et al. [54] similarly found that 43% of 171 children with ASD aged 
5–14 years met the criteria for at least one anxiety disorder. They also reported that 
increased anxiety was associated with higher IQ and less ASD severity, which could 
be attributed to more self-awareness of social dysfunction.

Children with ASD presented a distinctive set of fears when compared to chrono-
logical- and mental-age matched peers, reporting more frequent situation phobias 
and medical fears, less often related to fears of being harmed or injured [51].

In conclusion, anxiety seems to be more common in ASD than in both the gen-
eral population and several clinical groups with probably up to 40% of ASDs 
patients presenting with at least one anxiety subtype.

Table 5 DSM 5 diagnostic criteria for generalized anxiety disorder

Generalized anxiety disorder

 A.  The presence of excessive anxiety and worry about a variety of topics, events, or activities. 
Worry occurs more often than not for at least 6 months and is clearly excessive

 B. –  The worry is experienced as very challenging to control. The worry in both adults and 
children may easily shift from one topic to another

 C. –  The anxiety and worry are accompanied with at least three of the following physical or 
cognitive symptoms. (In children, only one symptom is necessary for a diagnosis of 
GAD)

   –  Edginess or restlessness
   –  Tiring easily; more fatigued than usual
   –  Impaired concentration or feeling as though the mind goes blank
   –  Irritability (which may or may not be observable to others)
   –  Increased muscle aches or soreness
   –  Difficulty sleeping (due to trouble falling asleep or staying asleep, restlessness at night 

or unsatisfying sleep)
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6  Obsessive-Compulsive Disorder

Obsessive-compulsive disorder (OCD) is characterized by recurrent disturbing 
thoughts or images, and repetitive behaviors. In the DSM IV, OCD was previously 
categorized as an anxiety disorder; however, in the DSM 5 it was reclassified as a 
distinct disorder due to the focus on the behavioral component. Table 6 describes 
the DSM 5 criteria for diagnosing OCD.

OCD often begins in childhood and adolescence. Several studies show an 
increased incidence of OCD in the ASD population, as well as increased ASD 
among those diagnosed with OCD [56, 57]. Postorino et al. [58] reported that the 
prevalence of OCD in ASD cases ranged between 2.6% and 37.2%.

It can be difficult to determine OCD diagnosis in an autistic child as there are 
overlapping rituals common across both such as repetitive behavior and rigid adher-
ence to routines [35, 59, 60]. However, the compulsions are characterized by their 

Table 6 DSM 5 diagnostic criteria for obsessive-compulsive disorder

Obsessive-compulsive disorder (OCD)

A. Presence of obsessions, compulsions, or both
  –  Obsessions are defined by (1) and (2)
     1.  Recurrent and persistent thoughts, urges, or impulses that are experienced, at some 

time during the disturbance, as intrusive and unwanted, and that in most 
individuals cause marked anxiety or distress

     2.  The individual attempts to ignore or suppress such thoughts, urges, or images, or 
to neutralize them with some other thought or action (i.e., by performing a 
compulsion)

  –  Compulsions are defined by (1) and (2)
     1.  Repetitive behaviors (e.g., hand washing, ordering, checking) or mental acts (e.g., 

praying, counting, repeating words silently) that the individual feels driven to 
perform in response to an obsession or according to rules that must be applied 
rigidly

     2.  The behaviors or mental acts are aimed at preventing or reducing anxiety or 
distress, or preventing some dreaded event or situation; however, these behaviors 
or mental acts are not connected in a realistic way with what they are designed to 
neutralize or prevent or are clearly excessive

B.  The obsessions or compulsions are time-consuming (e.g., take more than 1 h/day) or cause 
clinically significant distress or impairment in social, occupational, or other important areas 
of functioning

C.  The obsessive-compulsive symptoms are not attributable to the physiological effects of a 
substance (e.g., a drug of abuse, a medication) or another medical condition

D.  The disturbance is not better explained by the symptoms of another mental disorder (e.g., 
excessive worries, as in generalized anxiety disorder; preoccupation with appearance, as in 
body dysmorphic disorder; difficulty discarding or parting with possessions, as in hoarding 
disorder; hair pulling, as in trichotillomania [hair-pulling disorder]; skin picking, as in 
excoriation [skin-picking] disorder; stereotypies, as in stereotypic movement disorder; 
ritualized eating behavior, as in eating disorders; preoccupation with substances or 
gambling, as in substance-related and addictive disorders; preoccupation with having an 
illness, as in illness anxiety disorder; sexual urges or fantasies, as in paraphilic disorders; 
impulses, as in disruptive, impulse-control, and conduct disorders; guilty ruminations, as 
in major depressive disorder; thought insertion or delusional preoccupations, as in 
schizophrenia spectrum and other psychotic disorders; or repetitive patterns of behavior, as 
in autism spectrum disorder)
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distressing effect on the individual and anxiety peaks as a result of the attempt to 
resist carrying out the compulsive behavior. Rituals of autistic patients, on the other 
hand, are not characterized by any preceding anxiety or distress and are often a 
rewarding and pleasant experience for the child.

Ruta et  al. [61] summarized the differences between children who received a 
diagnosis for OCD only, ASD only, and those with a comorbidity of OCD and 
ASD. They found that OCD groups and ASD groups reported different types of 
obsessive behaviors, with OCD children reporting higher frequencies of aggressive 
obsessions and checking compulsions, while ASD children displaying higher fre-
quencies of saving/hoarding behaviors. However, they found that groups with 
comorbid diagnoses, ASD with OCD or Tourette syndrome, had comparable levels 
of symptom severity and impairment.

Anholt et al. [62] reported that adults with OCD show increased frequency of 
ADHD and autism symptoms and speculated common etiological factors to ASD, 
ADHD, and OCD.

7  Attention-Deficit/Hyperactivity Disorder

Attention-deficit/hyperactivity disorder (ADHD) is characterized by symptoms of 
inattention, hyperactivity, and impulsivity across multiple settings. Table 7 specifies 
the diagnostic criteria for ADHD according to the DSM 5.

So far, no meta-analyses have been conducted on the prevalence of ADHD in 
ASDs. However, ADHD was found to co-occur in as many as 30–80% of the ASD 
cases, while the presence of ASD is estimated to be between 20% and 50% of the 
ADHD children [63–66].

For instance, van der Meer et  al. [64] conducted a study on three groups of 
patients ((1) ADHD plus ASD; (2) predominant ASD plus ADHD; and (3) ADHD 
only) and found a significantly slower identification of facial emotions in the 
ASD + ADHD, and ADHD + ASD groups when compared with the ADHD-alone 
group. Significant differences were also found in visual spatial attention, verbal 
attention, and working memory amongst the groups but no significant differences in 
inhibition and cognitive flexibility was noticed [64]. The ADHD plus ASD and 
ADHD-alone groups performed significantly worse in detail-focused process-
ing [64].

8  Personality Disorders (PD)

In the DSM 5, the 10 PD outlined in the DSM IV were retained and they are: para-
noid personality disorder, schizoid personality disorder, schizotypal personality dis-
order, antisocial personality disorder, borderline personality disorder, histrionic 
personality, narcissistic personality disorder, avoidant personality disorder, depen-
dent personality disorder, and obsessive-compulsive personality disorder.
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Table 7 DSM 5 diagnostic criteria for attention-deficit/hyperactivity disorder

Attention-deficit/hyperactivity disorder (ADHD)

  A.  Persistent pattern of inattention and/or hyperactivity–impulsivity that interferes with 
functioning or development, as characterized by (1) and/or (2)

     1.  Inattention: Six (or more) of the following symptoms have persisted for at least 
6 months to a degree that is inconsistent with developmental level and that 
negatively impacts directly on social and academic/occupational activities

      –  Often fails to give close attention to details or makes careless mistakes in 
schoolwork, at work, or during other activities (e.g., overlooks or misses details, 
work is inaccurate)

      –  Often has difficulty sustaining attention in tasks or play activities (e.g., has 
difficulty remaining focused during lectures, conversations, or lengthy reading)

      –  Often does not seem to listen when spoken to directly (e.g., mind seems 
elsewhere, even in the absence of any obvious distraction)

      –  Often does not follow through on instructions and fails to finish schoolwork, 
chores, or duties in the workplace (e.g., starts tasks but quickly loses focus and 
is easily sidetracked)

      –  Often has difficulty organizing tasks and activities (e.g., difficulty managing 
sequential tasks; difficulty keeping materials and belongings in order; messy, 
disorganized work; has poor time management; fails to meet deadlines)

      –  Often avoids, dislikes, or is reluctant to engage in tasks that require sustained 
mental effort (e.g., schoolwork or homework; for older adolescents and adults, 
preparing reports, completing forms, reviewing lengthy papers)

      –  Often loses things necessary for tasks or activities (e.g., school materials, 
pencils, books, tools, wallets, keys, paperwork, eyeglasses, mobile telephones)

      –  Is often easily distracted by extraneous stimuli (for older adolescents and adults, 
may include unrelated thoughts)

      –  Is often forgetful in daily activities (e.g., doing chores, running errands; for older 
adolescents and adults, returning calls, paying bills, keeping appointments)

     2.  Hyperactivity and impulsivity: Six (or more) of the following symptoms have 
persisted for at least 6 months to a degree that is inconsistent with developmental 
level and that negatively impacts directly on social and academic/occupational 
activities

      –  Often fidgets with or taps hands or feet or squirms in seat
      –  Often leaves seat in situations when remaining seated is expected (e.g., leaves 

his or her place in the classroom, in the office or other workplace, or in other 
situations that require remaining in place)

      –  Often runs about or climbs in situations where it is inappropriate. (Note: In 
adolescents or adults, may be limited to feeling restless)

      –  Often unable to play or engage in leisure activities quietly
      –  Is often “on the go,” acting as if “driven by a motor” (e.g., is unable to be or 

uncomfortable being still for extended time, as in restaurants, meetings; may be 
experienced by others as being restless or difficult to keep up with)

      –  Often talks excessively
      –  Often blurts out an answer before a question has been completed (e.g., 

completes people’s sentences; cannot wait for turn in conversation)
      –  Often has difficulty waiting his or her turn (e.g., while waiting in line)
      –  Often interrupts or intrudes on others (e.g., butts into conversations, games, or 

activities; may start using other people’s things without asking or receiving 
permission; for adolescents and adults, may intrude into or take over what others 
are doing)

(continued)
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However, much like autism and as opposed to schizophrenia or posttraumatic 
stress disorder, personality disorders are not categorical and do exist on a contin-
uum. For this reason, the DSM 5 has put forward proposed changes for further study 
in a separate section. The proposed model would evaluate impairments in personal-
ity functioning and assess five broad areas of pathological personality traits. This 
model includes only six PD as evidenced by research: antisocial, avoidant, border-
line, narcissistic, obsessive-compulsive, and schizotypal.

In this vein, distinct PD are not as commonly found to be diagnosed as comor-
bidities of ASD. However, certain traits like aggression and self-injurious behavior 
that are symptomatic of PD, like borderline personality disorder and antisocial per-
sonality disorder, were prevalent ASD comorbidities [43, 67]. While there is a cor-
relation between aggression, self-injurious behavior, and ASD, we cannot infer a 
causal relationship. In fact, it is difficult to even determine whether these variables 
affect each other distinctly or if they are manifestations of the same problem. 
However, as it is not possible to diagnose any PD before the age of 18 as personality 
is still in its formative stage, problematic traits should be monitored using func-
tional analysis to identify factors that might perpetuate or reinforce the trait or 
behavior [68].

9  Interventional Models

Children with ASD generally require a combination of therapies and interventions 
to address their individual constellation of symptoms. Approaches can be broadly 
categorized according to conceptual models. However, there is no uniformly agreed 
upon classification system. The availability of programs varies by region and access 
to interventions may affect the choice of programming. A systematic review found 
insufficient evidence to suggest that any interventional model is superior to another 
[69]. However, there is moderate evidence that greater intensity (in hours per week) 
and greater duration (in months) of treatment lead to better outcomes [70].

Table 8 summarizes five interventions commonly used to treat ASD and the 
strengths of each therapy.

Attention-deficit/hyperactivity disorder (ADHD)

B.  Several inattentive or hyperactive-impulsive symptoms were present prior to age 12 years
C.  Several inattentive or hyperactive-impulsive symptoms are present in two or more settings 

(e.g., at home, school, or work; with friends or relatives; in other activities)
D.  There is clear evidence that the symptoms interfere with, or reduce the quality of, social, 

academic, or occupational functioning
E.  The symptoms do not occur exclusively during the course of schizophrenia or another 

psychotic disorder and are not better explained by another mental disorder (e.g., mood 
disorder, anxiety disorder, dissociative disorder, personality disorder, substance 
intoxication or withdrawal)

Table 7 (continued)
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10  Treating Psychological Comorbidities in ASD

Once a diagnosis of a comorbidity has been ascertained, an individualized treatment 
plan that compliments the interventions he or she is already receiving needs to be 
determined.

Comprehensive integrative models address multiple domains of function. For 
example, the Early Start Denver Model (ESDM) uses a combination of behavioral 
programming and developmental- and relationship-based approaches and includes 
parents as therapists. These types of comprehensive therapies are often beneficial 
with comorbid psychiatric disorders and tend to directly and indirectly target symp-
toms that often complicate the treatment of ASD. A randomized trial comparing the 
ESDM program with interventions commonly available in the community demon-
strated significant language, cognitive, and adaptive functioning gains in 48 toddlers 
over a 2-year period [71]. The Agency for Healthcare Research and Quality (AHRQ) 
published a systematic review [72] suggesting the utility of parent training for 
improving behavioral outcomes in general and of adding parent training to medica-
tion interventions for children with challenging behaviors. However, the studies 
were small, relied on parent report, and used varying intervention models.

Nevertheless, the National Autism Center’s National Standards Reports [73] 
considers targeted behavioral interventions to be the general standard of treatment. 
Historically, behavioral interventions have also been found to be beneficial. A sys-
tematic review of 251 studies conducted between 1980 and 1996 of targeted behav-
ioral interventions found that focal behavioral interventions consistently result in 
positive behavioral outcomes across a wide range of targets, including aberrant 
behaviors (e.g., self-injury, aggression), language skills, daily living skills, social 
skills, etc. [74].

On the other hand, a 2014 systematic review of studies published after 2000 sug-
gested the efficacy of CBT interventions in reducing anxiety symptoms in individu-
als with ASD and IQ scores above 70 [2]. Moreover, a systematic review published 
by the US Massachusetts National Standards projects classified CBT as an estab-
lished intervention for children and adolescents [73]. Similarly, a meta-analysis of 
12 studies for anxiety comorbidity involving 511 youth with high functioning ASD 
found statistically significant pooled treatment effect for CBT with significant IQ 
heterogeneity [75].

A systematic review [76] evaluating the efficacy of CBT on ASD and OCD 
comorbidities found that although CBT with various modifications has been shown 
to be beneficial, the research includes small populations and a variety of nonstan-
dard modifications; the lack of standardization in applying CBT limits the general-
izability of the findings. Nevertheless, all the studies did show at least some 
treatment gains despite the variation in age and severity of diagnosis. The methods 
involved in the studies, while varied, generally included mapping, cognitive 
 restructuring, fear hierarchy development, (exposure and response prevention) and 
relapse prevention.
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With a comorbid diagnosis of ASD and ADHD, nonpharmacological treatments 
found to be moderately effective include dietary interventions (restricted elimina-
tion diets, artificial food color exclusions, and free fatty acid supplementation), 
behavioral interventions, cognitive training, and neurofeedback [77].

It is likely that comorbid emotional or behavioral problems would influence out-
comes of social skills interventions. In a study observing the effect of a social skills 
training program, it was reported that social skills improved for children with ASD, 
and children with ASD and comorbid anxiety, but that there was no improvement 
among children with ASD and comorbid ADHD, highlighting the importance of 
individualizing treatment plans for different comorbid diagnoses [78].

11  Quality of Life

In the simplest terms, Quality of Life (QoL) is defined as inner subjective personal 
satisfaction across four basic domains: physical, emotional, social, and vocational 
[79]. QoL interventions from a positive psychology point of view aim at promoting 
a life satisfaction in which humans identify, pursue, and fulfill their most cherished 
goals, desires, and wishes across all valued areas of life [80]. In the context of ASD, 
QoL Clinical Practice (QoLCP) normalizes the life of patients and their families so 
that it does not fall below a predetermined cut-off threshold [81].

With this definition, QoL Clinical Practice could be a precise, patient and family 
cantered care method for measuring improvement, monitoring ASD symptoms, 
optimizing interventions, and personalizing medicosocial care amongst individuals 
with ASD.

11.1  Key Features in ASD Conventional QoLCP

11.1.1  CASIO Rubric

QoL provides a rubric model for life satisfaction (Change in Circumstances, 
Attitude, Standards, Importance, and Other aspects; CASIO) as a blueprint for posi-
tive psychological intervention. The model presented in Fig. 1 offers a strategy for 

Chosse, 1-16
areas of life

Quantify & plan
changing

circumstances

Assess & plan
changing
attitude

Evaluate &
paln changing

personal
Standards

Weigh
satisfaction
bases on

Importance/
Value

Personal
happiness

Life satisfaction
and QoL

Positive & 
Negative Affects

Fig. 1 CASIO model for life satisfaction
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management of 16 areas of life over 8 therapeutic sessions [79, 80]. The program 
(illustrated in Table 9) starts with introducing clinical participants, and each session 
consists of reviews, discussions, and assigning homework steps.

Table 9 CASIO eight-session program for improving QoL

Session 1
Introduce participants

Session 5

Review Goals
QoL interventions and rationale

Review CASIO model in values
Homework

Discuss 16 areas of life satisfaction
Difficult areas

Discuss Relationships and its role in 
life satisfaction

Homework Think how to improve QoL Homework Everyday life skills: 
Enhance relationships using 
writing a letter and basket of 
eggs techniques [79]

Session 2 Session 6
Review QoL progress

Homework
Review CASIO model in 

relationships
Homework

Discuss Role of self-esteem in happiness 
increasing and present skills in these 
areas

Discuss The role of play and leisure 
in increasing happiness

Homework Everyday life skills: Improve 
strengths and gratitude through BAT 
(Blessings, Accomplishments, 
Talents, and Traits) technique [79]

Homework Everyday life skills: Increase 
play and family recreation 
time [79]

Session 3 Session 7
Review CASIO model in self-esteem

Homework
Review CASIO model of play

Homework
Discuss Health topics and concerns Discuss Learning and skills
Homework Everyday life skills: Report on 

frequent health concerns using 
Trigger, Actions, and Consequences 
(TAC) technique [79]

Homework Everyday life skills: Boost 
learning satisfaction using 
problem solving technique 
[79]

Session 4 Session 8
Review CASIO model in health concerns

Homework
Review CASIO model of learning

Homework
All treatment sessions

Discuss Goals and important values Discuss Transition to being own QoL 
therapist and using relapse 
prevention techniques

Homework Everyday life skills: Tweak goals and 
values using Daily Action Plan 
(DAP) and Life Script techniques 
[79]

Homework Further study and work in 
QoL
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12  Constructive Mode Activation for ASD Comorbidities

The QoLCP also provides patients access to constructive cognitive creation of life 
satisfaction and happiness through the above CASIO model. Individual differences 
in relation to life satisfaction is accommodated via recognition of interaction 
between external life conditions and patients’ own circumstances, personal values 
attached to life goals, and personal standards for reaching goals in 16 areas of life 
[80]. Table 10 highlights definitions of the 16 areas of life focused on in QoLCP.

Table 10 16 areas of life for QoLCP

 1.  Health is being physically fit, not sick, and without pain or disability
 2.  Self-Esteem means liking and respecting yourself in light of your strengths and 

weaknesses, successes and failures, and ability to handle problems
 3.  Goals-and-Values ± Spiritual Life: are beliefs about what matters most in life and how you 

should live, both now and in the future
 4.  Money (or Standard of Living) is made of the money you earn, the things you own (like a 

car or furniture) and believing that you will have the money and things that you need in the 
future

 5.  Work means your career or how you spend most of your time
 6.  Play (or Recreation) means what you do in your free time to relax, have fun, or improve 

yourself. This could include watching movies, visiting friends, or pursuing a hobby like 
sports or gardening

 7.  Learning means gaining new skills or information about things that interest you. Learning 
can come from reading books or taking classes on subjects like history, car repair, or using 
a computer

 8.  Creativity is using your imagination to come up with new and clever ways to solve every 
day problems or to pursue a hobby like painting, photography, or needlework. This can 
include decorating your home, playing the guitar, or finding a new way to solve a problem 
at work

 9.  Helping (Social Service and Civic Action) means helping others (not just friends or 
relatives) in need or helping to make your community a better place to live

10.  Love (or Love Relationship) is a very close romantic relationship with another person. 
Love usually includes sexual feelings and feeling loved, cared for, and understood

11.  Friends (or Friendships) are people (not relatives) you know well and care about who have 
interests and opinions like yours

12.  Children includes a measure of how you get along with your child (or children). Think of 
how you get along as you care for, visit, or play with your child (or children)

13.  Relatives means how you get along with your parents, grandparents, brothers, sisters, 
aunts, uncles, and in-laws

14.  Home is where you live. It is your house or apartment and the yard around it
15.  Neighborhood is the area around your home
16.  Community is the whole city, town, or rural area where you live (not just your 

neighborhood). Community includes how nice the area looks, the amount of crime, and 
how well you like the people. It also includes places to go for fun like parks, concerts, 
sporting events, and restaurants

Adapted with minimal modifications from Frisch [79]
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12.1  Innovative Key Features of ASD QoLCP

As the QoL of autistic patients and their families is lower than that of the general 
population [82], it requires innovative practice in addition to these two key conven-
tional features. The traditional QoL/psychological diagnosis of autistic patients and 
associated comorbidities involves medical and psychological history taking, mental 
state examination, and psychological screening. The end result of such a process is 
a subjective diagnosis of the case and the difficulties that families might be going 
through as a result of the disorder. Recently, these subjective projections of health 
care practitioners are being challenged, and objective nonbiased assessment tools 
are being pursued [83]. This represents a key requirement in personalizing QoL 
management of patients and families and optimizing their well-being in several 
domains of the 16 areas of life of the CASIO model.

12.2  Assessment of QoL in ASD Patients

If the assessment is carried out by a QoL practitioner who is not a physician, he or 
she interacts with the primary physician to get a medical report and a green light to 
carry out the QoL interventions [79]. However, if a physician is carrying out the 
intervention, then QoL assessment followed by a psychiatric ASD assessment 
should be performed starting with comprehensive history taking and physical and 
mental state examinations. Screening tools are then applied as a baseline and a fol-
low up investigation.

12.2.1  Screening Tools for Adults

The Research Autism of the National Autistic Society of UK validated the use of 
Autism Specific QoL survey (ASQoL) to be used alongside the World Health 
Organization Quality of Life-Brief (WHOQoL-BREF) and World Health 
Organization Quality of Life (WHOQoL) disabilities modules. It is used with adults 
to evaluate total ASQoL score (eight items), and a score for the global item (item 9) 
about “autistic identity” [84].

12.2.2  Screening Tools for Children and Adolescents

The most commonly used instruments are the QoL Battery of Varni [85, 86]. The 
battery contains the Pediatric Quality of Life Inventory ™ (PedsQL) and other 
instruments to assess a wide variety of domains related to QoL, family satisfaction, 
and burden of diseases [87].
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In conclusion, ASD patients experience a specific and unique form of QoL, the 
normalization of which is an endpoint medical care and requires a multidisciplinary 
team effort that includes a QoL therapist. This normalization takes place for ASD 
and all its associated comorbidities through the conventional and innovative QoLCP 
key features, and it encompasses all aspects of patient’s life and his/her family.

13  Pharmacotherapy

While nonpharmacological treatments have been shown to be effective in treating 
comorbidities of ASD, a valid treatment option is medication. Pharmacotherapy 
should be considered when symptoms of comorbidities are extremely severe (e.g., 
depression or OCD), if there is severe functional impairment secondary to disrup-
tive behavior or if there is no response to behavioral interventions. Moreover, as 
patients with ASD often undergo several hours of weekly interventions to improve 
general functioning, it can be overwhelming to recommend further interventions for 
their comorbidities.

Interventions should be guided by evidence and appropriate treatment guidelines 
[57]. Below is a summary of medications found to be effective in treating comor-
bidities in ASD:

 – Depression: The efficacy of selective serotonin reuptake inhibitor (SSRIs) and 
serotonin norepinephrine reuptake inhibitor (SNRIs) in the treatment of depres-
sion and ASD has not been sufficiently validated through randomized controlled 
trials; nonetheless, empirical data support their use as indicated in neurotypical 
children [88].

 – Anxiety: The treatment of anxiety in children with ASD and neurotypical chil-
dren is similar. A multimodal approach is recommended, including modified 
cognitive behavioral therapy, with some evidence that supports its efficacy in 
high functioning ASD. Pharmacological data in this population is limited [89]. 
Behavioral interventions should also be considered in addressing sensory and 
special education needs [90].

 – OCD: Similarities between OCD and the repetitive behaviors of ASD led 
researchers to investigate the use of SSRIs in the autism core domain [91]. In a 
randomized placebo-control crossover study of 44 children with ASD, SSRI 
(fluoxetine) was found to be beneficial in reducing repetitive behaviors in ASDs 
patients. The strength of evidence for the effect of other SSRIs (e.g., citalopram 
and escitalopram) is insufficient [92]. The evidence indicating that medication is 
effective in treating similar symptoms common in both OCD and ASD [93, 94].

 – ADHD: Medications could be considered in the treatment of ADHD in the con-
text of ASD [95, 96]. Methylphenidate (Ritalin) is the most commonly used drug 
and is effective in reducing symptoms of inattention and hyperactivity in chil-
dren with ASD although response rates may be lower than that of children with 
typical ADHD.  Randomized control trials suggest less benefit and more side 
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effects for ADHD + ASD as compared with ADHD alone [97]. Methylphenidate 
was found to significantly improve joint attention and emotional self-regulation 
as well as improvement in hyperactive and impulsive behaviors. However, the 
results on the efficacy of amphetamines are less conclusive. Alpha-2 adrenergic 
agonists were also effective when dealing with ADHD/ASD comorbidities and 
were found to significantly improve behavioral symptoms in 62 children when 
compared with a placebo. Alternatively, norepinephrine reuptake inhibitor 
(NERI), namely atomoxetine, was found to improve ADHD symptoms in two 
randomized controlled trials.

 – Aggression: Haloperidol, a typical neuroleptic, is commonly used to treat severe 
aggression in autistic children; however, these have been found to significantly 
impair movement in recipients [98]. In addition risperidone was found to reduce 
irritability, aggression, self-injurious behaviors, and severe tantrums in ASD [92, 
99, 100]. For younger ASD cases aged between 6 and 17 years, aripiprazole is 
recommended to treat aggression, and in a longitudinal study both risperidone 
and aripiprazole were found to adequately treat aggression and irritability in 
ASD patients, especially when combined with parent training in behavioral man-
agement [101].

14  Conclusions and Future Directions

Psychological comorbidities are relatively recently recognized phenomena in ASD 
although the majority of ASDs have at least one comorbid psychological disorder.

The high level of comorbidities could be attributed to similar or associated risk 
factors, i.e., the occurrence of one disorder increases the risk of another disorder. In 
addition, limitations could include misdiagnosis and inadequacy of the diagnostic 
systems to reflect the factual nature of psychiatric disorders that co-occur with an 
ASD diagnosis.

These comorbid conditions persist from childhood to adolescence to adulthood 
and are associated with more impaired social functioning [102, 103].

The current understanding of the processes that contribute to the high rates of 
comorbidities in ASD remains incomplete. Furthermore, there has been nearly no 
research on interventions involving comorbid presentations in ASD with other psy-
chological and psychiatric disorders.

Thus, research studies in this field that may provide important clues about the 
underlying mechanisms and potential risk and protective factors involved in ASD 
are highly required.

Targeting two comprehensive modules of processes likely involved in high rates 
of comorbidities in ASD may be mainly useful. The first class is central develop-
mental processes directly linked to the etiology of ASD, while the second module 
includes wider, transdiagnostic risk processes. It is possible that as developing 
social neural systems increasingly advance from “normal” trajectories in ASD chil-
dren, other processes related to mental health may be affected as well.
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In this vein, we can consider core processes such as social detachment and atypi-
cal social information processing in the possible pathogenesis of comorbid condi-
tions. As an example, decreased hedonic responses to the social-emotional bids of 
others may be involved in the development of oppositional problems or aggression.

The second class is transdiagnostic processes that are not necessarily causally 
linked to the core impairments of ASD. Rather, they are “fundamental” in the sense 
that they are central to many forms of psychopathology. There are many transdiag-
nostic processes such as attentional avoidance, persistent negative affect, and rumi-
nation. Poor emotion regulation, for example, is a transdiagnostic process that has 
been linked theoretically to the high rates of anxiety disorders seen in people with 
ASD [104, 105]. These processes occur over the course of development, and thus, it 
will be important for future research to consider the longitudinal course of comor-
bidity and the possibility of sequential comorbidities over the course of a life-
time [106].

The early identification and treatment of the psychological comorbidities are 
useful for symptom relief, quality of life and daily adaptive functioning.

However, it is also equally important to remember that comorbid conditions are 
not meant to take clinical attention away from core/primary ASD symptoms in need 
of immediate intervention.

Previous studies on ASD and their comorbidities used different criteria and 
assessment tools completed by different informants (e.g., parents, teachers, practi-
tioners/clinicians or self-report), resulting in different diagnoses and comorbidity 
results. Thus, future research and intervention should concentrate on comprehen-
sive standardized diagnostic methods and assessments for ASD and psychiatric and 
psychological comorbidities. Furthermore, some ASD impairments overlap with 
some of the features of comorbid disorders making it difficult to differentiate 
between them. For example, OCD diagnosis and ASD impairments have overlap-
ping rituals in common. These include repetitive behavior and rigid adherence to 
routines. However, whilst OCD compulsions are characterized by distress and anxi-
ety, similar rituals of autistic patients are often a rewarding and pleasant experience 
for the child and free of such anxiety and distress. Thus, assessment tools should 
have the ability to distinguish clearly between pure ASD and ASD and its 
 comorbidities. In some cases, it may be difficult to extract information for self-
report from ASD patients (e.g., self-report of feelings and how those feelings impact 
daily functioning) due to inherent impairments in social interaction and verbal com-
munication. This can result in a diagnosis being missed and the patient not receiving 
helpful intervention.

Cognitive behavioral therapy (CBT) has been shown to be effective in treating 
ASD and some of its comorbidities. However, research in this particular area come 
with a significant set of limitations. These limitations included small population 
size, a lack of standardization in applying CBT, and the neglect of ASD comorbidi-
ties and/or different outcomes for different comorbidities of ASD (e.g., improve-
ment in some but not for others). This highlights the importance of individualizing 
treatment plans for different comorbid diagnoses.
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In conclusion, improved, comprehensive, diagnostic assessment tools, taking 
into account various comorbidities and how they relate to ASD, are needed. Once 
accurate diagnoses have been made, better individualized and comprehensive inter-
ventions should be constructed to yield optimum outcomes for patients.
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Abstract Autism spectrum disorder (ASD) is a heterogeneous group of neurode-
velopmental disorders with poorly understood etiology that are defined exclusively 
on the basis of behavioral observations. This disorder has been linked to increased 
levels of oxidative stress and lower antioxidant capacity. Oxidative stress in autism 
has been studied at the membrane level and also by measuring products of lipid 
peroxidation, detoxifying agents (such as glutathione), and antioxidants involved in 
the defense system against reactive oxygen species (ROS). Several studies have 
suggested alterations in the activities of antioxidant enzymes such as superoxide 
dismutase, glutathione peroxidase, and catalase in autism. Additionally, altered glu-
tathione levels and homocysteine/methionine metabolism, increased inflammation, 
excitotoxicity, as well as mitochondrial and immune dysfunction have been sug-
gested in autism. Moreover, environmental and genetic risk factors may intensify 
vulnerability to oxidative stress in autism. Collectively, these studies suggest 
increased oxidative stress in autism that may contribute to the development of this 
disease both in terms of pathogenesis and clinical symptoms. Antioxidant 
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 supplementation, or ways to improve the altered metabolite levels in the intercon-
nected transmethylation and transsulfuration pathways, has been associated with 
decreased autistic behaviors and severity. This chapter provides a conceptual frame-
work on oxidative stress and antioxidants utility. These types of interventions should 
be further studied in order to determine their effectiveness at improving metabolic 
imbalances.

Keywords ASD · Autism · Oxidative stress · Reactive oxygen species · Free 
radicals · Antioxidants

1  The Concept of Oxidative Stress

Oxidative stress is a condition that occurs due to the imbalance between synthesis 
of reactive oxygen/nitrogen species (ROS/RNS) and the organism’s ability to reduce 
their deleterious effect by antioxidative protection systems. It arises due to enhanced 
ROS/RNS formation or from a reduced synthesis or functional antioxidant protec-
tive ability, being resulting in diminished combating against oxidative attack towards 
target biomolecules. ROS or RNS is not just considered a species able to damage 
biomolecules but is also involved in chemical means of defense or detoxification 
and for cell signaling and biosynthetic reactions. Free radical-induced oxidative 
damage has been confirmed as a key contributor to the occurrence, progression and 
severity of over a 100 pathogenic disease conditions such as Alzheimer’s, 
Huntington’s, Parkinson’s disease, autism and amyotrophic lateral sclerosis, diabe-
tes mellitus, cardiovascular and inflammatory diseases, emphysema, cataracts, and 
cancer [1, 2].

2  Occurrence, Characterization and Activity of Reactive 
Oxygen Species

Free radicals are reactive chemical substances capable of independent existence 
with an unpaired electron in the external orbit. ROS are represented by free radical 
(superoxide (O2∙), singlet oxygen (1/2 O2), and the hydroxyl radical (∙OH) and non- 
free radical oxygenated molecules (hydrogen peroxide (H2O2). Both endogenous 
and exogenous free radical generation cannot be hindered, owing to continuous 
occurrence of metabolic processes and the action of environmental oxidants. They 
are synthesized in the phagocyte during exposure to microbial infections in cells 
during aerobic processes such respiration or during extensive physical activity or by 
the action of exogenous pollutants/toxins such as alcohol, pesticides, cigarette 
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smoke, ozone ionizing, and UV radiations. In low concentrations, ROS act as the 
signaling molecules which are reported in the regulation of apoptosis, cell 
 proliferation and gene expression by regulating various transcription factors. Their 
phagocytic generation is essential for defense mechanisms against few bacterial or 
fungal strains [3]. During the aerobic process, oxygen is employed to oxidize hydro-
gen and carbon-containing biomolecules to generate chemical energy and heat, 
which is reduced stepwise to a series of intermediate compounds such as hydroper-
oxyl radical, superoxide radical anion, hydrogen peroxide, hydroxyl anion, and 
hydroxyl radical.

 O e H HO2 2+ + →− +

 

 HO H O2 2→ ++ −•

 

 O 2H e H O2 2 2
•− + −+ + →  

 H O e HO HO2 2 + → +− −

 

 HO H e H O+ + →+ −
2  

A superoxide radical anion is formed by various oxidases such as dihydronico-
tinamide adenine dinucleotide phosphate oxidase, cyclooxygenase, xanthine oxi-
dase, etc., when an electron enters the П∗ 2p orbitals of oxygen. Increased 
concentrations of superoxide radical anions are due to processes that occur during 
normal activities like oxidative phosphorylation, which yields ATP in the mitochon-
drial electron transport chain (ETC). In the ETC, the electrons are transferred by 
four membrane bound complexes from NADH and FADH2 to molecular oxygen by 
yielding water [4]. Electrons may leak from the inner membrane and are able to 
reduce molecular oxygen to superoxide radical anions (O2∙). Although superoxide 
radical is considered a stronger reducing agent than iron complexes like cytochrome 
C and ferric-EDTA, it proved to be weak against ascorbic acid and thiols in an aque-
ous solution. Hydroperoxyl radical in its protonated form is reported to have strong 
oxidant and reductant properties with much less stability at physiological pH (7.4). 
Superoxide anion is an active nucleophile which can attack positively charged sub-
stances and react with hydrogen donors such as tocopherol and ascorbate. Superoxide 
anion form spontaneously or by the enzyme superoxide dismutase to generate 
molecular oxygen and hydrogen peroxide [5].

 2O 2H O H O2 2 2 2
•− ++ → +  

Hydrogen peroxide can be formed by superoxide and/or by direct transfer of two 
electrons to molecular oxygen with the help of urate oxidase, D-amino acid oxidase, 
and glucose oxidase. After interaction with metal ions, it forms highly reactive radi-
cals. H2O2 attacks the hemeprotein and releases iron, inactivates enzymes and oxi-
dizes lipids, DNA, -thiol groups and keto-acids [5]. It is depleted via conversion to 
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water by catalase (CAT), the ferriheme-containing enzyme. The OH· radical is a 
potent radical species formed from Fenton-type reactions or by the radiolysis of 
water [6]. It can interact at its site of generation with proteins, DNA, lipids, sugars, 
amino acids, and metals. Myeloperoxidase present in macrophages and neutrophils 
is responsible for the formation of hypochlorous acid from hydrogen peroxide in the 
presence of chloride anion. Hypochlorous acid induces oxidative chlorination on 
proteoglycans, lipids, amino acids, and other membrane components. Molecular 
oxygen is not considered a free radical, but has high reactivity. This happens if the 
spin restriction is removed enhancing its oxidative power [6]. Ozone oxidizes lung 
proteins, lipids and DNA.

3  ROS and Biomolecular Impairment

By targeting all substances, ROS modulates the function of all these bio-molecules 
in the cell. Lipids are the most susceptible to oxidative processes especially the 
polyunsaturated fatty acids (PUFA) like arachidonic acid and docosahexaenoic acid 
that form malondialdehyde and 4-hydroxynonenal, which are the indicators of lipid 
oxidative decay. The oxidation of PUFA induces cell membrane damage, as they are 
rich in PUFA. Peroxidation of PUFA leads to the formation of isoprostanes and 
results in generation of reactive aldehydes, like 4-hydroxynonenal and malondialde-
hyde. The 4-hydroxynonenal binds to proteins and impairs their function. ROS oxi-
dize the amino acids present in the backbone and side chain of proteins resulting in 
unfolding and misfolding leading to inactivity. Oxidation of thiol groups and car-
bonylation of amino acids lead to the generation of advanced glycation end prod-
ucts. Like other amino acids, cysteines and methionines readily undergo oxidization, 
reversible due to the activity of disulfide reductases. Oxidation of proline, arginine, 
lysine, and threonine forms carbonyl derivatives which are markers of ROS- 
mediated protein oxidation [7]. Aromatic amino acids are prone to oxidation reac-
tion and forms different oxygenated products—tyrosine reacts with OH radical to 
form dityrosine, with nitrogenated species to form 3-nitrotyrosine and with hypo-
chlorite oxide to form 3-chlorotyrosine. It also reacts with nucleic acids and causes 
DNA strand breaking, DNA-protein crosslinking and modification of purine and 
pyridine-base structures resulting in DNA mutations. Currently marker referred to 
for DNA oxidation is 8-hydroxydeoxyguanosine which arises from the oxidation 
process of guanosine by OH∙. Oxidation of RNA bases leads to the breakage of the 
nucleotide strand and by ribosomal dysfunction and forms a homologue of 
8-hydroxydeoxyguanosine and 8-hydroxyguanosine [8]. As compared to DNA, 
RNA can undergo oxidation easily, as it located near ROS occurrence sites in 
the cell.

An interesting aspect to oxidative stress is that the damage of the mitochondrial 
membranes and the protein structure itself further enhances reactive oxygenated 
species generation, leading to DNA damage and cell death by apoptosis. Apoptosis 
signal regulating kinase 1 is considered an important marker of apoptosis initiated 
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by oxidative stress. Its activity is primarily controlled by hioredoxin-1, the redox 
sensitive oxidoreductase that binds the reduced form of apoptosis signal regulating 
kinase 1. When thioredoxin-1 is oxidized, the binding to apoptosis signal-regulating 
kinase 1 is hindered resulting in activation of the subsequent c-Jun N-terminal 
kinase apoptosis pathway. The activity of apoptosis signal-regulating kinase 1 is 
also tuned by other redox proteins including glutaredoxin, heat-shock proteins, and 
glutathione S-transferase. Another regulator of oxidative-mediated apoptosis is p53 
which, after its translocation in the nucleus, is capable of triggering proapoptotic 
genes [9].

4  Antioxidant Defense Mechanisms

Excessive production of free radicals or impaired antioxidant mechanism may cause 
oxidative stress which may induce several pathophysiological processes. The two 
main roles of cellular antioxidant defense mechanism are to prevent the generation 
of free radicals and to inactivate them after generation. Impaired antioxidant defense 
mechanism can result in cell membrane damage, alteration in membrane fluidity 
and permeability and oxidative changes in proteins, lipids and DNA. Several enzy-
matic and non-enzymatic defense molecules are evolved to inhibit the oxidant 
attack by transferring the excess electrons during the detoxification process.

5  Enzymatic Antioxidants

Antioxidant enzymes such as superoxide dismutase, catalase and glutathione per-
oxidase play a key role against ROS. As superoxide is the main ROS formed by 
various sources, its dismutation to H2O2 by SOD is part of the key protection for 
each cell. SOD exists in three forms: Cu-ZnSOD found mainly in the cytoplasm 
while MnSOD is a key enzyme of mitochondria. H2O2 is reduced to water by the 
activities of catalase and/or glutathione peroxidase (GSH-Px). Catalase consists of 
four identical monomers (tetramer), each of them having a heme group at its active 
site. H2O2 is degraded via the conversion between two forms of catalase- ferricatalase 
and compound I. Catalase utilizes NADPH as a reducing equivalent to avert oxida-
tive inactivation of the enzyme by H2O2 as it is reduced to water. Like catalase, 
GSH-Pxs is a family of tetrameric enzymes which consist of a selenocysteine in 
their active sites and utilize GSH to reduce H2O2 and lipid peroxides also to their 
alcohols. Four forms of GSH-Pxs exist and are encoded by different genes: 
GSH-Px-1 is ubiquitous and reduces fatty acid peroxides and H2O2; GSH-Px-2 is 
present only in gastrointestinal epithelial cells that reduce dietary peroxides. 
GSH-Px-3 is found in the extracellular compartment which is the most important 
mammalian extracellular antioxidant enzyme. GSH-Px-4 is a membrane bound 
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enzyme that reduces esterified lipids by using several low-molecular-weight thiols 
as reducing equivalents [10].

6  Non-enzymatic Antioxidants

The examples for non-enzymatic antioxidants are low-molecular-weight com-
pounds, such as vitamins (vitamins C and E), β-carotene, uric acid and GSH, a tri-
peptide (L-γ-glutamyl-L-cysteinyl-L-glycine). Water-soluble vitamin C (ascorbic 
acid) acts both as intracellular and extracellular aqueous-phase antioxidant that 
mainly scavenges oxygen free radicals. It helps revert vitamin E free radicals into 
vitamin E. Lipid-soluble vitamin E is found primarily inside the cell membrane and 
acts against oxidant-induced membrane injury. GSH is present in abundance in all 
cell compartments and is the key antioxidant. It helps detoxify H2O2 and lipid per-
oxides by GPx. GSH reduces H2O2 to H2O and O2 by donating an electron. Oxidized 
glutathione is reduced again into GSH by glutathione reductase that utilizes NAD(P)
H as the electron donor. GSH donates the protons to membrane lipids and is involved 
in protection from oxidant attacks. It acts as cofactor for various detoxifying 
enzymes GPx and GSH transferase. It helps in converting oxidized vitamin C and E 
into their active reduced forms. In addition, thiol compounds, such as thioredoxin, 
are capable of detoxifying hydrogen peroxide, but, in turn require conversion back 
to their reduced form by thioredoxin reductase. Ceruloplasmin and transferrin also 
play important roles by sequestering free iron ions, thereby inhibiting the Fenton 
reaction and production of OH•. Carotenoids are plant pigments that are able to 
react with eroxyl (ROO), hydroxyl (OH), and superoxide (O2) radicals [11]. They 
showed high antioxidant effects in low oxygen concentration and also inhibited the 
oxidant-induced NF-kB activation and inflammation.

7  Brain and Autism

The nervous system is vulnerable to oxidative stress-mediated injury because of the 
following: (1) its high energy needs, the brain consumes more oxygen leading to 
the excessive production of ROS; (2) neuronal membranes contain more polyun-
saturated fatty acids susceptible to free radical attack; (3) high membrane surface 
area to cytoplasmic volume ratio; (4) specialized neuronal activity and synaptic 
transmission requiring competent membrane function; (5) axons are prone to 
peripheral injury; (6) neuronal activities are also affected by disruptions; (7) the 
excitotoxic nature of glutamate, a major neurotransmitter also causes oxidative 
stress; (8) enhanced Ca2+ flow across the neuronal membranes and intrusion of ion 
transport maximizing intracellular Ca2+ often leading to OS; (9) oxidation of neu-
rotransmitters can produce O2 and quinones that reduce glutathione; (10) formation 
of Iron throughout the entire brain which releases iron ions capable of catalyzing 
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free radical reactions; (11) modest antioxidant defense mechanisms, in particular, 
low levels of catalase, glutathione peroxidase and vitamin E; (12) ROS directly 
downregulates proteins of tight junctions and indirectly activates matrix metallo-
proteinases (MMP) that contribute to open the blood–brain barrier (BBB); (13) 
activated microglia  produce ROS and cytokines in a perpetual process; (14) cyto-
chrome P450 produces ROS; (15) loss of trophic support can activate NADPH oxi-
dase, which increases ROS; (16) the presence of hemoglobin within the neural 
tissues secondary to spontaneous, iatrogenic, or traumatic causes is neurotoxic, 
heme and iron are released and promote ROS, neuronal mitochondria generate O2, 
and the interaction of NO with superoxide can be implicated also in neuronal 
degeneration; and (17) Neuronal cells are nonreplicating and thus are sensitive to 
ROS.  In comparison with other organs, the neuronal network may be especially 
vulnerable to ROS-mediated injury because of the anatomic, physiological, and 
biochemical properties of the brain.

8  Autism and Oxidative Stress

Numerous studies have indicated the presence of oxidative stress in individuals with 
ASD [12] and their parents [13]. Direct markers of lipid peroxidation such as serum 
lipid peroxides and thiobarbituric acid reactive substances, urinary isoprostanes and 
their indirect markers like phospholipase A2 and loss of membrane lipoprotein 
asymmetry are higher in autism. Moreover, the levels of pro-oxidants such as 
organic toxins including perchlorethylene, hexane and pentane and heavy metals 
like mercury, lead, and arsenic were accumulated in the ASD patients. Enhanced 
levels of cytokines and xanthine oxidase were found in the blood circulation of 
autistic patients, and both can generate free radicals. Few viruses and bacteria 
induce excess local production of NO• in the gut, which can affect the brain by their 
circulation. Higher levels of nitrite in autism may link chronic gut and brain injury. 
Previous studies have suggested the presence of a leaky BBB in autism, relatively 
sensitive to oxidative damage. Overstimulation of excitatory receptors in autistic 
patients leads to oxidative injury in neurons and enhanced oxidative stress enhances 
the release of glutamate and stimulation of excitatory receptors. Muscarinic impair-
ment found in autism may exaggerate oxidative stress as muscarinic signals shield 
the neurons from oxidative stress and apoptosis.

Abnormal metabolism of glutathione particularly with low reduced glutathione, 
elevated oxidized glutathione, and diminished glutathione redox ratio was found in 
the temporal cortex and cerebellum of autistic patients, and increased heme oxygen-
ase- 1 was reported in the parietal and frontal lobes and the cerebellum. SOD activity 
has been shown to be decreased, increased, or unchanged in plasma and erythrocyte. 
Erythrocyte SOD activity was found to be higher in ASD children than in the con-
trol group in this study. An increased SOD level is considered a compensatory 
response as protection against the cell damage caused by oxidative stress. The cata-
lase enzyme is directly involved in ROS elimination. Previous studies have reported 
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that catalase activity is reduced in erythrocytes, but remains unchanged in plasma 
and erythrocyte. Consistent with these increased oxidative stress biomarkers in chil-
dren with autism, reduced endogenous antioxidant capacity, specifically the total 
GSH levels, altered GPx, SOD and CAT activities, were found in individuals with 
autism as compared to controls.

9  Clinical Implication

Several double-blind, placebo-controlled therapeutic trials in autism are being con-
ducted using potent antioxidants such as vitamin C, carnosine, zinc, reduced gluta-
thione, fish oil (rich in EPA, Eicosapentaenoic acid is an omega-3 fatty acid), 
melatonin, and vitamin B-6 in combination with magnesium. In some clinical trials, 
treatment with high dose vitamin C or carnosine or combined vitamin B-6 and mag-
nesium improved the behavior of individuals with autism. Additionally, melatonin 
has been reported to be useful in the treatment of sleep disorders in autism (https://
clinicaltrials.gov/). Overall, oxidative stress-related metabolites could also have 
potential use as biomarkers for diagnosis and help determine future intervention/
treatments.

Developing new therapeutic strategies targeting the mitochondria may shed a 
new light onto autism treatment. Antioxidants such as CoQ10, NADH, α-lipoic acid 
(LA), glutathione and Mito Q, Szeto Schiller peptide all have some potential thera-
peutic value in the treatment of certain neurodegenerative diseases where mitochon-
drial dysfunction is implicated through catabolizing H2O2. Preventive antioxidants 
leading to neuronal protection against many oxidative damages can be used to treat 
behavioral and cognitive symptoms of ASD.  Examples include enzymes like 
GSH-Px, MnSOD and Cu-ZnSOD besides repair enzymes such as lipases and DNA 
repair enzymes.

The reader is referred to Table 1 for the therapeutic implications of antioxidants 
in experimental models of autism, and Table 2 for the therapeutic role of antioxi-
dants in clinical trials of autistic patients. Glutathione is present in pools within 
mitochondria and freely in the cytosol. Reduction of mitochondrial glutathione lev-
els has been associated with neuronal susceptibility to oxidative stress. Glutathione 
deficiencies increase vulnerability to oxidative stress in children with autism. 
Excessive ROS and depleted antioxidants/antioxidant enzymes can create a nega-
tive cycle within mitochondria, which has been linked to mitochondrial dysfunction 
in autism. Figure 1 shows the interconnected pathways of GSH biosynthesis, and 
transmethylation and transsulfuration reactions for possible diet/supplementation 
interventions. Metabolic abnormalities have been noted in autism and are related to 
the interconnected pathways of folate, methionine and glutathione metabolism. 
Metabolic differences between those with autism and controls exist in transmethyl-
ation and transsulfuration pathways. Children with autism exhibit lower levels of 
adenosine deaminase (ADA), which leads to increase levels of adenosine or homo-
cysteine. This accumulation inactivates S-adenosylhomocysteine hydrolase (SAHH) 
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Table 1 The therapeutic implications of antioxidants in experimental models of autism

Antioxidant Neurotoxin
Animal 
model Mechanism References

Resveratrol Norethindrone Sprague–
Dawley 
rats

Enhanced estrogen receptor 
β, which regulates the basal 
expression of superoxide 
dismutase
Upregulated estrogen-related 
receptor α (ERRα), which 
regulates mitochondrial 
function and lipid 
metabolism

[14]

Leptin and camel 
milk

Valproic acid Sprague–
Dawley 
rats

Ameliorated the oxidative 
stress (significant reduction 
in the MDA level and 
enhancement of activities of 
SOD, GPx and catalase) and 
its related inflammation and 
apoptosis

[15]

Hesperetin and 
nano-hesperetin

Valproic acid Wistar–
Albino 
rats

Attenuated the oxidative 
stress (significant reduction 
in the MDA level and 
enhancement of the 
expression of SOD, GPx and 
catalase) and its related 
inflammation and apoptosis

[16]

Flavonoid – – Regulation of the glyoxalase 
pathway is an antioxidant 
defense mechanism 
(Review)

[17]

Resveratrol – BTBR T+ 
Itpr3tf/J 
(BTBR) 
mice

Attenuated the oxidative 
stress mediated inflammation 
and apoptosis related 
signaling markers

[18, 19]

Minocycline and 
doxycycline

Terbutaline Albino 
Wistar rats

Ameliorated the oxidative 
stress mediated inflammation

[20]

N-acetylcysteine 
(NAC)

Valproic acid Sprague–
Dawley 
rats

Regulation of the canonical 
Wnt signaling pathway has 
been implicated in oxidative 
processes

[21]

Selol, an organic 
selenium donor

Lipopolysaccharide 
(LPS)

Wistar rats Nullified the 
neuroinflammation by 
inhibiting pro-inflammatory 
cytokine release, by boosting 
antioxidant systems and 
BDNF level

[22]

(continued)
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therefore increasing S-adenosylhomocysteine (SAH) and inactivating methyltrans-
ferase. Methylation is hindered in children with autism. Protein synthesis is also 
reduced due to insufficient methionine levels, which has major downstream effects. 
Cysteine levels are diminished and are the ultimate cause of decreased glutathione 
production in this disorder. Various ways to ameliorate the abnormalities in the 
transmethylation and transsulfuration pathways and their consequences have been 
studied in cardiovascular, cancer, autoimmune conditions and neurodegenerative 
diseases. Increased antioxidant support is needed to maintain proper health in these 
conditions and could be a novel pharmacologic intervention in autism.

Table 1 (continued)

Antioxidant Neurotoxin
Animal 
model Mechanism References

Resveratrol Propanoic acid Wistar rats Suppressed the oxidative- 
nitrosative stress, 
mitochondrial dysfunction, 
inflammation and also 
amelioration of 
neurobehavioral and 
biochemical deficits

[23]

Docosahexaenoic 
acid

Valproic acid Male and 
female 
Wistar rats

Alleviated oxidative stress 
mediated apoptosis

[24]

Laser acupuncture Valproic acid Wistar rats Repaired brain damage and 
reduced autism-like 
behaviors and decreased 
oxidative stress in the cortex, 
striatum and hippocampus

[25]

Tagara Methyl mercury Adult 
Wistar rats

Ameliorated the oxidative 
stress mediated 
mitochondrial dysfunction

[26]

Sulindac Valproic acid Wistar rats Ameliorates autism-like 
behavioral abnormalities and 
inhibition of the oxidative 
mediated activation of the 
canonical Wnt pathway

[27]

N-acetyl-cysteine Propionic acid Male 
Western 
Albino 
rats

Ameliorated the impaired 
biochemical parameters 
representing neurochemical, 
inflammatory, detoxification 
and DNA damage processes

[28]

Bacopa monnieri 
(L.) Wettst

Sodium valproate Female 
pregnant 
rats

Improved behavioral 
alterations in two 
developmental periods, 
ameliorated oxidative stress 
markers and 
histopathological findings

[29]
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Table 2 The therapeutic role of antioxidants in clinical trials of autistic patients

Antioxidant Patient Outcome Treatment References

Dark chocolate 70% 
cacao and 30% organic 
cane sugar

Children 
with 
ASD

Improved social communication, 
unusual behaviors, and 
self-regulation behaviors of 
children with ASD

4-week [30]

Sulforaphane, a 
supplement with indirect 
antioxidant effects that 
are derived from broccoli 
sprouts and seeds

Children 
with 
ASD

Affected pathways of oxidative 
stress, amino acid/gut 
microbiome, neurotransmitters, 
hormones, and sphingomyelin 
metabolism

12-week [31]

Coenzyme Q10 
supplementation

Children 
with 
ASD

Reduced the MDA levels and 
enhanced total antioxidant status 
(TAS) assay, and antioxidant 
enzymes (superoxide dismutase 
or SOD and glutathione 
peroxidase or GPx) activity

12-weeks [32]

N-acetylcysteine (NAC) Children 
with 
ASD

Restored GSH levels and 
scavenges oxidants such as 
hydroxyl radical and hydrogen 
peroxide

10-weeks [33]

Camel milk Children 
with 
ASD

Decreased oxidative stress by 
alteration of antioxidant enzymes 
and nonenzymatic antioxidant 
molecules levels and 
improvement of autistic behavior

2-weeks [34]

Fig. 1 GSH biosynthesis and folate and transmethylation/transsulfuration pathways. Adapted 
from Toroser and Sohal [35]
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10  Conclusion

The notion of oxidative stress involvement in autism has been derived from several 
lines of evidences: elevated nitric oxide concentration, thiobarbituric acid reactive 
substance levels and xanthine oxidase activity have been detected in the red blood 
cells of autistic individuals. Consistent with these increased oxidative stress 
 biomarkers in children with autism, a reduced endogenous antioxidant capacity, 
specifically the total GSH levels, altered GPx, SOD and CAT activities were found 
in autistic individuals compared to controls. Further indications of oxidative stress 
role in autism are derived from evidence of impaired energy metabolism. Reduced 
synthesis of adenosine triphosphate (ATP) and higher lactate and pyruvate levels 
may suggest mitochondrial dysfunction in autism. The most critical function of 
mitochondria is producing ATP, the primary energy currency in the brain and in the 
body. Increased ROS metabolism induced by dysfunctional mitochondria could 
elicit chronic oxidative stress. The understanding of oxidative stress alterations and 
mechanisms in autism may lead to new diagnostic testing and therapeutic interven-
tion strategies in individuals with ASD.
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Abstract Autism spectrum disorder (ASD) encompasses a cluster of neurodevel-
opmental and genetic disorders that has been characterized mainly by social with-
drawal, repetitive behavior, restricted interests, and deficits in language 
processing mainly in children. ASD has been known to severely impair behavioral 
patterns and cognitive functions including learning and memory due to defects in 
neuroplasticity. The biology of the ASD appears to be highly complex and hetero-
geneous, and thus, finding a therapeutic target for autism remains obscure. There 
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has been no complete prevention or disease-modifying cure for this disorder. 
Recently, individuals with autism have been characterized by reactive neurogenesis, 
obstructions in axonal growth, heterotopia, resulting from dysplasia of neuroblasts 
in different brain regions. Therefore, it can be assumed that the aforementioned 
neuropathological correlates seen in the autistic individuals might originate from 
the defects  mainly in  the regulation of neuroblasts in the developing as well as 
adult brain. Nutrient deficiencies during early brain development and intake of cer-
tain allergic foods have been proposed as main reasons for the development of 
ASD. However, the integrated understanding of neurodevelopment and functional 
aspects of neuroplasticity working through neurogenesis in ASD is highly limited. 
Moreover, neurogenesis at the level of neuroblasts can be regulated by nutrition. 
Hence, defects in neuroblastosis underlying the severity of autism potentially could 
be rectified by appropriate implementation of nutraceuticals.

Keywords Autism · Neuroplasticity · Neuroblasts · Neurogenesis · 
Neurotransmission · Food and nutrition · Nutraceuticals

1  Introduction

The term Autism, derived from the Latin word “Autismus” by Paul Eugen Bleuler 
in 1911, refers to the mental state of individuals with schizoaffective disorders in 
early adolescence and adulthood [1]. In 1943, Leo Kanner proposed the term “autis-
tic disturbances of affective contact,” to describe a similar mental state in children 
[1, 2]. In 1944, Asperger used the term “autistic psychopathy” in his case report 
examining several similarities and some differences between symptoms of autism 
[1]. In 1981, Lorna Wing introduced the term Asperger’s syndrome and proposed 
the concept of autism spectrum disorder (ASD) [3]. As of today, ASD has been 
understood as encompassing a range of complex neurodevelopmental syndromes 
that cause language impairment and abnormal social behavior among children [4]. 
In accordance with the Diagnostic and Statistical Manual of Mental Disorders, 
Fifth Edition (DSM-5), autistic disorder, Asperger’s syndrome, Rett syndrome, 
childhood disintegrative disorder, and pervasive developmental disorder-not 
 otherwise specified (PDD-NOS) have been categorized under ASD [5]. Among 
individuals with ASD, the symptoms can be identified within 3 years of age [6]. 
ASD has been characterized by impairments in social interaction, speech pathology, 
attention deficits, and stereotypical and repetitive behaviors [4]. Other symptoms 
include difficulty in carrying out daily routines and poor self-care [4]. Depending on 
the severity of the disorder, the behavioral symptoms may vary from hyperactivity, 
aggression, obsessiveness, depression, anxiety, and sensory abnormalities to self-
injury [4]. The clinical symptoms have been known to overlap with seizures, gastro-
intestinal (GI) abnormalities, dysregulation of the immune system, and disruption in 
circadian rhythm [7]. ASD has been estimated to be increasing exponentially world-
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wide [8]. About 1% of the global population has been affected by ASD [9]. The risk 
of developing ASD appears to be higher in males than in females [10]. Recent stud-
ies suggest that an increased level of ubiquitin-protein ligase E3A (UBE3A) gene 
product, its copy number variations and duplication in the allele, in association with 
the regulatory activity of protein kinase A (PKA) and impaired synaptic transmis-
sion, contribute to the development of ASD [11]. Though there exist some contro-
versial reports, chronic inflammation and elevated  levels of the circulating 
pro- inflammatory cytokines such as TNF-α and IL-12 have been known to be asso-
ciated with ASD [12]. Moreover, an immunological response mediated by certain 
foods followed by the elicitation of allergic reactions through the activation of T 
cells have been shown to be linked with ASD [13]. Some associative studies revealed 
that the intake of certain foods like cow’s milk with immunogenic proteins appears 
to predispose the individuals to ASD [4, 14]. Additionally, recent data gathered from 
genome- wide association studies (GWAS) suggest that mutations, copy number 
variations, and SNPs in many genes appear to be linked with ASD [15]. Thus, ASDs 
appear to be complex and multifaceted disorders with prenatal exposure of drugs, 
malnutrition, endocrine dysfunctions, genetic, epigenetic, and nongenetic risk fac-
tors, and their reciprocal interactions being considered as the potential risk factors 
for the onset of the disease. However, the precise etiology of ASD remains obscure 
due to the abovementioned comorbidities. Therefore, the biology of underlying 
mechanisms of ASD and the therapeutic target remains unclear, making the avail-
ability of a complete cure much harder.

Notably, the behavioral symptoms of ASD appear to emerge in toddlers when 
brain development occurs in response to nutrition, learning, and environmental 
stimuli [4, 6]. The development of the cortex, cerebellum, hippocampus, and amyg-
dala has been reported to be different in the brain during the early postnatal period 
among individuals affected by ASD [16, 17]. An increasing body of evidence from 
brain-imaging and postmortem studies point to unusual cerebral growth followed 
by growth arrest coupled with aberrant neuroplasticity as the potential underly-
ing pathophysiology of ASD [18, 19]. Specifically, the neurogenesis and synapto-
genesis responsible for neuroplasticity of the brain have been known to be 
determined by the generation of neuroblasts and their migration, followed by layer-
ing and their integration into the neural circuit [20, 21]. Thus, proper development 
of the brain is determined by highly regulated neural stem cell (NSC)-derived neu-
rogenesis through an intermediate process called neuroblastosis [21]. Eventually, 
this neurogenic process in the developing adult brains can be regulated by ingested 
food, environmental stimuli, learning paradigms, and physical activities through a 
wide range of genetic, epigenetic, and signaling pathways [20, 22]. Considering the 
causative nature of ASD, malnutrition responsible for defects in the metabolic pro-
cess may play a critical role in the establishment of cytoarchitecture and neuroplas-
ticity through neuroblasts [21, 23]. Thus, abnormal regulation of neurogenesis at the 
level of neuroblastosis can be posited as a key cellular mechanism for the develop-
ment of ASD [22].

The Regulation of Reactive Neuroblastosis, Neuroplasticity, and Nutraceuticals…



210

1.1  Abnormal Brain Development and Reactive Neuroblastosis 
in Autism Spectrum Disorder

It has been well-established that abnormal neurogenesis is linked to the develop-
ment of neuropsychiatric, neurodegenerative, and neurodevelopmental disorders, 
including ASD [20, 22, 23]. Autistic children have been characterized by macro-
cephaly due to the abnormal production of neurons in their developing brains [24, 
25]. In ASD, abnormality in neurogenesis has been known to cause unusual growth 
of different regions of the cerebrum soon after birth [24–26]. This is mainly due to 
the overproduction of neurons primarily affecting the structures of the limbic sys-
tem [27]. The abnormal overgrowth occurs mainly in the regions responsible for 
emotional learning and memory, social behavior, and language processing [16, 20, 
22, 24]. Among them, abnormal neuroanatomical changes in areas of the cerebral 
cortex like the frontal and temporal cortices and limbic system (mainly the amyg-
dala and hippocampus) are affected in individuals with ASD [22, 25, 28]. Besides, 
abnormal development of the cerebellum resulting from substantial overprolifera-
tion of neuroblasts has been reported in subjects with ASD [8, 26]. In particular, 
abnormal development of the cortex has been studied extensively, and it has been 
predicted that the generation of a surplus amount of neuroblasts may be the underly-
ing cause for the development of ASD [25, 29, 30]. In order to ensure the develop-
ment of the cortex, radial glial cells (RGCs) need to undergo mitotic divisions in the 
developing brain in a highly regulated manner [19, 25]. Asymmetric divisions in 
glial cells can result in the generation of intermediate progenitors followed by neu-
roblastosis leading to the generation of the postmitotic neurons in the brain [25, 30, 
31]. Subsequently, symmetric divisions of intermediate progenitor cells in the sub-
ventricular zone (SVZ) can give rise to a subset of neuroblasts through transit- 
amplifying cells which migrate in an “inside–out” fashion to establish the six layers 
of the cortex [19, 25, 31]. RGCs display a characteristic bipolar structure with a 
short apical end foot at the ventricular zone and a long radial glial filament that 
spans the neocortex of the brain to support the migration of neuroblasts from the 
ventricular zone to constitute the pyramidal neurons of the cortical layers [19, 30, 
31]. This is done in such a way that the migration of neuroblasts leads to the cellular 
arrangement of the deeper layer first, followed by the systematic formation of the 
superficial layers of the cortex along with the guidance and support of RGCs [19, 
25, 31]. Therefore, an alteration in the generation and unusual migratory pattern of 
neuroblasts and abnormalities in their differentiation fate can lead to an unpredicted 
number and phenotype of neurons, thereby contributing to the abnormal laminar 
changes and aberrant synaptic plasticity of the cortex. Interestingly, ASD has been 
characterized by abnormal neurogenesis and aberrant migratory pattern of neuro-
blasts in the cortex [19, 25, 27]. In 1998, a neuropathological study by Bailey et al. 
indicated abnormal mitosis in the cortical regions, limbic system, and cerebellum in 
the brain tissues of subjects with ASD.  In 2007, a histology-based postmortem 
study by Hutsler et al. indicated the presence of abnormal neuronal populations in 
cortical regions of ASD subjects [32]. In 2010, Wegiel and colleagues demonstrated 
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dysregulation of neurogenesis, abnormal neuronal migration, and impaired neuro-
nal maturation in the cortex, hippocampus, and cerebellum in the brain of individu-
als with ASD [27]. These findings have been validated by subsequent studies, and 
therefore, the concept of altered neurogenesis resulting from the altered cell cycle 
event of neural progenitors and abnormal migration of neuroblasts has been consid-
ered a key event in neuropathological outcomes of ASD. Interestingly, it has been 
well-established that the Wnt signaling pathway and phosphatase and tensin homo-
log (PTEN) gene have a key role in the development of the central nervous system 
(CNS) and cell cycle regulation as they are important for the regulation of neuro-
genesis at the level of stem cell proliferation [33, 34]. Thus, mutations in the PTEN 
gene and the genes that are involved in Wnt signaling have been linked to the occur-
rence of abnormal neurogenesis-mediated macrocephaly in ASD. Besides, muta-
tions in some genes participating in the migration of neuroblasts in the developing 
brain have also been linked to ASD. For example, the T-brain-1 (TBR1) gene that 
encodes for a brain-specific T-box transcription factor has been known to play a 
decisive role in the regulation of neuronal migration and differentiation of interme-
diate progenitors to post neurons, thereby contributing to brain development [35]. It 
has been noted that missense mutations and de novo truncation in the TBR1 gene, 
responsible for the disruption of cortical neurogenesis, appear to be linked with the 
development of ASD [35]. Reelin (RELN)-mediated signaling has been a well- 
established regulator of neuronal migration during brain development. Several lines 
of evidence have ascertained that variants and functional loss of the RELN gene 
have been a potential risk factor for the development of ASD [36, 37]. Genetic loss, 
mutation, and defects in contactin-associated protein-like 2 gene (CNTNAP2) have 
also been found to be associated with ectopic migration of neuroblasts  in many 
neurological disorders [38]. Thus, CNTNAP2 has also been proposed as another 
potent candidate gene for the development of ASD [38]. While the role of distal-less 
homeobox (Dlx) genes has been well-established in the regulation of migration of 
neuroblasts with the commitment of GABAergic phenotype, a subset of ASD sub-
jects have been characterized for the presence of Dlx gene variants [39]. In addition 
to this, genetic abnormalities and variation in genes that are essential for neuronal 
migration such as astrotactin 1 (ASTN1) [40], autism susceptibility candidate 2 
(AUTS2) [41], WD repeat and FYVE domain - containing 3 (WDFY3) [42], and 
NudE neurodevelopment protein 1 (NDE1) [43] have been implicated as the risk 
factors of ASD. Notably, reactive neuroblastosis and ectopic migration of neuro-
blasts have recently been identified as central cellular traits responsible for abnor-
mal neurogenesis in many neurological syndromes including Huntington’s disease 
(HD) [23]. Interestingly, reactive neuroblasts have been proposed to have immuno-
genic properties during brain pathological state [21]. However, the role of reactive 
neuroblastosis in neuropathogenesis has been less  explored in the context of 
ASD. Considering the immunogenic and neurogenic nature of reactive neuroblasts, 
reactive neuroblastosis might be an ultimate mechanism responsible for ASD. While 
neuroblasts represent the functional unit of the neuroplasticity, future investigation 
into the regulation of reactive neuroblastosis in subjects with ASD may provide a 
potential therapeutic target for the effective management of the neurological, behav-
ioral, and cognitive symptoms.
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2  Changes in Synaptic Components and Neurotransmitters 
in Autism Spectrum Disorder

Synapses are highly specialized structures, and their function through neurotrans-
mitters is essential for neuroplasticity [44]. Synaptic proteins that are present in the 
terminal ends of the axon and dendrites ensure the storage, trafficking, and release 
of neurotransmitters and their subsequent receptor-mediated neurotransmission [21, 
44]. Mutiple genetic factors have been proposed to be linked to the development of 
ASD, Presently, more than 40 genetic loci and 100 genes have been linked to ASD 
[45, 46]. Specifically, there are some mutations in synaptic proteins that have been 
linked to the development of ASD. For example, neurexin (NRXN) and synapsin 
(SYN) come under the group of presynaptic proteins. NRXNs are synaptic adhesion 
proteins that consist of three isoforms, namely NRXN1, NRXN2, and NRXN3 [47, 
48]. In ASD, multiple mutations or copy number variations have been identified in 
the NRXN genes [49]. The SYN is involved in vesicle-mediated neurotransmitter 
release and neurite outgrowth. While the family of SYN proteins also comprises 
three isoforms (SYN1, SYN2, and SYN3), mutations in the SYN1 gene have been 
identified as a risk factor for ASD and epileptic phenotypes [50].

Apart from NRXNs, neuroligins (NLGNs) and SH3 and multiple ankyrin repeat 
domains (SHANK) are part of the family of postsynaptic proteins linked with ASD 
[51]. The interaction between the single-pass transmembrane molecules, NRXNs 
and NLGNs, have been known to regulate the synaptogenesis in the brain though-
out the  life  [51].  Notably,  dysregulation in the interaction between NRXN and 
NLGN has been proposed to be involved in the development of abnormal neuro-
plasticity in ASD [51]. The SHANK proteins are required for the proper formation 
and function of N-methyl-D-aspartate  (NMDA) receptors  and are  attached to 
NLGNs with the help of postsynaptic density-95 (PSD-95) protein and involved in 
the funtions  of  postsynaptic  signaling machinery  [52]. Many  studies have indi-
cated that the defects in the isoforms of SHANK, namely, SHANK2 and SHANK3 
can also be associated with the development of ASD [52]. Gephyrin, a key postsyn-
aptic scaffolding protein, have also been interlinked to ASD in asscociation with 
NLGNs and  NRXNs [53]. Therefore, the dysregulation of NLGN, NRXN and 
SHANK proteins have been known to be associated with behavioral abnormalities 
noticed in ASD [47, 51]. Proteins are, as 2 has been found to be localized. Taken 
together,  dysregulation or mutation in pre- and postsynaptic proteins appears to 
contribute to the dysregulation of synaptic plasticity in ASD. SHANK3 strengthens 
the glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid recep-
tor (AMPAR) and NMDA receptor mediated synaptic transmission and increases 
glutamate release via the formation of transsynaptic signaling complexes 
with  NRXN  and  NLGN. Several  point mutations, deletions, and truncations in 
SHANK2, 3 genes have been identified in subjects with ASD [54]. Notably, SHANK3 
mutations have been correlated with moderate-to-severe intellectual deficits [52]. 
The function of SHANK3 on the synaptic stability is known to be modulated by 
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zinc,  in order to  enhance the strength of the  excitatory synaptic properties  [52]. 
While ASD-associated SHANK3 mutations have been proposed to retain respon-
siveness to zinc, dietary zinc supplementation appears to promote the recruitment 
of zinc-sensitive SHANK2 protein to synapses and alter the synaptic transmission 
via  NMDA-type glutamate receptors [52]. Mouse models expressing mutant SHANK 
genes have been characterised by the defects in glutamatergic synaptic function and 
display increased anxiety and psychiatric distrubances [55, 56]. Therefore, gluta-
matergic synapses have gained major research focus for developing therapeutic tar-
get for the behavioral deficits  in  ASD.  Studies have revealed  that there are 
many  other neurotransmitter abnormalities  in  glutamate, γ-aminobutyric acid 
(GABA),  dopamine (DA), 5-hydroxytryptamine (5-HT), and oxytocin that can also 
lead  to  ASD.  The imbalance of excitatory glutamatergic neurotransmitters and 
inhibitory GABAergic neurotransmitters has been found to be closely associ-
ated with the pathogenesis of ASD [30, 57–59]. Deficiency in some dietary-derived 
essential compounds, such as the amino acid tryptophan, appear to be prominent in 
patients with ASD [60].

Neurotransmitter system dysfunction has been known to affect neuronal cell 
migration, differentiation, and synaptogenesis, eventually affecting the neuroplasti-
city of the brain [21, 61]. The function of neurotransmitters in the brain is linked not 
only to synaptic remodeling but also to other roles including brain development and 
cortical and cerebellar organization. Thus, defects in neurotransmitter systems 
including serotonin, dopamine, noradrenaline (norepinephrine), GABA, glutamate, 
and neuropeptides and their subsequent receptor-mediated signal pathways and 
gene regulation have been implicated in the development of ASD [61]. Serotonin 
(5-hydroxytryptamine [5-HT]) is an important biogenic amine that has wide- ranging 
effects on numerous physiological processes such as circadian rhythm, appetite, 
mood, sleep, anxiety, motor activity, and cognition [57, 62]. The levels of serotonin 
in the circulatory and the digestive system have been found to be high among those 
with ASD [57, 62]. Tryptophan depletion has previously been shown to result in an 
increase in autistic behaviors. Nonetheless, it has been proposed that there exists a 
normal developmental process characterized by high serotonin levels typically 
in  children up to 5 years of age which is disrupted in autistic subjects  [57, 63]. 
Fatemi et al. [66] reported around 50% decrease in GABA-synthesizing enzymes, 
GAD65 and GAD67, from different parts of the cerebellum of subjects with 
ASD.  Individuals with autism experience a proportionately high prevalence of 
 seizures, with temporal lobe epilepsy developing in one-fifth to one-third of 
affected subjects, suggesting an abnormality in the GABA system [67]. The change 
in levels and funtions of neurotransmitters including GABA, glutamate, DA, and 
5-HT have also been related to exposure of some neurotoxins like organochlorines, 
organophosphates, and phthalates [68]. Hence, the effect of neurotoxic compounds 
on the functioning of neurotransmitters might also play a key role in the develop-
ment of ASD.  Taken together, aberrant  neural transmission has been one of the 
major underlying mechanisms for ASD.
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3  A Potential Link Between Deficiency in Dietary 
Supplements, Foodborne Factors, and Autism  
Spectrum Disorder

Exponentially increasing experimental data and population-based studies have sig-
nified that the pathological changes of ASD appear to originate during fetal devel-
opment. Neurological and behavioral correlates of ASD in the fetus have been 
suggested to be acquired from the metabolic abnormalities of maternal origin. An 
earlier study by Krakowiak et al. [69] indicated that metabolic disorders including 
obesity and diabetes during gestation may predispose the risk for development of 
ASD in the fetus. Proper intake of nutrients during pregnancy is crucial for brain 
development and maturation [22, 70]. Dietary deficiency or intake of certain allergic 
foods in association with genetic, biochemical factors or immunological reactions 
can be transmitted from mother to fetus and elicit some adverse effects on the devel-
oping brain of the fetus [71]. Some associative measures of dietary and nutritional 
status in children have advocated that the deficiency of certain supplements, vita-
mins and minerals including omega-3 fatty acid, pyridoxine (vitamin B6), folic acid 
(vitamin B9), cholecalciferol (vitamin D), tocopherols (vitamin E), magnesium, 
calcium, potassium, iron, and zinc can be the potential risk factors of ASD [72–74]. 
For example, the deficiency of zinc has been associated with ASD [75, 76]. 
Moreover, the presence of abnormal levels of copper, calcium, folic acid, and iron 
has been known to interfere with the absorption of zinc [76, 77]. Pregnant women 
consuming excessive amounts of calcium- and iron-rich supplements may be 
encountered with a deficiency in the absorption of zinc [73]. In the prenatal stage, 
expression of the genes that are inventible for neuroplasticity and neurogenesis such 
as BDNF, SDF-1, CamKIIa, and PSD-95 appears to be affected by zinc and iron 
deficiencies. Some pharmacological agents like angiotensin-converting enzyme 
(ACE) inhibitors, used to treat high blood pressure, may also decrease blood zinc 
levels [78, 79]. Taken together, deficiency of zinc has been known to influence 
embryonic development and alters the neuroplasticity of the developing brain and 
poses as a potential risk factor of ASD [30, 80, 81]. Next, folic acid plays a very 
important role in erythropoiesis and development of the brain and spinal cord from 
the neural tube [82, 83]. While some studies have suggested that folic acid intake 
has been beneficial in treating ASD, abnormalities in folate metabolism and an 
overdose of folic acid during pregnancy have been linked with the development of 
the symptoms of ASD in progenies [84]. Though a trace amount of vitamin D can 
be found in food, it is generally obtained from the exposure of the skin to sunlight 
[85]. Deficiency in vitamin D synthesis due to some environmental factors, includ-
ing the weather, has been associated with ASD [85, 86]. Vitamin E has been consid-
ered a potent antioxidant that prevents oxidative stress in the body. Some reports 
indicate that children with vitamin E deficiency tend to display autism-like behav-
ioral changes [87]. While ASD has been characterized by elevated levels of free 
radicals, lipid peroxidation and mitochondrial deformity, lower levels of antioxi-
dants, including serum proteins, namely transferrin (iron-binding protein), 
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 ceruloplasmin (copper-binding protein), metallothionein (zinc-buffering protein), 
and glutathione, have been evident in ASD [75, 88]. Electrolytes like magnesium, 
calcium, and potassium are key cofactors responsible for signal transduction and 
many enzyme-based biochemical and cellular events. ASD has been characterized 
by a deficiency in these minerals, thereby indicating that electrolyte imbalance can 
also play a role in the development of ASD [88, 89]. Polyunsaturated fatty acids 
(omega-3 and omega-6 fatty acids) appear to play a decisive role in brain develop-
ment and regulation of neuroplasticity. Due to lifestyle modification, dietary intake 
of omega fatty acids seems to be reduced. As a result, deficiency in omega fatty 
acids has been recognized as a risk factor of ASD [90].

Gastrointestinal (GI) disorders have been a common hallmark in subjects with 
ASD [91]. On the one hand, abnormalities in the gut microbiome and GI disorders 
could interfere with the assimilation of dietary supplements leading to the defi-
ciency of vitamins, minerals, and other essential nutrients. However, on the other 
hand, it may lead to the dysregulation of the gut–brain axis [92]. The gut–brain axis 
has been known to influence brain development and behaviors through the modula-
tion of neurogenesis, neuroplasticity, and neuroendocrine and neuroimmune func-
tions [93]. Dairy and gluten-rich foods tend to greatly affect the homeostasis of gut 
microbe environment, and hence, such foods will impair the gut–brain axis and 
further impair neuronal functions [92–95]. Thus, dysregulation of the gut–brain 
axis, noticed in the individuals with abnormal behavioral patterns, can also be 
highly relevant for the onset of ASD [13]. Moreover, food that cause allergy and 
also the accumulation of some toxic elements such as cadmium, arsenic, and mer-
cury have been reported as candidate factors for the development of ASD [96]. 
Taken together, both malnutrition and overnutrition could severely impair neuro-
plasticity in prenatal and postnatal stages. The aforementioned difficulties, encoun-
tered due to substandard regulation of neural plasticity, could be alleviated or 
managed in part by nutrition. Hence, a distinct approach for improving neuroplasti-
city and neurogenesis through nutraceuticals needs to be promoted for the manage-
ment of ASD.

4  Nutraceuticals for the Effective Management of Autism 
Spectrum Disorder 

Nutraceuticals are part of a modern, scientific, and medical attempt to facilitate tis-
sue regeneration or prevention, management, and cure of diseases through the 
implementation of nutrition and dietary supplements in a regulated manner. In 
accordance with the US Foundation for Innovation in Medicine (FIM), any edible 
substance or a constituent of food which ensures medical or health benefits can be 
considered as nutraceuticals. Nutraceuticals include products or modified tradi-
tional foods with a dietary supplement of vitamins, minerals, amino acids, herbal 
derivatives, and probiotic microbes that claim to have beneficial effects in health 
care and medical systems [74, 97]. Recently, ASD has been subjected to the exten-
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sive intervention of nutraceuticals, as dietary supplements are considered to elicit 
no or minimal side effects when compared to synthetic and pharmacological agents 
[14, 95]. Data from several lines of evidence advocate that the risk and symptoms of 
ASD could be minimized by supplementation of multivitamins and minerals [75, 
88]. In general, vitamins and minerals function as coenzymes and cofactors respon-
sible for many metabolic and immunological pathways and the development and 
maintenance of organs, including the brain. Hence, the implementation of multivi-
tamin and mineral has been proposed to rectify key, if not all, susceptible metabolic 
and molecular pathways found in ASD.  Vitamin B6 is an essential cofactor for 
many neurotransmitter systems. Magnesium forms part of the essential macromin-
erals for the majority of enzyme-catalyzed reactions. Studies suggest that the com-
bination of vitamin B6 and magnesium tends to reduce the symptoms of ASD to a 
great extent [98]. Naturally occurring neurotransmitter reuptake inhibitors and pre-
cursors of neurotransmitters such as amino acids have been shown to manage abnor-
mal neurotransmission in the brain [63]. Likewise, some dietary fatty acids, 
antioxidants, herbal products, and probiotics have been proposed to yield beneficial 
effects among individuals with ASD. Precursors of L-tryptophan can be found in 
eggs, meat, cereal, milk, bananas, fish, seafood, and plums, though amino acid is 
also synthesized by gut microflora, which contribute to altered tryptophan metabo-
lism, yielding increased levels of indole-3-acetic acid and indolyl lactate [99]. In the 
eliminative approaches, a gluten-free and casein-free (GFCF) diet has been shown 
to minimize the risk and symptoms of ASD [100]. Gluten is an ingredient in many 
widely used food products such as wheat, barley, and grains such as oats. Wheat 
remains the major source of caloric intake (50%) in the majority of developed and 
developing countries. Gluten in the flour provides suitable viscosity and elasticity in 
the food. Glutens are resistant to digestion in the human GI tract, and thus, they 
confer to the permeability of the enterocytes in the small intestine. To reduce the 
effects of casein and gluten by eliciting an immune response, GFCF diet should be 
provided to children with autism. The GFCF diet has been known to give promising 
results in ASD [100]. Elevated positive results include coordination in the motor 
area, social interaction, eye contact, and ritualistic behavior and language. Moreover, 
dietary factors and gut–brain axis have been known to regulate neurogenesis in the 
brain depending on the associative elements in adulthood [101]. However, the roles 
of these factors specifically acting on the regulation of reactive neuroblastosis and 
ectopic migration of neuroblasts have not been specifically addressed in the devel-
oping brain. Thus, future studies are needed for further understanding of the modu-
lation of neuroblastosis by nutrition in subjects with ASD.

5  Summary and Conclusion

Though ASD, comprising a wide range of neurodevelopmental disorders, is caused 
primarily by inherited or acquired defects in numerous genes, malnutrition, espe-
cially during the prenatal stage and several environmental factors including air pol-
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lution and pesticides could also play a major role in either causing or aggravating 
the disease condition. As there is no complete cure for the disorder, current treat-
ment procedures aim at alleviating the symptoms, and one of the best ways to do so 
is by monitoring and controlling dietary intake. This, in turn, can be facilitated by 
the intake of nutraceuticals. Though the reason for inducing intolerance and the 
symptom-aggravating nature of certain diets has been proposed by a number of 
theories, the actual mechanism remains obscure. Nutraceuticals appear to amelio-
rate the pathogenic state by exerting control over the neurotransmitters and neuro-
blastosis; hence, the disease can be prevented, or proper functioning of the brain can 
be restored in ASD by the effective employment of nutraceuticals.
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“Let food be thy medicine and medicine be thy food.” – Hippocrates, 400 BC

1.1  Overview and Reflection

This section of the book discusses various kinds of specific foods and their nutrient 
qualities. Proper diet and nutrient intake form the foundations of good health. In an 
era of processed food, artificial and/or synthetic additives or preservatives the likes 
of food flavors, coloring, and dyes, appropriate nourishment along with a compre-
hensive understanding of nutritional value is exceedingly important to ensure good 
health. It is not possible to cover all food items in this chapter. However, few repre-
sentative types from different food families have been selected. The choice of food 
variety is predicated on ordinarily available, edible foods present in grocery stores 
in the West and the East.

Since the beginning of this millennium interest in and awareness of natural medi-
cine, often referred to as complementary and alternative therapies, have signifi-
cantly increased. While not part of conventional medicine, the practice has taken 
hold in our society and this wide acceptance emphasizes an integrative health 
approach that addresses body, mind, and spirit. For instance, the interaction of food 
products with the immune system leading to sensitivities, intolerance, or allergies is 
quite widespread where complementary and alternative medicine (CAM) is being 
used as a form of treatment or combined with conventional therapy. It is not the 
intent of this section to provide nutritional and dietary intervention or therapeutic 
approaches to food consumption as this will be covered in other chapters of this 
book. Indeed, personalized nutrition and emerging dietary management of various 
health conditions including autism have seen sharp increase as of late. Other parts 
of this book will address the use of food and diet as therapy for individuals with 
autism. These include probiotic intervention or the gluten-free/casein-free (GFCF) 
diet where some parents reported improvements in autism symptoms with this 
dietary regimen.

Part II
Specific Foods and Nutrient Qualities 

in Autism
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Of importance is the “gate” role that the gut plays. Nowadays, brain–gut interac-
tion and immune activation due to gut microflora are well established. Microbiota 
modification takes place as a result of the kind of food intake leading to microbiome 
changes. Research indicates there is a strong link between microbiome alteration 
and psychiatric disorders, mood changes and even ASD.

In the following chapters, the collection of vegetables, fruits, grains, nuts, seeds, 
spices, and other edible natural products gives scope for further research besides 
providing clues for useful food and their benefits. Our predisposition here is holistic 
in nature. Nutritional facts and values will be provided for each item discussed, and 
the general health benefits (antioxidant, antiinflammatory, anticancer, neuroprotec-
tive, immunostimulant, or other advantages) will also be mentioned and properly 
referenced. Families often turn to CAM when they have a long-lasting issue that 
conventional medicine has not addressed. CAM is often perceived as “natural” 
without the side effects of conventional medical treatments. We completely realize 
and comprehend that the role of certain active pharmacological ingredients or com-
pounds in food is neither substantiated nor fully understood and that additional 
research and rigorous clinical trials are needed to support some of the claims. We 
will make links to autism or other neurodevelopmental disorders where it is appro-
priate and pertinent. No less important, drawing attention to valuable characteristics 
permitting the management of comorbid health conditions like diabetes, cancer, and 
cardiovascular diseases. We believe this global, comprehensive perspective will 
benefit not only the scientists but also the community in its entirety.

Finally, health information access is at the fingertips of many families with many 
actively participate in their health management. Therefore, continued growth of 
interest in CAM can be anticipated. Clinicians must remember that parents may 
have different beliefs regarding the effectiveness of therapy/intervention methods 
for ASD management and different tolerance for treatment risks. Medical practitio-
ners must keep avenues of communication open with families and remain open-
minded regarding medical care of their patients. Moreover, the insightfulness and 
empathetic understanding that prescribing dietary/nutritional recommendations is 
highly personalized to the autistic individual. It is vital to discuss alternative thera-
pies for autism openly and compassionately as some CAM interventions or thera-
pies are supported by scientific evidence. Physicians need access to balanced 
education that will inform their own recommendations for specific CAM interven-
tions or therapies and adequate information to care for families who elect their use.

Part II Specific Foods and Nutrient Qualities in Autism
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1  Asparagus

 

Family: Asparagaceae
Genus: Asparagus
Common name: Asparagus, garden asparagus, or sparrow grass

Asparagus is a spring vegetable that is full of essential vitamins like vitamins A, B-1 
(thiamin), and C and minerals including trace mineral chromium and antioxidants 
(Table 1). It is low caloric with no fat or sodium. There are three varieties of aspara-
gus. The most common type of asparagus is green, but the white asparagus, which 
is more delicate and difficult to harvest and the purple, which is smaller with fruitier 
flavor are also available. In ancient times, it was used fresh when in season and dried 
or even frozen in winter.

Asparagus is rich in antioxidants like vitamins E and C and glutathione, as well 
as different flavonoids and polyphenols typically associated with decreased risk of 
cancers. Glutathione is a free radical scavenger capable of keeping several cancers 
in check including breast [1], bone [2], colon [3], prostate [4], larynx [5], and lung 
[6] cancers. Finally, asparagus is a potential source for prevention and treatment of 
liver cancer [7] as the asparagus polysaccharides can selectively inhibit carcinoma 
cell proliferation through induction of G2/M phase arrest and apoptosis via modula-
tion of Bax, Bcl-2, and capase-3. Moreover, asparanin A, a steroidal saponin or an 
amphipathic glycoside, has displayed antiproliferative activities against many can-
cers such as esophageal cancer, gastric cancer, lung cancer, and leukemia [7]. They 
also improved immune response by increasing IgG production and IL-12-specific 
response—cellular immunity—while inhibiting pro-inflammatory cytokines IL-6 
and tumor necrosis factor (TNF) with low allergic response and cytotoxicity at the 
same time [8]. As a rich source of dietary fiber, it promotes digestion and reduces 
blood pressure and cholesterol, thus lowering the risk of heart diseases, diabetes, as 
well as colorectal cancer [9–11]. The antidiabetic effect is attributed to chromium 
that enhances the ability of insulin to transport glucose, B vitamins like B-6 (pyri-
doxine) that regulates blood glucose levels, and antioxidants by improving overall 
insulin secretion and β-cell function, as well as the oxidative stress status [12]. The 
presence of folic acid is vital for DNA replication and reduces the risk of preg-
nancy-related complications and neural tube defects [13, 14]. High vitamin K con-
tent helps maintain healthy bones by absorbing calcium accordingly reducing the 
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risk of fractures and is crucial for proper blood coagulation [15]. It also contains 
high levels of the amino acid  asparagine which acts as a natural diuretic, thereby 
helping control mild hypertension [16] and some urinary tract conditions [17], and 
is necessary for the development and function of the brain [18]. Potassium in aspar-
agus helps lower blood pressure resulting in healthy blood vessels and heart [19]. 
Asparagus contains different B vitamins including B-6, B-9, and B-12 that are vital 
for controlling homocysteine levels via conversion to cysteine. Homocysteine is a 
definite trigger of inflammation leading to blood vessel damage, vascular dysfunc-
tion, and eventually a possible risk for atherosclerosis (hardening of the arteries) 

Serving size of 100 g of raw asparagus
Per serving % Daily valuea

Calories 20
Total fat 0.1 g 0
Saturated fat 0.0 g 0
Polyunsaturated fat 0.1 g
Monounsaturated fat 0 g
Total omega-3 fatty acids 10.0 mg
Total omega-6 fatty acids 40.0 mg
Cholesterol 0 mg 0
Phytosterols 24.0 mg
Total carbohydrates 3.88 g 1
Dietary fiber 2.1 g 8
Sugars 1.88 g
Protein 2.2 g 4
Vitamins

Vitamin A 15
Vitamin E 6
Vitamin K 52
Vitamin C 9
Vitamin B-6 5
Folic acid 13
Minerals

Sodium 0
Calcium 2
Magnesium 3
Copper 9
Potassium 6
Iron 12
Manganese 8
Zinc 4

National Nutrient Database
aBased on a 2000-calorie diet

Table 1 Asparagus nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)
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and blood clots [20], while vitamin B3 (niacin), on the other hand, was found to 
reduce joint inflammation and associated swelling including pain [21] perhaps due 
to interference in neutrophil migration and inhibition of the protein kinase C 
pathway.

There are no known conditions associated with asparagus consumption, but 
some people may experience a number of uncomfortable effects, especially when 
consumed excessively. Excessive consumption of asparagus can cause dry mouth 
and sudden weight loss. As a natural diuretic, it causes fluid loss from the body and 
dehydration. For this reason, it might also lead to dramatic drop in blood pressure 
when used with antihypertensive agents and could enhance the effect of diuretics 
too. On the other hand, the US NIH recommends that those who suffer from uric 
acid kidney stones should avoid asparagus and advises caution for those with low 
blood sugar. Its high fiber content may negatively affect the small intestine and 
cause constipation and abdominal cramps. High-complex carbohydrate in aspara-
gus is difficult to breakdown; hence, it will be fermented by bacteria triggering 
excessive gas formation. In some people, asparagus is associated with causing urine 
smell because of the presence of the chemical asparagusic acid which upon degra-
dation causes the sulfur-containing compounds to give rise to an unpleasant scent 
[22]. In others, runny or blocked nose, throat irritation, skin rashes, and itching are 
common allergic reactions. On rare occasions, few might develop nausea, head-
aches, and dizziness. Fewer people may exhibit allergic conjunctivitis with itching, 
redness, and swelling of the eyes.

2  Beets

 

Family: Amaranthaceae
Genus: Beta
Common names: Beet, table beet, garden beet, red beet, or golden beet

Beet is the taproot portion of the beet plant. It is a seasonal, ancient, prehistoric 
vegetable, frequently used as a natural coloring agent. Beet is a rich source of 
sucrose and is often used to make refined sugar. Beets are highly nutritious root 
vegetables, rich in vitamins and minerals (Table 2). It is a high source of folic acid, 
vitamin C, vitamin B complex, manganese, iron, copper, potassium, and antioxidants. 
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They are also a very rich source of phytochemical compounds, e.g., anthocyanins, 
carotenoids (lutein and zeaxanthin), glycine, and betaine including an important 
class of water-soluble, red and yellow indole-derived pigments called betalains 
[23]. The betalain red pigment betacyanins of the beets (include betanin, isobetanin, 
probetanin, and neobetanin) are considered a potent antioxidant with anti-inflam-
matory and anticancer agents [24]. Betanin is considered a food additive used as a 
coloring agent with E-number E162 (see Chap. 15). Beets are low caloric, low fat 
and cholesterol, and a great source of dietary fiber. However, beets have the highest 
sugar content of all vegetables and are relatively high in carbohydrates.

A number of benefits are associated with beetroot consumption. High iron con-
tent of the red beetroots helps prevent anemia and enhances the regeneration of red 
blood cells [25]. Rich levels of vitamin C augment iron absorption. β-Carotene—a 
form of vitamin A with antioxidant properties—was found to effectively reduce or 
slow down macular degeneration and protect the eyes against damaging free radi-
cals [26] and age-related cataract [27]. Raw beet greens have carotenoids zeaxan-
thin and lutein which were reported to protect the retina of the eye [28]. It has been 
suggested that phytochemicals in beetroots can protect against skin, lung, and colon 
cancers in multiple animal models [23]. It has been shown that the betacyanin pig-
ments in beets counteract cancerous cell growth [29]. Red beetroot extract has been 
demonstrated to have synergistic cytotoxicity effects with the anticancer drug, 
doxorubicin, in some human cancer cell lines [30]. Beet consumption also helps 
prevent cardiovascular diseases in several ways; this includes the effect of fiber 
which can decrease the level of triglycerides and low-density lipoprotein (LDL) in 
the body and increase the “good” high-density lipoprotein (HDL) cholesterol [9, 10, 
31]. Betaine is a water-soluble trimethylglycine amino acid. It is a potent bioactive 
compound originally discovered in sugar beets. Biologically, betaine serves as an 
osmolyte (osmotic stress protectant), a methyl donor in biochemical pathways, and 
a detoxification agent. Both betaine (amino acid) and betanin (pigment) enhance the 
level of detoxifying enzymes (glutathione peroxidase and superoxide dismutase) in 
the liver stimulating glutathione production (reduces hepatic toxicity) [32], inhibit-
ing chronic inflammation [33], and decreasing homocysteine levels in the body par-
ticularly in combination with vitamin B-9 (folic acid) [34]. Elevated homocysteine 
levels can lead to atherosclerosis, heart attacks, and strokes [20]. Beets are rich in 
dietary nitrates which will be converted into nitric oxide in the body. Nitric oxide 
helps dilate blood vessels and lower blood pressure [35]. Nitrate and carbohydrate- 
rich constituents in beet juice and whole beets provide energy and so enhance ath-
letic performance. It has been found to increase runners’ oxygen uptake [36]. Due 
to nitrate effect on oxygenation, beetroot juice could also improve brain neuroplas-
ticity and prevent cognition deterioration in early dementia [37]. Beets’ content of 
fiber in addition to magnesium and potassium helps the body to get rid of excess 
water, preventing bloating and aiding weight loss. Beet is a rich source of folic acid 
that helps prevent neural tube defects [14, 38].

Like any other vegetable, if taken excessively, beetroots and their juice can lead 
to some health problems. Beetroot-rich oxalate content can increase the risk of kid-
ney stone formation [39] and gouty arthritis. Drinking beet juice may lead to the 
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accumulation of metals like copper, magnesium, phosphorous, and iron in liver and 
pancreas tissues. Nitrates in the beetroot juice may cause sudden drop in the blood 
pressure [40]. Nitrates are reported to be a cause of sudden gastrointestinal symp-
toms associated with raw beet consumption [41]. Abdominal pain, skin rashes, 
hives, and fever can be signs and symptoms of allergy to beets. High glycemic index 
beets might increase the blood sugar. Beets contain betanin pigment which can 
change the color of the stool as well as the color of the urine in a harmless condition 
known as beeturia.

Serving size of 100 g of raw beetroots
Per serving % Daily valuea

Calories 43.0
Total fat 0.2 g 0
Saturated fat 0.0 g 0
Polyunsaturated fat 0.1 g
Monounsaturated fat 0.0 g
Total omega-3 fatty acids 5.0 mg
Total omega-3 fatty acids 55.0 mg
Cholesterol 0.0 mg 0
Phytosterols 25.00 mg
Total carbohydrates 9.6 g 3
Dietary fiber 2.8 g 11
Starch 0.0 g
Sugars 6.8 g
Protein 1.6 g 3
Vitamins

Vitamin A 1
Vitamin E 0
Vitamin K 0
Vitamin C 8
Vitamin B-6 3
Folic acid 27
Minerals

Sodium 3
Calcium 2
Magnesium 6
Copper 4
Potassium 9
Iron 4
Manganese 16
Zinc 2

National Nutrient Database
aBased on a 2000-calorie diet

Table 2 Beet nutrition facts 
of 100 g, from the United 
States Department of 
Agriculture (USDA SR-21)
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3  Butternut Squash

 

Family: Cucurbitaceae
Genus: Cucurbita
Common names: Butternut squash, butternut pumpkin, or gramma

Butternut squash is the most common type of winter squash fruit though used as a 
vegetable. It is a low caloric and has a sweet, nutty taste similar to pumpkin. It has 
a yellow, hard inedible skin and orange firm bulb with the seed part in the lowest 
portion. Ripe squash has a deep orange color and usually has a sweeter taste. It is a 
good source of fiber, vitamin C, manganese, magnesium, and potassium. Butternut 
squash is a very rich source of vitamin A and also is a good source of vitamins E, 
B-1 (thiamin), B-3 (niacin), B-5 (pantothenic acid), B-6 (pyridoxine), and B-9 (folic 
acid) (Table 3).

The rich amount of vitamin A in butternut squash makes it a potent antioxidant 
fruit used to treat oxidative stress [42]. Vitamin A was also observed to improve the 
immune response and decrease inflammation [43]. It has been revealed that it can 
decrease the risk of asthma in children too [44, 45]. Zeaxanthin and lutein are pow-
erful antioxidants known to preserve eye health and decrease the risk of cataract 
[46]. Vitamin A in butternut squash seeds was discovered to inhibit the growth of 
melanoma (skin cancer) [47]. As a consequence, it is believed that high content of 
vitamin A could cause butternut squash to serve as a good treatment for other types 
of cancers like lung cancer [48], ovarian cancer [49], and colon cancer [50], in addi-
tion to its potentiation effect on some chemotherapeutic agents. Both vitamins A 
and C support healthy skin and hair maintenance [51, 52]. Butternut squash con-
tains manganese and other microelements that act as cofactors for antioxidant 
enzymes required for optimum catalytic activity, and it also boosts the different 
antioxidant enzyme reactions [53]. Manganese and potassium contribute to the role 
of butternut squash in decreasing the risk of osteoporosis and having strong bones, 
specifically in postmenopausal women and old men [54]. Butternut squash is 
thought to have anti-obesity potential [55]. Both manganese and potassium have 
been suggested not only to reduce weight but also to reduce premenstrual symptoms 
[56] and muscle cramps in general. High potassium content helps lowering the 
blood pressure and prevents heart diseases and stroke as well [19]. In animal mod-
els, butternut squash was discovered to decrease fatigue and increase physical 
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 activity tolerance [57], whereas its high vitamin C content helps improve the physi-
cal performance. The high fiber content of this vegetable decreases inflammation 
and prevents constipation to sustain a healthy digestive system [9, 10] and helps 
cultivate a healthy cardiovascular system [9, 10, 31].

Side effects of eating butternut squash are uncommon, but like any other food 
item, butternut squash may be associated with minimal allergic reaction, mainly in 
the form of contact dermatitis and swelling of the hands and around the mouth. As 
a protective measure, peeling the butternut squash before it becomes fully ripe can 
cause dryness of the skin on the hand, though this is not an allergic reaction.

Serving size of 100 g of raw butternut winter squash
Per serving % Daily valuea

Calories 45
Total fat 0.1 g 0
Saturated fat 0.0 g 0
Polyunsaturated fat 0.0 g
Monounsaturated fat 0 g
Total omega-3 fatty acids 26 mg
Total omega-6 fatty acids 16 mg
Cholesterol 0 mg 0
Phytosterols

Total carbohydrates 12 g 4
Dietary fiber 2 g 8
Sugars 2.2 g
Protein 1 g 2
Vitamins

Vitamin A 213
Vitamin E 7
Vitamin K 1
Vitamin C 35
Vitamin B-6 8
Folic acid 7
Minerals

Sodium 0
Calcium 5
Magnesium 8
Copper 4
Potassium 10
Iron 4
Manganese 10
Zinc 1

National Nutrient Database
aBased on a 2000-calorie diet

Table 3 Butternut winter 
squash nutrition facts of 
100 g, from the United States 
Department of Agriculture 
(USDA SR-21)
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4  Carrots

 

Family: Apiaceae
Genus: Daucus
Common name: Carrot

Carrots are a root vegetable. Originally purple, black, red, white, or yellow in color, 
they used to be bitter with a woody core. In the seventeenth century, orange- colored, 
sweeter carrots were developed in the Netherlands. The taproot is the most com-
monly eaten part, although the stems and leaves are also edible. The roots are very 
rich source of antioxidants, vitamins A, C, and K and B vitamins like B-5 (panto-
thenic acid), B-6 (pyridoxine), and B-9 (folic acid), and the minerals potassium, 
iron, copper, and manganese (Table 4).

The health benefits of carrots are numerous. Most of the benefits of carrots can 
be attributed to their β-carotene and fiber content. This includes its positive effect on 
the heart and the rest of the cardiovascular system. Carrot consumption reduces the 
total cholesterol. It has been noticed that people consuming more carrots are at a 
lower risk of developing heart attacks compared to people who consume less carrots 
[58]. The potassium content of carrots helps reduce arterial blood pressure, prevents 
atherosclerosis in normotensive animals [59], and reduces stroke risk by 68% [60]. 
High fiber content prevents constipation and keeps a healthy digestive system, and 
it also eliminates cholesterol and LDL from the body keeping the heart and the car-
diovascular system healthy [9, 10, 31]. It is generally accepted that carotenoids and 
their metabolites reduce the risk of developing several chronic diseases, such as 
type 2 diabetes, atherosclerosis, and cancer since they modulate inflammatory and 
oxidative stress pathways [61]. Carrot’s high level of β-carotene is linked to risk 
reduction of different cancers [62] like lung cancer [48] and breast cancer [63]. In 
addition, vitamin A, its derivatives, and other retinoids affect cell differentiation, 
proliferation, and apoptosis, play an important physiologic role in a wide range of 
biological processes [64], and are regarded as a promising chemotherapeutic or 
chemopreventive agents [65, 66]. The FDA has approved synthetic retinoid for der-
matological purposes with demonstrated antitumor activity. For example, bexaro-
tene has been approved for lymphoma treatment, while tazarotene clinically showed 
good efficacy in carcinoma therapy [64]. Fiber content of carrots was found to 
reduce the risk of colon and breast cancers [9, 67, 68]. Vitamin C content in carrots 
boosts the immune system [69], and the high level of β-carotene helps reduce the 
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risk of macular degeneration [70]. The high levels of vitamin A improve eye sight 
and reduce risk of night blindness and glaucoma [71]. Carotenoids in carrots regu-
late insulin, glucose metabolism, and blood glucose level [72].

Overconsumption of carrot is generally not harmful to human health; it may only 
cause carotenemia and color the skin orange yellow. A limited number of people are 
allergic to carrots. It is not common to develop overdose of vitamin A only from 
eating carrots, but people taking vitamin A-derived medications or vitamin A sup-
plements should avoid consuming large quantities of carrots to prevent toxic hyper-
vitaminosis A.

Serving size of 100 g of raw carrots
Per serving % Daily valuea

Calories 41
Total fat 0.2 g 0
Saturated fat 0.0 g 0
Polyunsaturated fat 0.1 g
Monounsaturated fat 0 g
Total omega-3 fatty acids 2.0 mg
Total omega-3 fatty acids 115.0 mg
Cholesterol 0 mg 0
Phytosterols

Total carbohydrates 10 g 3
Dietary fiber 3 g 11
Sugars 5 g
Protein 0.9 g 2
Vitamins

Vitamin A 334
Vitamin E 3
Vitamin K 16
Vitamin C 10
Vitamin B-6 7
Folic acid 5
Minerals

Sodium 3
Calcium 3
Magnesium 3
Copper 2
Potassium 9
Iron 2
Manganese 7
Zinc 2

National Nutrient Database
aBased on a 2000-calorie diet

Table 4 Carrot nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)
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5  Celery

 

Family: Apiaceae
Genus: Apium
Common name: Celery

Celery is a green vegetable with a long fibrous stalk tapering into leaves. All parts 
of celery including the seeds, roots, and leaves are edible. Celery is an excellent 
source of antioxidants and beneficial enzymes. Rich in vitamins K, C, and B-6 (pyr-
idoxine), it is a very good source of dietary fiber, folic acid (B-9), potassium, man-
ganese, and pantothenic acid (B-5). Celery is also high in sodium, copper, calcium, 
phosphorus, magnesium, vitamin A, and riboflavin (B-2) (Table 5).

There are a lot of health benefits associated with consuming celery. Celery pos-
sesses a unique bioactive chemical compound called phthalides [73]. The phthalide 
core chemical structure is a lactone. Phthalides are recognized for their distinctive 
medicinal properties. They have been used as a herbal remedy to treat several condi-
tions such as cancer and inflammation [74]. Phthalides were found to reduce the 
levels of chemical messengers known as stress hormones. They act as smooth mus-
cle relaxants most likely through influencing calcium and potassium flow inside the 
cells causing blood vessel expansion and as a result lowering blood pressure. Several 
studies have investigated the effect of celery seed extract on blood pressure and 
blood lipid profiles. The studies concluded that the extract has clinically relevant 
blood pressure-lowering effects in mild-to-moderate hypertensive patients along 
with lowering cholesterol levels [75]. In animal studies, they led to a significant 
reduction in serum total cholesterol, triglyceride, and low-density lipoprotein (LDL) 
cholesterol levels [76]. In due course, this manifests as reduction in the risk of ath-
erosclerosis and coronary heart diseases. Correspondingly, high potassium levels in 
celery, a vasodilator, decrease blood pressure and reduce the risk of developing 
atherosclerosis to avert heart attacks and strokes [77]. Indeed, vitamin C presence 
also enhances this protection. In addition, celery’s high fiber content plays a role in 
improving intestinal function and boosting cardiovascular health [9, 10]. With 
dietary fiber, blood glucose levels tended to decrease along with LDL and total 
cholesterol [78]. The high content of potassium and sodium in this vegetable helps 
regulate body fluid balance [77]. The anti-inflammatory and diuretic effect of celery 
seeds and celery sticks help eliminate uric acid, thereby reducing rheumatism and 
gouty arthritis. The combined effect of diuretic action with its antibacterial activity 
prevents urinary tract infection [77]. Celery juice increases urination and, as a result, 
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aids in the flush of toxins, salt, and fat out of the body, thus improving liver health 
and status [79, 80]. For instance, diet supplementation with celery is effective in 
decreasing serum level of liver enzymes aspartate aminotransferase, alanine amino-
transferase, and alkaline phosphatase. Other phyto-substances in celery may 
improve liver enzyme function and detoxification, control gene expression, limit 
DNA damage, and facilitate DNA repair [81]. Celery is a rich source of varied anti-
oxidants [82] such as phenolic acids, flavones (apigenin and luteolin), flavonols 
(quercetin and kaempferol), phytosterols, dihydrostilbenoids, and furanocoumarins. 
Celery flavonoids (flavones and flavonols) have reportedly anti-inflammatory activ-

Serving size of 100 g of raw celery
Per serving % Daily valuea

Calories 16
Total fat 0.17 g 0
Saturated fat 0.0 g 0
Polyunsaturated fat 0.0 g
Monounsaturated fat 0.0 g
Total omega-3 fatty acids
Total omega-6 fatty acids 79.0 mg
Cholesterol 0 mg
Phytosterols 6.0 mg
Total carbohydrates 3.4 g 1
Dietary fiber 1.6 g 6
Sugars 1.8 g
Protein 0.7 g 1
Vitamins

Vitamin A 9
Vitamin E 1
Vitamin K 37
Vitamin C 5
Vitamin B-6 4
Folic acid 9
Minerals

Sodium 3
Calcium 4
Magnesium 3
Copper 2
Potassium 7
Iron 1
Manganese 5
Zinc 1

National Nutrient Database
aBased on a 2000-calorie diet

Table 5 Celery nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)

S. G. Mohammed and M. W. Qoronfleh
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ity which have also been shown in human studies [83, 84]. Flavonoids display sev-
eral anti-inflammatory mechanisms. They act as preferential inhibitors of COX-2, 
and it is thought that they modulate inflammation by reducing TNF-α and nuclear 
factor-kappa B (NF-κB), decreasing levels of the pro-inflammatory cytokines inter-
leukin 1B (IL-1β) and interleukin 8 (IL-8) [85] and/or microRNA (miR) expression 
[86]. Antioxidants in celery such as phthalides, flavonoids, and polyacetylenes acti-
vate certain white blood cells and coumarins that enhance their activity; in other 
words, they effectively fend off certain types of cancer [83, 87, 88]. In addition, the 
antioxidant vitamin C stimulates the immune system [89] and has anti- inflammatory 
properties along with other antioxidants which enable celery to prevent conditions 
associated with severe inflammation such as asthma [90]. Celery is rich with the 
flavones luteolin and apigenin [91], which are linked to anticancer properties [92, 
93]. Luteolin causes induction of apoptosis and inhibition of cell proliferation, 
metastasis, and angiogenesis. Furthermore, luteolin sensitizes cancer cells to 
therapeutic- induced cytotoxicity through suppression of cell survival pathways 
such as phosphatidylinositol 3-kinase (PI3K)/Akt, NF-κB, and X-linked inhibitor of 
apoptosis protein (XIAP) and stimulation of apoptosis pathways including those 
that induce the tumor suppressor p53. Apigenin has the ability to promote cell cycle 
arrest and induce apoptosis through the p53-related pathway. These flavones have 
been found to reduce tumor size and mitigate metastasis to other organs [94]. 
Phenolic acids and flavonoids in celery juice were found to reduce age spots and 
skin wrinkles [95]. Furocoumarins and multiple vitamins present in celery juice can 
treat or provide relief from a number of skin conditions such as psoriasis, eczema, 
acne, and rosacea [96]. Coumarins were thought to alleviate migraine headaches 
mostly via nitric oxide release suppression in the brain [97].

Celery seeds and oil are generally safe. Overconsumption of celery is associated 
with some undesirable effects. High fiber content of celery usually leads to abdomi-
nal pain, bloating, and diarrhea. Some natural products found in celery can prevent 
the body’s ability to use iodine appropriately. Excessive consumption of mainly raw 
celery for a long time may lead to iodine deficiency and goiter. Celery contains 
multiple forms of furanocoumarins that may lead to increased light sensitivity after 
eating or even handling. Some essential oils found in celery may cause skin irrita-
tion. Celery is rich in natural anticoagulants and can enhance the effect of antico-
agulant medications. Overconsumption of celery and celery seeds may induce 
bleeding and uterine contraction, so it is advisable to avoid during pregnancy. The 
natural diuretics in celery may increase urination leading to loss of minerals such as 
potassium, calcium, and magnesium. Allergic reactions are very common with cel-
ery. They range from rashes, itching, and stomach upset to severe life-threatening 
anaphylactic shock. Celery oil contains sedative properties; even a moderate con-
sumption of celery may lead to sleepiness and drowsiness. Celery is one of the 
foods that contains the most residual pesticides. Sustained exposure to contami-
nated celery may lead to brain and nervous system toxicity and to skin, eye, and 
lung irritation as well.
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6  Coriander (Cilantro)

 

Family: Apiaceae
Genus: Coriandrum
Common names: Coriander, cilantro, or Chinese parsley

Coriander is an herb that is widely used to give flavor or to garnish dishes. Its leaves 
and fruits have a distinguishable and pleasant scent and are usually used either raw 
or dried. Coriander is packed with vitamins and minerals. Its leaves are a rich source 
of dietary fiber; vitamins A, C, K, and E; and folic acid (B-9), as well as manganese, 
iron, and magnesium. It also contains appreciable quantities of potassium, calcium, 
and copper (Table 6). Coriander contains a number of essential oils that have numer-
ous health benefits [98, 99].

Cineole is a natural monoterpene also known as eucalyptol. An essential oil, 
chemically, it is a monoterpenoid cyclic ether. It is also found in other herbs such as 
common sage, sweet basil, and rosemary. It is a major constituent in coriander that 
exhibits multiple therapeutic properties. Taxol is a very famous terpenoid. It is an 
approved anticancer drug and a chemotherapeutic medicine used to treat a number 
of types of cancer. Cineole is reported to have anti-inflammatory, antimicrobial, and 
antioxidant activities where several clinical trials have established potent anti- 
inflammatory mode of action [100]. In particular, cineole possesses antirheumatic 
and anti-arthritic properties and inhibits the pro-inflammatory cytokines and TNF-α 
[101]. It offers relief through its analgesic effect and reduces swelling associated 
with these conditions [102]. Cineole was also shown to be effective against a range 
of respiratory conditions, including chronic obstructive pulmonary disease (COPD), 
asthma, bronchitis, sinusitis, common cold, cough, or flu [103, 104]. Coriander’s 
essential oils have also been demonstrated to be beneficial in reducing skin inflam-
mation and improve its appearance [105]. They stimulate the immune response and 
have an immunomodulatory effect [106, 107]. For instance, cineole antihistamine 
properties help treat allergic seasonal rhinitis and urticaria and reduce other allergic 
reactions due to contact with plant, food, and insects [108–111]. Coriander essential 
oils boast of wide-ranging antiseptic, disinfectant, insecticidal biological activities. 
Numerous studies have shown that cineole has a broad spectrum of antimicrobial 
action against viruses [112], bacteria [113], and fungi [114]. Few examples are cited 
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below proving its utility in various infections. The antibacterial activity against 
 dermatological skin pathogen is well studied. However, it is also a great cure for 
skin conditions like eczema or irritations such as acne, boils, cysts, wounds, cuts, 
burns, sores, and even insect bites [115]. It displayed inhibitory effects against 
respiratory bacteria and viruses [116]. Finally, it showed a considerable inhibitory 
effect on Candida albicans [117] improving candidiasis treatment in normal and 
diabetic rats [118] and working as an antifungal topical treatment for infected toe-
nails (onychomycosis) [119]. Additionally, as a home remedy, it demonstrated effi-

Serving size of 100 g of raw coriander leaves
Per serving % Daily valuea

Calories 23
Total fat 0.5 g 1
Saturated fat 0.0 g 0
Polyunsaturated fat 0.0 g
Monounsaturated fat 0.3 g
Total omega-3 fatty acids
Total omega-6 fatty acids 40.0 mg
Cholesterol 0.0 mg 0
Phytosterols 5.0 mg
Total carbohydrates 3.7 g 1
Dietary fiber 2.8 g 11
Starch 0.0 g
Sugars 0.9 g
Protein 2.1 g 4
Vitamins

Vitamin A 135
Vitamin E 13
Vitamin K 388
Vitamin C 45
Vitamin B-6 7
Folic acid 16
Minerals

Sodium 2
Calcium 7
Magnesium 6
Copper 11
Potassium 15
Iron 10
Manganese 21
Zinc 3

National Nutrient Database
aBased on a 2000-calorie diet

Table 6 Coriander nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)
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cacy against pink eye (conjunctivitis), healing the eye from infection. Cineole 
coriander contains a number of other essential oil components such as citronellol, a 
good mosquito repellent that also possess antimicrobial and healing effects. The 
essential oils prevent mouth wound complications, enhance mouth ulcer healing, 
and thwart bad breath [120, 121]. Other essential oil components like borneol, limo-
nene, alpha- pinene, and beta-phellandrene have antibacterial effects as well, thereby 
promoting digestive system health since eating coriander can help indigestion (dys-
pepsia) [122]. They aid in treating diarrhea that are fungal (Candida spp.) or micro-
bial in origin (Salmonella, Shigella, and enterotoxigenic E. coli) [123]. They also 
prevent nausea, vomiting, and stomach aches [99]. Coriander contains dodecanal, a 
very powerful natural bactericidal compound that protects one from Salmonella-
based illnesses [124]. As a leafy green, coriander leaves have a high content of cal-
cium, other essential minerals, and vitamin K (promotes calcium absorption and 
helps support blood coagulation processes as well as cardiovascular health), which 
are important components for bone regrowth, durability and limiting demineraliza-
tion, the principal cause of osteoporosis [125–127]. High iron levels in coriander 
preclude iron deficiency and anemia [99]. Low iron content in the blood can result 
in shortness of breath, heart palpitations, extreme fatigue, and a decrease in cogni-
tive functions. Minerals such as calcium and potassium help reduce the blood pres-
sure and aid in keeping a healthy cardiovascular system [122]. Findings were 
reported regarding the role of cineole in acting as a calcium channel blocker [128]. 
Furthermore, coriander and its seeds contain vitamin C and other acids, e.g., linoleic 
acid, oleic acid, palmitic acid, and stearic acid, which are effective in reducing the 
bad LDL cholesterol levels and increasing the healthy HDL cholesterol levels in the 
blood offering protection against cardiovascular complications and stroke [129]. 
Coriander possesses antioxidant and detoxifying properties [130]. The antioxidant 
feature of coriander is largely attributed to the presence of polyphenols, particularly 
flavonoids [131] that are well known for their numerous health benefits and protec-
tion against oxidative stress [132]. The antioxidants vitamins A and C in coriander 
help protect the eyes, reduce vision disorders, and lower the risk of macular 
 degeneration. In animal studies, coriander helps stimulate insulin secretion and 
reduces glucose level in the blood [133]. Coriander promotes neuroprotection [134] 
and stimulates the memory [135].

On a more precautionary note, cineole is toxic if ingested at higher than normal 
doses. Like any other food, consuming coriander may cause allergic skin reaction in 
susceptible people. Overconsumption of coriander leaves may increase light sensi-
tivity potentially leading to sunburns and subsequently to skin cancer [136]. 
Coriander may lower blood glucose and blood pressure and therefore has to be 
consumed with caution by people suffering from diabetes or taking antihypertensive 
agents and before any surgical procedures. Overconsumption of coriander may lead 
to severe diarrhea, stomach pain, and dehydration.

S. G. Mohammed and M. W. Qoronfleh



241

7  Cruciferous

 

Family: Brassicaceae
Genus: Brassica (broccoli, cauliflower, and cabbage)

7.1  Broccoli

Broccoli is an edible vegetable in the cabbage family whose large green flowering 
head is eaten raw or cooked. Boiling broccoli leads to the loss of some of its 
 antineoplastic substances, while steaming, microwaving, or stir-frying for few min-
utes preserves such nutrients to a great extent. It is considered one of the healthiest 
vegetables for its low calories, low fat, and rich content of vitamins such as vitamins 
C and K and other antioxidants. In addition, broccoli is a good source of dietary 
fiber, folic acid, vitamin A, and minerals like potassium and calcium (Table 7).

Broccoli’s dietary content of sulforaphane (SFN), a sulfur-containing compound 
belonging to the glucosinolate family, is associated with lower risk of cancer [137]. 
This dietary component of broccoli and broccoli sprout preparations has been 
shown to have an effect on different types of cancers [138]. For instance, in vitro, it 
inhibits breast cancer stem cells [139] and bladder cancer [140]. Sulforaphane has 
been studied in multiple clinical trials to test its ability to delay or slow the growth 
of cancer cells. It has been shown to be effective against pancreatic cancer [141] as 
well as recurrent prostate cancer [142]. Broccoli contains folic acid which has been 
linked to decreased risk of breast cancer [143], colorectal cancer [144], and prostate 
cancer [145]. The in vitro and in vivo studies of brassica-derived phytochemicals 
including sulforaphane and isothiocyanates suggest chemopreventive activity 
through redox-sensitive transcription factor Nrf2. The effect of SFN on Nrf2 path-
ways has been intensively investigated. It appears that SFN induces Nrf2 [146, 147]. 
There is evidence too that overexpression of Nrf2 can modulate NF-κB expression 
as well [148]. Vitamin K in broccoli reduces the risk of osteoporosis and bone frac-
tures by improving calcium absorption and reducing calcium excreted from the 
body [15, 126], in addition to vitamin K’s well-documented important role in blood 
coagulation and cardiovascular health [127]. Broccoli has different vitamins like 
folic acid and vitamins A and E that exhibit antiaging effects and are essential in 
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maintaining healthy skin. Moreover, the antioxidant vitamin C contributes to col-
lagen formation and alleviates the impacts of pollution and ultraviolet sunlight on 
the skin [51, 52]. Dietary fiber in broccoli enhances digestive system health, pre-
vents constipation, and reduces the risk of colorectal cancer. It is thought that fiber 
consumption is associated with lower risk of developing chronic diseases [9, 11] 
and helps to detoxify the body by excreting toxins through the digestive system. 
Phytochemicals and natural isothiocyanates (a glucosinolate major hydrolysis by-
product) from broccoli help combat inflammation and detoxify the body at the epi-

Serving size of 100 g of raw broccoli
Per serving % Daily valuea

Calories 34.0
Total fat 0.4 g 1
Saturated fat 0.0 g 0
Polyunsaturated fat 0.0 g
Monounsaturated fat 0.0 g
Total omega-3 fatty acids 21.0 mg
Total omega-6 fatty acids 17.0 mg
Cholesterol 0.0 mg 0
Phytosterols

Total carbohydrates 6.6 g 2
Dietary fiber 2.6 g 10
Starch 0.0 g
Sugars 1.7 g
Protein 2.8 g 6
Vitamins

Vitamin A 12
Vitamin E 4
Vitamin K 127
Vitamin C 149
Vitamin B-6 9
Folic acid 16
Minerals

Sodium 1
Calcium 5
Magnesium 5
Copper 2
Potassium 9
Iron 4
Manganese 10
Zinc 3

National Nutrient Database
aBased on a 2000-calorie diet

Table 7 Broccoli nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)
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genetic level. It has been shown that isothiocyanates may inhibit histone deacetylase 
transferases and DNA methyltransferases in cultured cells [147]. In this context, 
NF-κB is a central player in inflammatory processes. A variety of naturally occur-
ring NF-κB inhibitors have been described including brassica-derived phytochemi-
cals like sulforaphane [147]. Fresh broccoli juice mixed with other fresh vegetable 
and fruit juices was found to reduce the total cholesterol and therefore the risk of 
stroke and coronary heart diseases [149]. Kaempferol, a small antioxidant flavonol 
molecule, was shown to improve insulin sensitivity to avert diabetes [150]. In ani-
mal studies, both fiber and potassium in broccoli help control the blood pressure 
[151] and indirectly encourage weight loss in obese people. Inflammation has been 
linked to many modern chronic diseases including obesity, cancer, and atheroscle-
rosis [152–154]. Omega-3 fatty acids are powerful anti-inflammatory substances 
that reduce the production of immunomodulatory molecules such as cytokines [155, 
156]. Thus, higher omega-3 intake has been consistently shown to reduce inflamma-
tion [157–159]. It also has been shown to reduce the gastric  inflammation caused by 
H. pylori [160]. Docosahexaenoic (DHA) acid is an omega-3 fatty type that is a 
major structural component of the brain and retina of the eye. Omega-3 has been 
linked to a reduced risk of macular degeneration [161, 162]. Broccoli also contains 
vitamins A, B complex, C, and E that are all good for eye health preventing macular 
degeneration and cataract.

Generally, broccoli is safe to consume, and any side effects are not serious. It is 
common to have bowel irritation and gas formation when eating cruciferous includ-
ing broccoli. It is advisable to monitor the consumption of broccoli when taking 
anticoagulant medications as broccoli’s high content of vitamin K might interact 
with it.

7.2  Cauliflower

Cauliflower is another member of the same family. Normally, the cauliflower head 
is the only edible part. There are multiple types of cauliflowers, e.g., white, which is 
the most common. Similarly, nutritious yellow, purple, and green types are also 
available. Cauliflower is a low-caloric vegetable with a lot of nutrients. It is a rich 
source of vitamins C, K, and B complex and folic acid. It also contains minerals 
such as potassium, manganese, and calcium (Table 8).

There are many health benefits associated with cauliflower consumption. First, it 
is quite high in fiber. Previous sections delineated the importance of dietary fiber in 
health, disease, and digestive conditions [9, 163, 164]. Cauliflower features as a 
good source of fiber, being low in carbohydrates and having high-water content, and 
generally, low calories permit body weight management [165, 166] and aid in the 
excretion of toxins from the body with the help of its high content of antioxidants 
and glucosinolate such as sulforaphane, glucoraphanin, glucobrassicin, and gluco-
nasturtiin [130, 167]. Second, cauliflower is extremely rich in antioxidants and anti- 
inflammatory compounds that control the oxidative stress and damage caused by the 
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free radicals [132, 168–170]. Several of these carotenoid and flavonoid phytochemi-
cals also possess anticarcinogenic properties. Research results indicate that there is 
a positive correlation between cancer prevention and cruciferous vegetable con-
sumption [171, 172]. Examples of antioxidants available in cauliflower include 
beta-cryptoxanthin, quercetin, rutin, kaempferol, cinnamic acid, caffeic acid, and 
ferulic acid, in addition to vitamin C, which helps fight inflammation [173, 174]. 
Sulforaphane in cauliflower has been shown to protect the body from cancer and 
chronic inflammation-related diseases. It has been shown that combining cauli-

Serving size of 100 g of raw cauliflower
Per serving % Daily valuea

Calories 25.0
Total fat 0.1 g 0
Saturated fat 0.0 g 0
Polyunsaturated fat 0.0 g
Monounsaturated fat 0.0 g
Total omega-3 fatty acids 37.0 mg
Total omega-6 fatty acids 11.0 mg
Cholesterol 0.0 mg 0
Phytosterols 18.0 mg
Total carbohydrates 5.3 g 2
Dietary fiber 2.5 g 10
Starch
Sugars 2.4 g
Protein 2.0 g 4
Vitamins

Vitamin A 0
Vitamin E 0
Vitamin K 20
Vitamin C 77
Vitamin B-6 11
Folic acid 14
Minerals

Sodium 1
Calcium 2
Magnesium 4
Copper 2
Potassium 9
Iron 2
Manganese 8
Zinc 2

National Nutrient Database
aBased on a 2000-calorie diet

Table 8 Cauliflower 
nutrition facts of 100 g, from 
the United States Department 
of Agriculture (USDA 
SR-21)
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flower with curcumin, the active compound in turmeric spice, may help control 
prostate cancer cell growth [175]. Sulforaphane is also found to reduce the risk of 
chemically induced breast cancer in animals [176] and cause cell death of certain 
human breast cancer cell lines [177]. Isothiocyanates, another chemical group found 
naturally in cruciferous vegetables, exhibit antioxidant properties [178]. Several 
reports provide evidence for its protective effects against cancer where they were 
found to inhibit many cancers such as multiple gastrointestinal, bladder, breast, and 
lung cancer [179–181]. The oxidative stress effect of sulforaphane can ensure good 
eye health as it prevents macular degeneration and cataract and reduces the risk of 
loss of vision [182]. Sulforaphane also improves kidney functions and controls 
blood pressure [183]. Antioxidants’ role in cardiovascular health and reduced risk 
of heart diseases is well supported by numerous findings [168, 184, 185]. In addi-
tion, the cardiovascular benefits of potassium, vitamin K, and omega-3 fatty acids 
are well supported by research as they help to contribute to blood pressure regula-
tion, total cholesterol reduction, and blood coagulation [127, 186–192] and ensure 
overall bone health preventing osteoporosis [126, 193]. Choline is a water-soluble, 
B vitamin-like lipotropic substance [194, 195]. It is an essential nutrient involved in 
lipid metabolism. It is a precursor to the neurotransmitter acetylcholine and phos-
pholipids that are indispensable to cell membrane integrity and cell signaling. It also 
plays a role in lipid transport as well as methyl-group transfer [196]. Choline is a 
neuroprotective agent [197] shown to improve memory, cognitive functions, and 
brain aging [197–199]. The nutrient is found in cauliflower, and it decreases the 
signs of dementia [196, 197]. Choline intake during pregnancy has been found to 
boost the cognitive function and memory of animals [200], and it is thought to con-
tinue its effect till later in life. In addition to these components, cauliflower is a good 
source of vitamin B complex which is known to enhance brain development [201].

Like other high-fiber-contained foods, overconsumption of cauliflower may 
cause bloating and accumulation of gas. However, it can mostly be tolerated when 
consumed in moderate amounts. High content of vitamin K in cauliflower may 
interact with blood anticoagulants and lead to bleeding. Therefore, it should be con-
sumed with caution.

7.3  Cabbage

Cabbage is a leafy vegetable grown for its dense-leaved heads. It has multiple vari-
eties of different shapes and colors, including red, purple, white (light green), and 
green. Its leaves can be crinkled or smoothed. The most common type is the green 
cabbage that has smooth leaves with a firm head. Cabbage can be eaten raw, cooked, 
or pickled. It is an excellent source of vitamins K and C and dietary fiber. It also 
contains folic acid and potassium (Table 9).

Cabbage and other cruciferous naturally contain glucosinolates, which impart 
the characteristic bitter flavor to the vegetables. Glucosinolates are a secondary 
metabolite derived from glucose and either aliphatic or aromatic amino acids. 
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Indoles and isothiocyanates are the hydrolysis by-products’ active substances [202]. 
Glucosinolates have been studied in vivo for their potential to affect human health, 
in particular their anticancer properties [203]. As a rich source for glucosinolates, 
high intake of cruciferous is associated with lower risk of several cancers in humans 
such as lung and colorectal cancers considering the evidence for their anti-oxidative 
stress/inflammation properties [181]. As anticancer agents, their chemopreventative 
role is linked to the induction of cellular defense detoxifying/antioxidant enzymes 
and their epigenetic mechanisms [203]. One breakdown product of the glucosino-

Serving size of 100 g of raw cabbage
Per serving % Daily valuea

Calories 25.0
Total fat 0.1 g 0
Saturated fat 0.0 g 0
Polyunsaturated fat 0.0 g
Monounsaturated fat 0.0 g
Total omega-3 fatty acids
Total omega-6 fatty acids 17.0 mg
Cholesterol 0.0 mg 0
Phytosterols 11.0 mg
Total carbohydrates 5.8 g 2
Dietary fiber 2.5 g 10
Starch 0.0 g
Sugars 3.2 g
Protein 1.3 g 3
Vitamins

Vitamin A 2
Vitamin E 1
Vitamin K 95
Vitamin C 61
Vitamin B-6 6
Folic acid 11
Minerals

Sodium 1
Calcium 4
Magnesium 3
Copper 1
Potassium 5
Iron 3
Manganese 8
Zinc 1

National Nutrient Database
aBased on a 2000-calorie diet

Table 9 Cabbage nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)
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late glucobrassicin is a small molecule known as 3,3′-diindolylmethane (DIM). 
This compound possesses anticarcinogenic qualities against breast or prostate can-
cer in humans and human papilloma virus infection. The antitumor activity is 
thought to be due to its action as a histone deacetylase inhibitor [204]. This chemi-
cal has also been shown to reduce the toxic effect of radiotherapy without causing 
DNA damage in normal tissue cells [205]. Another group of predominant phyto-
chemicals is anthocyanins. They belong to the flavonoid phenolic class. The pri-
mary compounds in this parent class include the anthocyanins (e.g., cyanidin, 
pelargonidin, delphinidin, malvidin, peonidin, petunidin), flavonols (quercetin, 
kaempferol), flavones (luteolin, apigenin), flavanones (myricetin, naringin, hesper-
etin, naringenin), flavan-3-ols (catechin, epicatechin, gallocatechin), and isofla-
vones (genistein, daidzein) [206]. Anthocyanins are water-soluble, glycosylated 
pigments with wide-ranging colors dependent on the pH environment (see Chap. 
15). They are found mostly in flowers, fruits, and vegetables; for instance, they are 
present in red cabbage and give it its color [207]. Anthocyanins and anthocyanidins 
(the sugar-free counterpart of anthocyanins) are very potent, efficient antioxidants 
that often interact with other phytochemicals to potentiate bioactivity. They have 
been investigated for their various health and therapeutic effects. The potential 
health benefits of anthocyanins have been summarized in a recent review article 
[207]. These include cardiovascular, anticancer, and antidiabetic benefits, visual 
health, anti-obesity improvements, neuroprotection, and antimicrobial effects. 
Different mechanisms and pathways are involved in enabling these protective 
effects, including free radical scavenging pathway, cyclooxygenase pathway, 
mitogen- activated protein kinase pathway, and inflammatory cytokine signaling 
[207]. We provide few examples to illustrate these points. Anthocyanin compounds 
have been found to slow the proliferation of cancer cells and prevent the formation 
of new ones [208]. Anthocyanins were found also to impede inflammation and 
therefore decrease the risk of chronic inflammation including obesity and related 
disorders such as cardiovascular diseases [209]. Anthocyanins have been shown to 
improve night vision and overall sight. It has been suggested that anthocyanins pro-
tect the eyes through different mechanisms including shielding the eyes from dam-
age by free radicals. In a mouse model, anthocyanin-rich extract had a protective 
vision effect during retinal inflammation through suppression of STAT3, IL-6 
expression, and NF-κB [210]. Studies revealed that an anthocyanin-rich diet 
enhances the cognitive function and memory in older adults with mild-to-moderate 
dementia [211] and augments both acute and long-term outcomes [212]. The anti- 
inflammatory effect of cabbage is thought to be due to other antioxidants like sul-
foraphane [213] and kaempferol [214]. The rich content of polyphenol in cabbage 
is thought to lower the risk of cardiovascular diseases by preventing platelet aggre-
gation and reducing blood pressure [215]. Red cabbage is a very good source of 
potassium and anthocyanins which are known for their role in lowering blood pres-
sure and boosting the cardiovascular system and heart health [216–218]. Cabbage 
and other vegetable juices also lower the total cholesterol [149], which enhances 
cardiovascular system health and prevents coronary heart diseases [219]. Cabbage 
contains phytosterols, natural compounds structurally similar to cholesterol, and 
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prevents its absorption from the gut leading to reduction in LDL cholesterol levels 
[220]. Another health benefit of consuming cabbage comes from its high content of 
vitamin C. It is another powerful antioxidant that decreases the risk of cancer [221] 
and protects the body from the free radical-related damage linked to number of 
chronic conditions including cancer [222]. In addition, vitamin C helps absorb iron 
better and evade anemia as a result of iron deficiency [223]. It also helps in building 
collagen, thus maintaining a healthy-looking skin [52] and ensuring healthy bones, 
blood vessels, and muscle. Cabbage also enhances the digestive system. Its fiber 
content promotes regular bowel movement and prevents constipation [224]. Fiber in 
cabbage acts as a fuel for the normal flora in the gut [225]. This boosts the immune 
system and produces nutrients like vitamins K and B-12.

There is no evidence of serious side effects related to cabbage consumption 
though glucosinolates have been shown to have toxic effects in both humans and 
animals, when ingested at high doses. Like other cruciferous vegetables, overcon-
sumption of cabbage causes bloating and gas accumulation [226]. It might also 
affect breast-fed babies if their mother has a lot of cabbage in her diet. Consuming 
a lot of raw cabbage might interfere with thyroid hormone functions [227]. It might 
prevent normal uptake and processing of iodine by the thyroid gland leading to 
iodine deficiency. High vitamin K content might affect anticoagulant medications 
and should be consumed with caution. Cabbage normally reduces blood glucose, 
and hence, overeating it might lead to hypoglycemia. It should be avoided when 
planning for surgical procedures [228].

8  Garlic and Onion

 

Family: Amaryllidaceae
Genus: Allium
Common names: Garlic and onion

Onions and garlic are vegetables belonging to the same family; they can be eaten 
either cooked or raw or just be used to add a flavor to the food. The sulfur compound 
(allyl propyl disulfide) is responsible for their strong odor and flavor. It delivers few 
health benefits when eaten, as reported by the Linus Pauling Institute.

Different types of onions exist each with a distinct flavor, such as white, red, and 
yellow onions. Green onions are the immature ones that have not formed the bulb 
yet. Onions are a rich source of allicin, an organosulfur compound, copper, and 
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selenium. It is also rich in a number of vitamins, e.g., B-6 and C (Table 10). Onions 
stimulate the body’s production of glutathione, a potent antioxidant.

Garlic is the most common herb used around the world. The bulb of the plant is 
the most commonly used part. Garlic bulbs are divided into a number of sections 
called cloves. There are various health benefits associated with garlic consumption. 
It is a very rich source of manganese, selenium, and vitamins B-6 and C. In addition, 
garlic is a good source of some minerals, including phosphorous, calcium, potas-
sium, iron, zinc, and copper (Table 11). Many of garlics’ therapeutic effects are 
thought to be due to its active ingredient, allicin.

Serving size of 100 g of raw onions
Per serving % Daily valuea

Calories 40.0
Total fat 0.1 g 0
Saturated fat 0.0 g 0
Polyunsaturated fat 0.0 g
Monounsaturated fat 0.0 g
Total omega-3 fatty acids 4.0 mg
Total omega-6 fatty acids 13.0 mg
Cholesterol 0.0 mg 0
Phytosterols 15.0 mg
Total carbohydrates 9.3 g 3
Dietary fiber 1.7 g 7
Starch 0.0 g
Sugars 4.2 g
Protein 1.1 g 2
Vitamins

Vitamin A 0
Vitamin E 0
Vitamin K 0
Vitamin C 12
Vitamin B-6 6
Folic acid 5
Minerals

Sodium 0
Calcium 2
Magnesium 2
Copper 2
Potassium 4
Iron 1
Manganese 6
Zinc 1

National Nutrient Database
aBased on a 2000-calorie diet

Table 10 Onion nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)
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The antimicrobial activity of both garlic and onion extracts has been investigated 
heavily and well documented in the literature. By way of example, efficacy studies 
included bacterial clinical isolates [229], other human bacterial pathogens [230], 
and fungi species [231]. Furthermore, it has been demonstrated that onion and gar-
lic extracts potentiate the efficacy of conventional antibiotics against standard and 
clinical bacterial isolates [232].

Onion and garlic phytochemicals such as allicin, polyphenols, vitamin C, and the 
mineral selenium naturally stimulate immune functions or prevent excessive 
immune response and impede viral, bacterial, and fungal infections. A recent review 
article has detailed the in vitro and in vivo immunomodulator activities of Allium 

Table 11 Garlic nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)

Serving size of 100 g of raw garlic
Per serving % Daily valuea

Calories 149
Total fat 0.5 g 1
Saturated fat 0.1 g 0
Polyunsaturated fat 0.2 g
Monounsaturated fat 0.0 g
Total omega-3 fatty acids 20.0 mg
Total omega-6 fatty acids 229.0 mg
Cholesterol 0.0 mg 0
Phytosterols

Total carbohydrates 33.1 g 11
Dietary fiber 2.1 g 8
Starch
Sugars 1.0 g
Protein 6.4 g 13
Vitamins

Vitamin A 0
Vitamin E 0
Vitamin K 2
Vitamin C 52
Vitamin B-6 62
Folic acid 1
Minerals

Sodium 1
Calcium 18
Magnesium 6
Copper 15
Potassium 11
Iron 9
Manganese 84
Zinc 8

National Nutrient Database
aBased on a 2000-calorie diet
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[233] where various chemical bioactive compounds, in particular, organosulfur 
ones, maintain immune system homeostasis and exhibit beneficial effects on 
immune cells, especially through activation, regulation of proliferation, and cyto-
kine gene expression. To illustrate, few studies have found that daily garlic supple-
ments can combat common cold as it reduced the number of times of colds and 
duration of cold symptoms [234–236]. However, more studies are needed to  validate 
these findings. Vitamin C and sulfur contain compounds that stimulate collagen 
production which indirectly aids the formation of skin cells and hair growth, thereby 
retaining healthy skin and hair [52]. The juices of these vegetables have even been 
used as a topical treatment for skin infections and hair loss condition [237]. The 
main constituents of onions and garlic are sulfur compounds particularly allicin, and 
its metabolites have been ascribed anti-osteoporotic activity as it can inhibit bone 
resorption and their pseudo-estrogen-like action also has an effect on bone density 
as seen in postmenopausal women [238, 239]. A review article focusing on bone 
health attributed other benefits pertinent to connective tissues and preservation of 
healthy bones (metabolism, growth, and remodeling) [240].

Garlic and onions appear to possess anticancer properties [241, 242]. 
Epidemiological studies indicate some associations of Allium vegetable consump-
tion with decreased risk of cancer, particularly cancers of the gastrointestinal tract. 
A recent review article elegantly presented Allium-derived bioactive sulfur com-
pounds along with strong epidemiological and intervention evidence of the protec-
tive effects of several types of digestive tract cancers [243]. These include stomach, 
colorectal, esophageal, and prostate cancers and cancer of the oral cavity/pharynx, 
larynx, kidney, breast, ovary, and endometrium. Antioxidants, especially the phy-
toestrogen type like isoflavones, possess antitumor activity of hormone- responsive 
cancers [242]. For instance, red onion’s chemical-free extract which is rich in the 
antioxidants flavonol quercetin and anthocyanin both have anti- inflammatory effect 
and anti-stomach cancer and anti-colorectal cancer properties through activation 
mechanism of apoptosis [244]. In addition, quercetin [245] and organosulfur com-
pounds have been found to promote cardiovascular health [246]. Garlic and onions 
have numerous other cardiovascular benefits, for example, lowering blood pressure 
by onions [247]. Garlic supplements were found to have a significant impact on 
reducing blood pressure [248, 249] where aged garlic extract was just as effective as 
the drug atenolol at reducing blood pressure over a 24-week period [250]. Another 
example is the decrease in total and/or LDL cholesterol levels by onions [245] and 
garlic [251–253]. A third example is they were also found to reduce the risk of 
developing blood clots. It appears that rutin (a flavonol) displays antithrombic activ-
ity as it inhibits a key enzyme called protein disulfide isomerase (PDI) involved in 
thrombosis [254, 255]. Rutin has been demonstrated to possess other favorable 
pharmacological activities [256]. Besides flavonols, other antioxidants like antioxi-
dant vitamins A, C, and E protect against harmful UV rays as well as free radical 
damage fighting the skin’s ageing process [51, 52]. Moreover, polyphenols in onion 
and garlic improve glucose homeostasis. Glycemic control is thought to be through 
multiple mechanisms of action in the intestine, liver, muscle adipocytes, and pan-
creatic β-cells, as well as through prebiotic effects in the digestive tract [257, 258].
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Garlic and onion modulate oxidative stress [259, 260]. Both are rich in allicin 
and selenium with detoxification and activation of antioxidant liver enzyme proper-
ties [261–263]. For instance, when garlic is consumed at high doses, the sulfur 
compounds have been shown to ameliorate organ damage from lead toxicity [264]. 
Onion consumption was effective in nonalcoholic fatty liver disease (NAFLD) 
 management [265]. Allicin, its metabolites [266–268], and polyphenols [269, 270] 
present in garlic and onion are well investigated for their anti-inflammatory proper-
ties. Neuroinflammation is known as a risk factor for cognitive deficits and demen-
tia, and its incidence only increases with aging. Extracts or compounds from onion 
and garlic help to buffer free radical action and reduce inflammation and hence 
related diseases such as Alzheimer’s, Parkinson’s, and dementia [271]. For exam-
ple, S-allyl cysteine (SAC) is the main active component of aged garlic extract with 
anti- inflammatory, neuroprotective, and nootropic potential [272]. Finally, onions 
act as a natural laxative and relieves stomach aches because of their high fructan 
fiber and inulin, a group of naturally occurring polysaccharides, content [164]. In 
short, combining garlic with onions has greater health benefits. Potentially consid-
ering their various pharmacological properties, they act synergistically as a potent 
antidepressant, effective painkiller, anticoagulant, and anti-inflammatory.

Consuming onions and garlic may have some undesirable effects. They might 
lead to heartburn and reflux esophagitis. Overconsumption of onions and garlic can 
cause bad breath, stomach ache, vomiting, and diarrhea. They have the potential to 
increase the risk of bleeding and therefore should be used with caution after surgical 
procedures and along with anticoagulant medications. Onions also may lower blood 
sugar. Overconsumption of garlic can cause liver toxicity [273]. Garlic has blood 
pressure-lowering properties and should be eaten with caution in case of blood pres-
sure medication use [274]. Direct prolonged contact with garlic may cause skin 
irritation, rashes, and an eczema-like condition. Excessive garlic consumption may 
lead to hyphemia, which is a bleeding inside the eye, and may cause permanent loss 
of vision. Onion and garlic may also trigger migraine headache [275].

9  Leafy Greens

 

Family: Brassicaceae
Genus: Brassica (kale, mustard greens)
Genus: Eruca (arugula)
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9.1  Arugula

Arugula, also known as salad rocket, roquette, or rucola, is a popular low-caloric, 
low-fat, leafy green vegetable and a type of cruciferous that contains tremendous 
amounts of nutrients. Arugula leaves are tender and small with strong, peppery fla-
vor that is usually consumed raw and can also be cooked. Arugula is a very rich 
source of nitrate, calcium, magnesium, manganese, and vitamins such as vitamins 
A, K, and C and folic acid. It is also a good source of dietary fiber; protein; vitamins 
B-1 (thiamin), B-2 (riboflavin), B-5 (pantothenic acid), and B-6 (pyridoxine); and 
the minerals zinc and copper (Table 12). Consuming arugula is thought to decrease 
the risk of obesity, diabetes, cardiovascular diseases, and cancer and help in body 
weight control or weight reduction.

Arugula is rich in glucosinolates, sulfur-containing compounds which break 
down to biologically active substances such as indoles, and isothiocyanates that 
enable carcinogen clearance from the body before they initiate DNA damage [137]. 
One family member, sulforaphane, that gives cruciferous vegetables, including aru-
gula, their special taste has been proposed to inhibit some enzymes associated with 
cancer cell progression [276]. In the aforementioned broccoli section, we have 
detailed sulforaphane cancer chemoprevention action and proposed mechanisms. 
Another major compound “erucin,” metabolically and structurally related to sul-
foraphane, is present in large quantities in arugula and cabbage and inhibits tumors 
via microtubule dynamics suppression [277]. Other mechanisms have been 
described for isothiocyanates effectiveness and the remarkably broad anticancer-
type activities [278]. Arugula also contains chlorophyll which has been shown to 
block the effects of mutagenic carcinogenic substances during grilling of food at a 
high temperature [279]. Additionally, arugula is rich in flavonols, an antioxidant 
flavonoid subclass. Some in vitro studies have shown that they demonstrate antican-
cer, anti-inflammatory, and antidiabetic characteristics [270, 280–282]. Arugula, 
therefore, is thought to decrease risk of several cancers, e.g., skin, esophageal, pros-
tate, lung, and pancreatic cancers. Another antioxidant, alpha-lipoic acid, is a 
vitamin- like antioxidant and is sometimes referred to as the “universal antioxidant” 
because it is soluble in both fat and water. It was shown to decrease blood glucose, 
increase insulin sensitivity, and decrease peripheral nerve damage secondary to dia-
betes [283–286]. In Germany, alpha-lipoic acid is approved as a drug for the treat-
ment of diabetic neuropathy since 1966 and is available by prescription [287]. 
Arugula is a low-caloric, high-nutrient vegetable (it contains fiber, antioxidants, 
vitamin K, and the minerals potassium, magnesium, and calcium). As a cruciferous 
vegetable, their intake is linked with better blood pressure, improved circulation, 
and a lower risk for heart disease and overall mortality [184, 288]. Vitamin K and 
calcium are key players in developing a strong skeletal system, contributing to 
improvement in bone health [126] and osteoporosis prevention [15, 193]. Arugula’s 
content of folic acid is vital during pregnancy to prevent neural tube defects [14, 
289] and is essential for amino acid metabolism [290, 291]. Disturbed homocyste-
ine and folate metabolism is implicated in many different heart diseases [292–294]. 
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Table 12 Arugula nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)

Serving size of 100 g of raw arugula
Per serving % Daily valuea

Calories 25.0
Total fat 0.7 g 1
Saturated fat 0.1 g 0
Polyunsaturated fat 0.3 g
Monounsaturated fat 0.0 g
Total omega-3 fatty acids 170.0 mg
Total omega-6 fatty acids 130.0 mg
Cholesterol 0.0 mg 0
Phytosterols

Total carbohydrates 3.7 g 1
Dietary fiber 1.6 g 6
Starch 0.0 g
Sugars 2.1 g
Protein 2.6 g 5
Vitamins

Vitamin A 47
Vitamin E 2
Vitamin K 136
Vitamin C 25
Vitamin B-6 4
Folic acid 24
Minerals

Sodium 1
Calcium 16
Magnesium 12
Copper 4
Potassium 11
Iron 8
Manganese 16
Zinc 3

National Nutrient Database
aBased on a 2000-calorie diet

Arugula is a top source of nitrate which has been suggested to increase exercise 
tolerance during long-term strenuous exercise. Nitrate is converted in the body to 
nitrite and stored and circulated in the blood. In conditions of low oxygen availabil-
ity, nitrite can be converted into nitric oxide, which is known to play a number of 
important roles in vascular and metabolic control. Increase in plasma nitrite concen-
tration reduces resting blood pressure [295]. Arugula is a source of number of nutri-
ents that support eye health. These include vitamin A and two other carotenoids like 
beta-carotene lutein and zeaxanthin that are known to protect the retina, cornea, and 
other delicate parts of the eyes from UV damage and other effects [296]. These can 
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also protect the eyes from age-related macular degeneration and decrease the risk of 
loss of vision [28].

Arugula, like any other vegetables, might have undesirable effects when over-
consumed. Eating large quantity of arugula may cause abdominal pain and flatu-
lence due to its high sulforaphane content. Arugula is rich in vitamin K and should 
be consumed with caution if the person has been prescribed anticoagulant agents 
such as warfarin. It is important to store nitrate-containing vegetable juices such as 
arugula in proper conditions to maintain their nutritional benefits. Nitrate in arugula 
could be reduced into nitrite, which in high levels could harm the cardiovascular 
system. Nitrite may also interact with some nitrite medications used for angina 
[297, 298].

9.2  Spinach

Family: Amaranthaceae
Genus: Spinacia (spinach)

Spinach is a flowering vegetable, and its leaves can be eaten either raw or cooked. 
Despite being cooked, spinach generally improves nutrient absorption. Spinach 
leaves differ in shape, from oval to triangular, and are variable in size. Typically, the 
larger leaves are at the base of the plant, while the smaller ones are higher at the top 
of the flowering stem. Raw and cooked spinach have a number of nutrients like 
vitamins A, K, and C, folic acid (B-9), and minerals like potassium, magnesium, 
manganese, iron, and copper (Table 13). It also contains pyridoxine (B-6), niacin 
(B-3), riboflavin (B-2), and thiamin (B-1). In addition, spinach is packed with 
nitrates and glycolipids, which may act as anti-inflammatory substances.

Spinach is rich in nitrate which can augment nitric oxide status and improve 
endothelial function in healthy individuals [299]. Nitrates may improve skeletal 
muscle blood flow and function, thus enhancing the performance of athletes, and 
may therefore improve the quality of life of older people with muscle weakness and 
exercise intolerance [300]. Nitrates also have the ability to considerably decrease 
the level of serum triglycerides, total cholesterol, and unhealthy cholesterol LDL 
and increase the level of HDL, thus improving lipid homeostasis [301]. Nitrates 
were also shown to decrease the blood glucose level. As a dietary supplement, it 
showed promise in managing insulin resistance and endothelial dysfunction [301]. 
Glycolipids in spinach enhance the production of nitric oxide in the body as well, 
which helps relax the blood vessels, lower the blood pressure, and reduce the risk of 
atherosclerosis [35]. Glycolipids also exhibit anticancer activity. The in vitro and 
ex vivo antiangiogenesis effects are mediated via the inhibition of replicative DNA 
polymerase [302, 303]. Additionally, N-oxalylglycine (NOG), a natural product in 
spinach, is a substance that was found to have anticancer characteristics. NOG is an 
inhibitor of 2-oxoglutarate and ferrous iron-dependent oxygenases. 2-Oxoglutarate 
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Table 13 Spinach nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)

Serving size of 100 g of raw spinach
Per serving % Daily valuea

Calories 23.0
Total fat 0.4 g 1
Saturated fat 0.1 g 0
Polyunsaturated fat 0.2 g
Monounsaturated fat 0.0 g
Total omega-3 fatty acids 138 mg
Total omega-6 fatty acids 26.0 mg
Cholesterol 0.0 mg 0
Phytosterols 9.0 mg
Total carbohydrates 3.6 g 1
Dietary fiber 2.2 g 9
Starch
Sugars 0.4 g
Protein 2.9 g 6
Vitamins

Vitamin A 188
Vitamin E 10
Vitamin K 604
Vitamin C 47
Vitamin B-6 10
Folic acid 49
Minerals

Sodium 3
Calcium 10
Magnesium 20
Copper 6
Potassium 16
Iron 15
Manganese 45
Zinc 4

National Nutrient Database
aBased on a 2000-calorie diet

oxygenase is a presumed cancer target of the tricarboxylic acid cycle for its role in 
epigenetic regulation [304].

Antioxidants [305, 306] and carotenoids [61, 307] in spinach contribute 
immensely to its anticancer and anti-inflammatory effectiveness as they limit oxida-
tive stress and DNA damage. The antioxidant flavonols kaempferol is linked to 
lowering the risk of cancer [308], and quercetin also has potent anti-inflammatory 
properties [309] that were suggested to protect the body against certain forms of 
cancer. Studies have revealed that the carotenoid xanthophylls, which are natural 
fat-soluble pigments, improve inflammation status, serum triglyceride levels, blood 
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pressure levels, and liver function test values. On the other hand, recent investiga-
tion has shown that xanthophylls possess high anticancer, antidiabetic, anti-obesity, 
and antioxidant properties [310]. Both neoxanthin and violaxanthin have been dem-
onstrated to possess antiproliferative activity and induce apoptosis in PC-3 human 
prostate cancer cells [311, 312] and obesity-associated cancers [310]. Other valu-
able carotenoid plant compounds that boost health include the xanthophylls lutein 
and zeaxanthin that reduce age-related macular degeneration and improve eye 
health [313].

The insoluble fiber in spinach maintains a healthy digestive system and prevents 
constipation [163]. High-fiber diet works to reduce high cholesterol levels and slow 
the absorption of sugar into the bloodstream [314, 315]. In addition to countless 
health benefits, fiber contributes to lowering the risk of various noncommunicable 
diseases [9, 11] such as diabetes [316] and its secondary complications [317] and 
cardiovascular diseases [10]. Spinach is an extremely rich source of fiber and 
 vitamin K, referred to earlier for their collective cardiovascular health benefits and 
role in bone health [10, 126, 127]. Spinach is a very rich source of iron which is 
better absorbed in the presence of vitamin C. The presence of both in spinach pre-
vents anemia and reduces its prevalence [223].

Consuming spinach is not free of undesirable health effects. Raw spinach con-
tains oxalic acid which binds to calcium and interferes with its absorption. Spinach 
is high in calcium and oxalates, and both can lead to kidney stone formation [318]. 
Spinach is a rich source of vitamin K, which interferes with blood clotting. 
Therefore, spinach should be consumed with caution if the person takes warfarin or 
other anticoagulant medication [319].

9.3  Lettuce

Family: Asteraceae
Genus: Lactuca (romaine lettuce)

Lettuce is a leafy green vegetable with many different types, e.g., iceberg (low in 
fiber yet has a high water content than other types), green leaf (similar to spinach), 
and red leaf lettuce (has higher carotenoids and phenolic compounds). The vegeta-
ble is mostly grown for its leaves though sometimes also for its stem and seeds. 
Lettuce is often eaten raw in salads and sandwiches. It can also be grilled or pre-
pared as a soup. Most lettuce types are low sodium and low caloric (1 calorie per 
leaf) and contain high dietary fiber (cellulose), protein, and sugars. Considering 
these features, lettuce can help in body weight control. It contains quite few miner-
als and vitamins including magnesium, manganese, phosphorus, potassium, 
sodium, and zinc along with vitamins like B-1 (thiamin), B-2 (riboflavin), B-3 
(niacin), B-6 (pyridoxine), B-9 (folic acid), A, C, and K.  It provides significant 
amounts of vitamins A and K (Table 14). Baby green romaine is especially high in 
vitamin C.
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Lettuce is believed to have a number of health benefits. The bioactive compounds 
and their corresponding health benefits were reviewed recently [320]. In vitro, in 
vivo, and clinical studies have shown anti-inflammatory, cholesterol-lowering, and 
antidiabetic activities attributed to the bioactive compounds in lettuce, largely 
focusing on vitamins (B-9, C, and E), carotenoids (β-carotene and xanthophylls), 
phenolic compounds (phenolic acids and flavonoids), and key minerals. Lettuce 
possesses antifungal and antibacterial properties. Lettuce leaf extracts and latex 
saps of lettuce were effective against different types of bacterial species such as 

Serving size of 100 g of raw lettuce, green leaf
Per serving % Daily valuea

Calories 15.0
Total fat 0.2 g 0
Saturated fat 0.0 g 0
Polyunsaturated fat 0.1 g
Monounsaturated fat 0.0 g
Total omega-3 fatty acids 58.0 mg
Total omega-6 fatty acids 24.0 mg
Cholesterol 0.0 mg 0
Phytosterols 38.0 mg
Total carbohydrates 2.8 g 1
Dietary fiber 1.3 g 5
Starch 0.0 g
Sugars 0.8 g
Protein 1.4 g 3
Vitamins

Vitamin A 148
Vitamin E 1
Vitamin K 217
Vitamin C 30
Vitamin B-6 4
Folic acid 10
Minerals

Sodium 1
Calcium 4
Magnesium 3
Copper 1
Potassium 6
Iron 5
Manganese 13
Zinc 1

National Nutrient Database
aBased on a 2000-calorie diet

Table 14 Lettuce nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)
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Staphylococcus, Proteus, and Klebsiella, yeasts including Candida albicans, and 
fungi like Aspergillus [321, 322]. Antiviral activity has also been reported [323]. 
Additionally, lettuce is a powerful anti-inflammatory. Its extracts contain triterpene 
lactones that significantly inhibit lipoxygenase and carrageenan-induced edema 
[324]. Lettuce leaf extracts were also found to be a rich source of antioxidants. The 
antioxidant capacity of lettuce has been detailed in recent reviews for different let-
tuce types [325, 326]. The antioxidant properties of vitamins C and E and carot-
enoids in reducing risk of oxidative stress-related diseases are well documented. 
The carotenoid and flavonoid role in inflammation and chronic disease prevention 
have been described earlier [61, 84]. For instance, as stated above, the pigments 
xanthophylls and anthocyanins possess high anticancer, antidiabetic, anti-obesity, 
and antioxidant properties [207, 310]. Vitamin C has also been evaluated for its role 
in disease prevention [173]. Potentiation or synergistic effect has been observed 
among lettuce antioxidants [327]. Dark-green leafy vegetables may decrease colon 
cancer risk because the water-insoluble green pigment chlorophyll prevents the det-
rimental, cytotoxic, and hyper-proliferative colonic effects of dietary heme (eating 
red meat) [328]. Antioxidants decrease the overall risk of cancer. For example, con-
sumption of either lettuce or the leave extract was found to control some types of 
cancer such as breast cancer [329, 330] and leukemia. The antileukaemic effects 
correlate with Chk2 kinase activation, p21 tumor suppressor induction, proto- 
oncogene cyclin D1 sever downregulation, and acetylation of alpha-tubulin [331]. 
Raw lettuce displays anxiolytic and minor tranquilizing properties [332, 333] and, 
along with other leafy greens, was shown to significantly improve mental health 
outcomes including cognition [334, 335]. Lettuce displays an opium-like effect as 
well. Lactucarium, a milky fluid with sedative and analgesic properties (depressant 
chemical), can be isolated from the base of the wild-lettuce stem. The chemical 
constituent lactucin and its derivatives along with other extract components were 
found to decrease the heart rate and induce sleep in animal experiments [336, 337]. 
Several components of lettuce such as phenolic antioxidants, folic acid, and potas-
sium have been demonstrated to have neurological protective effects and can be 
used to manage ischemia-induced neuronal damage and decrease the risk of 
Alzheimer’s disease [333, 334, 338]. Lettuce’s anti-neurotoxicity mechanism 
appears to suppress Bax and caspase-3 proteins and decrease Bcl-2 [339]. Studies 
have also found that lettuce impacts cardiovascular health by decreasing total cho-
lesterol level and improving the antioxidant status [10, 340]. Leafy greens, includ-
ing lettuce, are a good source of omega-3 fatty acids [341]. Hence, lettuce omega-3 
content boosts mental and physical health and makes it a good alternative source for 
vegetarians. Vitamin K in lettuce improves bone health [126], supports blood coag-
ulation, and prevents atherosclerosis by decreasing the accumulation of calcium in 
the blood vessel wall, boosting cardiovascular system health [127]. Vitamin A and 
zinc in lettuce can promote eye health too. They prevent age-related macular degen-
eration and decrease the formation of cataract [342]. Vitamin A also stimulates 
immune functions and minimizes infections [343]. It is essential for skin health as 
it can diminish signs of aging [51]. Finally, the role of folic acid in pregnancy and 
fetus development has been denoted above [14, 289].
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In general, consuming lettuce is safe. Some people might develop an allergic 
reaction when eating lettuce. Adverse symptoms like diarrhea, often bloody, abdom-
inal pain, and vomiting a few days following lettuce consumption could be signs of 
ingestion of contaminated lettuce with E. coli. It is mostly a self-limited condition 
but might lead to serious complications such as hemolytic uremic syndrome and 
kidney failure. It is advisable to wash lettuce leaves before consuming it to avoid the 
ingestion of pesticides as well. Lettuce has high vitamin A content, and overcon-
sumption might cause temporary, harmless, yellowish discoloration of the skin in a 
case known as carotenodermia. Lettuce is rich in vitamin K and therefore has to be 
consumed with caution, just like other leafy greens when warfarin or other antico-
agulants are used.
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1  Avocados

 

Family: Lauraceae
Genus: Persea
Common names: Avocado or Alligator Pear

Avocado is a unique stone fruit with a creamy texture and single large seed and 
color ranging from green to almost black when ripe. In shape, they vary from pear 
or egg shape to round shape. The edible portion, i.e., the green-yellow flesh, is 
incredibly nutritious and healthy [1]. It contains low saturated fat but a high content 
of mono- and polyunsaturated fatty acids in addition to about twenty different vita-
mins and minerals. Avocado contains high dietary fiber content and is particularly 
rich in vitamins B, C, E, and K along with important minerals like potassium, cop-
per, and magnesium (Table 1). It also contains appreciable amounts of the common 
carotenoids, lutein and zeaxanthin.

Avocado is high in monounsaturated oleic acid (as seen in olive oil): a fatty acid 
that is believed to be a significant source of its anti-inflammatory [2, 3] and anti- 
carcinogenic [4] effects. For instance, there is evidence that avocado extracts have a 
dampening effect on osteoarthritis [5] and that an avocado- and soybean-based 
nutritional supplement appears to be beneficial for osteoarthritis patients [6]. 
Existing evidence supports the notion that monounsaturated fatty acids (MFA) like 
oleic acid may influence breast cancer risk [7, 8], though it appears that this is popu-
lation dependent. Avocado extract can selectively induce cell cycle arrest, inhibit 
growth, and induce apoptosis in precancerous and cancer cell lines. Examples 
include human oral cancer cell lines [9] or specific constituents like aliphatic aceto-
genins which inhibit human oral cancer cell proliferation by targeting the EGFR/
RAS/RAF/MEK/ERK1/2 pathway [10]. Some in  vitro studies have shown that 
carotenoids and vitamin E in avocado extract may have a role in preventing prostate 
cancer as the extract inhibits the growth of both androgen-dependent (LNCaP) and 
androgen-independent (PC-3) prostate cancer cell lines [11]. It has been also dem-
onstrated that it displays chemoprotective effects by lowering the side effects of 
cyclophosphamide chemotherapy in human lymphocyte cell culture [12]. 
β-Sitosterol is a ubiquitous plant sterol, and avocado is a rich source for the same 
[13]. The component β-sitosterol is currently being investigated for its potential to 
reduce benign prostatic hyperplasia (BPH) [14].
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Avocado is high in fiber (25% of which is soluble fiber and the 75% remainder is 
insoluble fiber) [15]; it is an important component in maintaining body weight and 
controlling energy level [16]. In a clinical trial among overweight adults, avocado 
intake increased satisfaction, lowered desire to eat over the next 5 h, and influenced 
glucose and insulin response [17]. A restricted avocado diet, a source rich in MFA, 
did not compromise weight loss or adversely impact serum lipids [18, 19]. A vege-
tarian diet enriched with avocado has been shown to decrease the risk of heart dis-
eases due to dramatic decrease in total cholesterol, 20% reduction in triglysrides 

Serving size of 100 g of raw avocado
Per serving % Daily valuea

Calories 160
Total fat 14.7 g 23
  Saturated fat 2.1 g 11
  Polyunsaturated fat 1.8 g
  Monounsaturated fat 9.8 g
  Total omega-3 fatty acids 110.0 mg
  Total omega-6 fatty acids 1689.0 mg
Cholesterol 0 mg 0
Phytosterols

Total carbohydrates 8.5 g 3
  Dietary fiber 6.7 g 27
  Starch 0.1 g
  Sugars 0.7 g
Protein 2 g 4
Vitamins

  Vitamin A 3
  Vitamin C 17
  Vitamin E 10
  Vitamin B-6 13
  Vitamin K 26
  Folic acid 20
Minerals

  Sodium 0
  Potassium 14
  Calcium 1
  Iron 3
  Magnesium 7
  Manganese 7
  Copper 9
  Zinc 4

National Nutrient Database
aBased on a 2000 calorie diet

Table 1 Avocado nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)
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and lowered LDL by 22% [1, 20, 21]. Positive effects on lipid profile have largely 
been attributed to avocado (as a source for MFA) [21, 22]. A study of patients with 
non-insulin-dependent diabetes showed that an enriched avocado diet (high MFA) 
improved glycemic control and resulted in favorable lipid profile [23]. In all, avo-
cado consumption has been found to be associated with better diet quality and nutri-
ent intake and lower metabolic syndrome risk in US adults [24]. The fruit also 
provides a substantial amount of fatty acids, a structural component of cell 
 membranes, thus playing an important role in brain development and function and, 
 ultimately, mental health [25–27].

The fatty content of avocado helps the body absorb fat-soluble nutrients such as 
vitamins A, K, D, and E as well as carotenoid antioxidants [28]. Potassium intake 
by the general population is low [29, 30]. Avocado is a rich source of potassium 
(actually more than bananas). It is linked to lower blood pressure [31] and along 
with other phytonutrient factors to a healthy cardiovascular system [1]. Evidence 
has supported that fact, that is, the role of the appreciable content of vitamin K in 
cardiovascular health [32] and keeping healthy bones [33, 34]. The high levels of 
folic acid in this fruit is important in maintaining healthy pregnancy and reducing 
the risk of miscarriage, neural tube defects, and other congenital anomalies [35–37]. 
Folic acid may also help prevent the buildup of homocysteine, thereby improving 
one’s mood and reducing depression, the foremost reason being that homocysteine 
buildup depletes production of dopamine and serotonin neurotransmitters promot-
ing a sense of well-being. Other reasons include avocados’ high tyrosine (an amino 
acid) content that is a precursor to dopamine and MFAs that support the production 
of acetylcholine. Furthermore, homocysteine is a definite trigger for inflammation. 
Elevated homocysteine levels can lead to various heart diseases [38–41].

Avocado is rich in the antioxidants lutein and zeaxanthin, found to decrease the 
risk of macular degeneration and cataracts and improve overall eye health [42]. 
Moreover, these antioxidants are capable of lessening signs of aging by protecting 
the skin from damage by both UV rays and radiation [43]. On the other hand, other 
vitamins such as C, E, and K stimulate collagen synthesis [44–46] and scavenge 
radicals [47]. Lutein from avocado has also been found to improve memory in older 
adults [48].

Overconsumption of avocado is associated with migraine headache, nausea, 
vomiting, fever, and sensitivity to light. People with allergy to latex may exhibit 
some allergic symptoms such as itching, skin rash, skin redness, or eczema after 
consuming avocado. People suffering from a compromised liver function must 
avoid avocado as it contains estragole and anethole. It is advisable to avoid avocado 
during pregnancy and lactation too as it may lead to damage of mammary glands 
and reduction in milk production. Avocado is rich in β-sitosterol that absorbs neces-
sary cholesterol from the body. Hence, consuming large amounts of avocado may 
lead to a harmful decrease of total cholesterol.
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2  Bananas

 

Family: Musaceae
Genus: Musa
Common name: Banana

Bananas are among the most popular fruits in the world. Many kinds of bananas 
exist in various sizes and shapes. The skin color usually varies from green to yellow. 
They possess a fair amount of fiber, antioxidants, and minerals [49] (Table  2). 
Botanically speaking, banana is technically classified as a berry.

Bananas are a great source of both fiber and potassium [50, 51]. Potassium regu-
lates blood flow [52], lowers the blood pressure [53–55], and prevents cardiovascu-
lar diseases [56–58]. They are also a source abundant in pyridoxine (vitamin B-6), 
vitamin C, antioxidants, and other phytonutrients [59, 60]. They contain other 
essential minerals such as magnesium [61–63] and manganese [64–67]. Their role 
in health and disease has been well-investigated. While bananas are low in protein, 
they are an extraordinary source of energy yet almost no fat.

Intake of dietary fiber provides numerous health benefits [68, 69]. In terms of 
fiber, a medium-sized banana contains roughly 3 g of fiber that is almost 10% of the 
daily intake [49]. Dietary benefits of banana differ depending on their ripeness. 
Green, unripe bananas have lower sugar content and more resistant starch which 
functions as a fiber and keeps the person feeling full for longer periods of time [70]. 
It also has prebiotics effect which is essential for gut health, especially for the colon, 
and can help absorb nutrients such as calcium [71, 72]. On the other hand, green 
bananas are low in antioxidants. Banana fiber helps in heart health, moderates blood 
sugar level, aids in weight management, and improves digestive health. Largely, 
unripen banana has two forms of fiber: pectin and resistant starch [73, 74]. The 
benefit of fiber-rich diet and cardiovascular risk reduction is well documented [75–
77]. Banana’s main fiber types contribute to fullness feeling and appetite reduction 
[78–81] and help with weight loss [78, 81–83] which in turn cause insulin sensitiv-
ity improvement [84, 85] and blood sugar control [23, 86, 87]. The impact of fiber 
on digestive health is well-known [88, 89]. Other recognized value of these fibers is 
lowered risk of kidney [90, 91] and colon [92, 93] cancers. The presence of potas-
sium and magnesium in sufficient concentrations has been correlated with lower 
kidney stone risk incidence [94–96].

Yellow, ripe bananas are sweeter and have higher levels of antioxidants [60]. 
Yellow bananas with brown spots are particularly rich in the antioxidant dopamine 
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[59] and flavan-3-ols such as catechins [60], though they may increase blood 
 glucose levels. Catechins belong to the antioxidant flavonoid polyphenolic class. 
They are linked to lower incidence of chronic diseases, such as certain cancers and 
cardiovascular and neurodegenerative diseases [97–100]. These and other antioxi-
dant substances in ripe bananas are immunostimulants [101]. Research has shown 
that consumption of overripe bananas enhances the immune system’s ability to pro-
duce TNF-α [101, 102]. Tumor necrosis factor (TNF-α), a cytokine, plays many 
pivotal biological roles [103] including tumorigenesis inhibition, i.e., anticancerous 
[102, 103].

Serving size of 100 g of raw banana
Per serving % Daily valuea

Calories 89
Total fat 0.3 g 1
  Saturated fat 0.1 g 1
  Polyunsaturated fat 0.1 g
  Monounsaturated fat 0.0 g
  Total omega-3 fatty acids 27.0 mg
  Total omega-6 fatty acids 46.0 mg
Cholesterol 0.0 mg 0
Phytosterols 16.0 mg
Total carbohydrates 22.8 g 8
  Dietary fiber 2.6 g 10
  Starch 5.4 g
  Sugars 12.2 g
Protein 1.1 g 2
Vitamins

  Vitamin A 1
  Vitamin C 15
  Vitamin E 1
  Vitamin B-6 18
  Vitamin K 1
  Folic acid 5
Minerals

  Sodium 0
  Potassium 10
  Calcium 1
  Iron 1
  Magnesium 7
  Manganese 13
  Copper 4
  Zinc 1

National Nutrient Database
aBased on a 2000 calorie diet

Table 2 Banana nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)
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Bananas are postulated to reduce depression and anxiety and stabilize sleep. 
They contain tryptophan which helps the body to manufacture serotonin, a neu-
rotransmitter known as “happiness” hormone, i.e., hormone preventing mood disor-
ders [102, 104]. They also have a high content of dopamine [59]. Though it is an 
important neurotransmitter, dopamine from banana does not appear to cross the 
blood-brain barrier to affect mood. Rather it seems to behave as a potent antioxi-
dant [59].

Bananas as a rich source of carbohydrates and minerals can help to increase 
one’s energy and prevent fatigue. More importantly, they are a great snack pre- and 
post-exercise [105, 106], although there are other studies that have found contrary 
evidence [107]. Despite this one study, research supports the notion that bananas 
help reduce exercise-related muscle cramps and soreness resulting from dehydra-
tion and electrolyte imbalance, thus enhancing performance and endurance of ath-
letes [105, 108–110].

Despite the various health benefits, there are certain side effects associated 
mostly with overconsumption of this fruit. High starch content in banana dissolves 
slowly in the mouth leading to tooth decay. Resistant starch in unripe banana is 
associated with abdominal pain, nausea, vomiting, and constipation. Soluble fiber 
and fructose in banana can cause indigestion and gas formation. Conversely, ripe 
banana has been found to reduce constipation. Banana’s high content of B-6 can be 
rarely associated with nerve damage when consuming large quantities. High con-
sumption of overripe banana might increase the weight and increase blood glucose 
[111]. In comparison to other fruits, bananas are somewhat high in sugar and lower 
in fiber. Therefore, individuals with blood sugar and weight management concerns 
like diabetic patients should consume banana in moderation [111]. Banana allergies 
are relatively uncommon; however, due to certain banana protein similarity with 
latex, people with latex allergy have the possibility of being allergic to banana and 
some other fruits as well. Allergy to banana manifests as lips and tongue swelling, 
and throat irritation is well identified in some people when consuming banana or 
even handling it. The allergic reaction of muscle cramping, skin rashes, and wheez-
ing can be complicated by severe immune reaction and serious anaphylaxis 
shock [112].

Bananas contain the amino acid tyrosine which is converted into tyramine in the 
body. Tyramine may trigger migraine headaches in some people. A number of medi-
cations such as monoamine oxidase inhibitors (MAOIs) were found to interact with 
tyramine prompting a dietary restriction. Oxazolidinone antibiotics, being weak 
MAOIs, might be associated with increased blood pressure when administered for a 
long period at high dose; thus, it is recommended to avoid tyramine-rich food [113, 
114]. Bananas are a good source for potassium and magnesium which help muscle 
relaxation; they also contain the amino acid tryptophan which is converted into 
serotonin and therefore can be most helpful in promoting sleep [115, 116]. Banana 
is a highly rich source of potassium. Hyperkalemia (high level of potassium in the 
blood) [117] may affect the heart rate and can even lead to heart attack especially in 
people with impaired renal function [118]. Excessive consumption of banana might 
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alter the action of some blood pressure-reducing agents such as beta-blockers, 
diuretics, and angiotensin-converting enzyme inhibitors (ACEIs).

3  Berries

 

Family: Rosaceae
Genus: Rubus (Blackberry, Black Raspberry, Raspberry, Tayberry, Boysenberry, 

Loganberry, Dewberry, and Cloudberry)
Genus: Fragaria (Strawberry)
Genus: Aronia (Chokeberry)

Berries are a widely popular variety of fruit worldwide and often are used in various 
kitchen products and recipes. Interestingly, the term “berry” is an encompassing 
term. The scientific usage of the name “berry” radically differs from the common 
terminology usage where many fruits are excluded by the botanical definition. 
These include strawberries, raspberries, blackberries, and mulberries. Here we will 
apply the commonly used fruits termed as berries by the masses and select few for 
further discussion. Berries provide a number of impressive, extraordinary health 
benefits. Strong scientific evidence suggests that eating various types of berries 
affects different body systems positively. Not only are berries delicious and 
 nutritious, but they are also packed with phytochemicals that have medicinal prop-
erties. While most berries are edible, they are few that are poisonous to humans.

The health value of berries is largely derived from their antioxidant constituents 
which are the highest among commonly consumed fruits, next only to pomegran-
ates [119]. More specifically, the impact is due the presence of phenolic compounds 
[120]. Berries’ phenolics and polyphenols effects have been reviewed in many stud-
ies recently [121–127]. Within the selected group of berries, it is not possible to 
cover espoused health benefits comprehensively. Hence, we will choose key, critical 
components to delineate their disease prevention qualities including any crucial 
vitamins and minerals. By way of illustration, the emerging health impact com-
prises the following: cardiovascular [128–132] and metabolic syndromes [133–
136], inflammation [137–140], digestive system [141], cancer [142–145], skin 
aging [146], and neuroprotection and cognition [147–151]. Many of these reviews 
are evidence-based and cite intervention clinical studies.
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3.1  Blackberry

Blackberry is an edible black fruit, which botanically speaking is an “aggregate 
fruit.” It has a group of over 375 of closely related species. Like other berries, black-
berries are commonly eaten raw. They also can be eaten in baked goods, added to 
salads, or made into jams, jellies, or sauces. Interestingly, ancient cultures consid-
ered blackberry as a wild plant weed despite its traditional, medicinal usage of the 
fruit, leaf, bark, and roots for healing several health conditions including infections 
and poisonous bites. Blackberries are a good source of fiber, essential amino acids, 
vitamins C and K, and minerals (Table 3). Blackberries also retain high antioxidant 
content. They contain the most quantity of vitamin K and manganese and have the 
lowest calories when compared to other berries.

Blackberries contain numerous amounts of potent antioxidant compounds [152–
154] such as phenolic acids and polyphenols like tannins and flavonoids (subclasses: 
anthocyanins, flavonols, and flavanols, i.e., flavon-3-ols). Among the anthocyanins 
(anthocyanosides), the glycosylated form of anthocyanidine being mostly 3-gluco-
sides, the pigment cyanidin-3-glucoside (C3G) is the major anthocyanin found in 
most of the berries. They are present in the different tissues of the plant [155] and 
are responsible for the blackish color of fresh blackberries. They boost the immune 
system [156] and counteract the actions of free radicles while protecting the body 
from diseases caused by oxidative damage and inflammation [157–161]. In addi-
tion, blackberries have been found to prevent DNA damage in cells, therefore 
diminishing the risk of mutation-related maladies like cancer [152, 162–165]; 
examples include colorectal [166, 167], breast [168], and lung [169] cancers. They 
also play an important role in preventing cardiovascular diseases in many ways 
[170–172] and as demonstrated in separate intervention studies [173–176]. It has 
been reported that anthocyanins [173, 177] or C3G delay and can even halt the 
development of cardiovascular diseases [178] as evident in biomarker profile 
improvement. Blackberry anthocyanin-rich extract has been shown to protect the 
skin from the damage caused by ultraviolet light [179]. Interestingly, blackberry 
leaves are also used to treat some skin conditions like eczema, acne, different skin 
rashes, and itching due to insect bites. The combination of anthocyanins and vita-
mins improves vision and protects the eyes from age-related macular degeneration, 
cataract, and night blindness [180–182]. Blackberry leaves, bark, and root are a rich 
source of tannins, a class of polyphenols with astringent properties, and have been 
used as herbal medications for a number of conditions including digestive tract 
complaints, such as diarrhea, dysentery, and gastroenteritis. The antioxidant and 
anti-inflammatory activity of blackberry polyphenols may also limit the decline in 
age-related cognitive and motor abilities [183–185], which is further enforced by 
the availability of vitamins C and E [186]. The high concentration of manganese, an 
essential trace metal, is thought to affect brain functions and temperate some neuro-
logical conditions similar to Parkinson’s disease [66].

The additive effect of the high vitamin K content in blackberries is thought to 
contribute to their anticancerous properties. It has been shown that blackberries play 
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a role in fighting and preventing the spread of many cancers including prostate 
[187], stomach [188], liver [189], and colorectal cancers [190]. Furthermore, vita-
min K in combination with vitamin C could be a promising treatment for leukemia 
[191] and bladder cancer [192]. Vitamin K also plays a role in the blood’s normal 
clotting process inhibiting excessive bleeding and promoting wound healing [193]. 
In addition, it boosts bone health by preventing osteoporosis and reducing the risk 
of fractures [33]. Vitamin K also reduces blood pressure as it decreases inflamma-
tion in cells lining the blood vessels and reduces the risk of heart attacks.

Serving size of 100 g of raw blackberry
Per serving % Daily valuea

Calories 43
Total fat 0.5 g 1
  Saturated fat 0.0 g 0
  Polyunsaturated fat 0.3 g
  Monounsaturated fat 0.0 g
  Total omega-3 fatty acids 94.0 mg
  Total omega-6 fatty acids 186.0 mg
Cholesterol 0.0 mg 0
Phytosterols

Total carbohydrates 10.2 g 3
  Dietary fiber 5.3 g 21
  Starch 0.0 g
  Sugars 4.9 g
Protein 1.4 g 3
Vitamins

  Vitamin A 4
  Vitamin C 35
  Vitamin E 6
  Vitamin B-6 1
  Vitamin K 25
  Folic acid 6
Minerals

  Sodium 0
  Potassium 5
  Calcium 3
  Iron 3
  Magnesium 5
  Manganese 32
  Copper 8
  Zinc 4

National Nutrient Database Nutrition
aBased on a 2000 calorie diet

Table 3 Blackberry nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)
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The phytoestrogens, vitamins, and minerals in blackberries and their extract 
were found to have natural antibacterial effects against some infections such as oral 
infections [194]. Also, blackberry extract has been suggested to have antiviral activ-
ity; they were found to inhibit the early stages of oral epithelial cells replication of 
HSV-1 [195].

The consumption of reasonable amounts of ripe blackberries has shown no 
reported side effects, but overconsumption may lead to diarrhea, while the relatively 
higher content of tannins in unripe blackberries can cause constipation, nausea, and/
or vomiting in some people.

3.2  Raspberry

Raspberry is a palatable, sweet, soft berry fruit of multiple species. They occur in a 
multitude of colors like black, golden or yellow, pink, white, purple and even bright 
blue, and red which is most popular. Red raspberries can be eaten raw, dried, 
included in some cooking recipes, or made into jam; its leaves are used to make teas 
and to give flavor. Red raspberry leaves and fruit are also used for their medicinal 
value. Raspberries are excellent sources of vitamin C, dietary fiber, and manganese. 
They are also rich in different B vitamins, copper, and iron (Table 4). They have 
high concentration of antioxidants such as simple phenols (gallic acid and salicylic 
acid); ellagic acid, an ellagitannin by-product; and the flavonoids quercetin, kaemp-
ferol, catechins, cyanidin, and pelargonidin. However, light-colored raspberries, 
like the yellow ones, have a much lower concentration of anthocyanins.

Raspberry consumption has been associated with many health benefits [196, 
197]. Both anthocyanins and ellagitannins are major pharmacological contributors 
[198]. Ellagic acid, a tannin hydrolysis-derived product, has been reported to have 
multiple bioactivities, including anti-inflammatory, antioxidative, anticancerous as 
well as antiviral capabilities [199, 200]. Ellagic acid has displayed anti- inflammatory 
responses and been shown to reduce collagen destruction caused by ultraviolet light 
damage in an in vitro model [201]. Ellagic acid has been shown to inhibit certain 
types of cancer, including lung [202], bladder [203], breast [204], and skin [205] 
cancers. Anthocyanins in black raspberries have been demonstrated to have anti-
cancerous properties as well. They reduce oxidative stress, affect apoptosis, and 
restore tumor suppressive activity [206], especially in esophageal [207] and oral 
cavity cancers [208] and colorectal cancer [209]. Anthocyanins were also found to 
prevent transformation of cells, decrease inflammatory reactions, and induce nor-
mal functions in cancer cells [210]. The polyphenols anthocyanins and ellagitan-
nins in red raspberries and their extract were also proven to lower the risk of heart 
conditions [131, 196, 211–213]. The same was found for black raspberry [200]. 
Black raspberry seed oil, rich in α-linolenic acid (omega-3 fatty acid), has been 
found to significantly lower the plasma triglyceride level [214]. Whereas red rasp-
berry seed oil is rich in vitamin E, which is a potent antioxidant, along with the fatty 
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acids’ omega-3 and omega-6, plus vitamin A, they limit skin aging and temperate 
ultraviolet light harm [201, 215, 216].

There are no reported side effects associated with moderate intake of raspberries. 
Red raspberries act like the hormone estrogen (isoflavones are natural endocrine 
active phytoestrogens) [217, 218]. Therefore, red raspberry should be consumed 
with caution during pregnancy, and it is better to be avoided in conditions sensitive 
to hormones such as breast, uterine, and ovarian cancers [219, 220], endometriosis, 
and uterine fibroids, as they might be exacerbated by estrogen like action of 
raspberries.

Serving size of 100 g of raw raspberry
Per serving % Daily valuea

Calories 52
Total fat 0.7 g 1
  Saturated fat 0.0 g 0
  Polyunsaturated fat 0.4 g
  Monounsaturated fat 0.1 g
  Total omega-3 fatty acids 126 mg
  Total omega-6 fatty acids 249 mg
Cholesterol 0.0 mg 0
Phytosterols

Total carbohydrates 11.9 g 4
  Dietary fiber 6.5 g 26
  Starch 0.0 g
  Sugars 4.4 g

Protein 1.2 g 2
Vitamins

  Vitamin A 1
  Vitamin C 44
  Vitamin E 4
  Vitamin B-6 3
  Vitamin K 10
  Folic acid 5
Minerals

  Sodium 0
  Potassium 4
  Calcium 2
  Iron 4
  Magnesium 5
  Manganese 34
  Copper 4
  Zinc 3

National Nutrient Database Nutrition
aBased on a 2000 calorie diet

Table 4 Raspberry nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)
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3.3  Strawberry

A strawberry is a sweet, heart-shaped fruit, growing in bushes, known for its distinct 
aroma, bright red color, and juicy consistency. The fruit can be consumed raw as a 
whole fruit or as a juice. Strawberries can be added to recipes or used to make jam, 
pies, ice creams, milkshakes, and chocolates or simply to add as a flavor to the food 
or to body care items such as lip balms, lotions, shampoos, and toothpastes. 
Strawberry leaves are also edible: they can be consumed either raw or cooked and 
used to prepare tea. Strawberries are low-calorie, fiber-rich fruits, with very high 
antioxidant and polyphenol content. They are also rich in vitamins C and K, folic 
acid, and minerals such as manganese, magnesium, and potassium (Table 5).

Strawberry consumption has been linked to many health benefits [221–225]. 
Strawberries harbor several active pharmacological ingredients against chronic dis-
eases [226, 227]. Strawberries and its leaves have large quantities of antioxidants 
such as vitamin C, phenolic acids, and flavonoids, mainly as flavonols and antho-
cyanins, that neutralize free radicle action and offer protection against many incur-
able chronic conditions [157, 228, 229]. Strawberries generally exhibit 
chemopreventive activities against several cancer types [230–236] and have been 
shown to inhibit oral tumor formation [237]. Phenolic compounds in strawberries 
are thought to enhance apoptosis in cervical cancer [238]. Polyphenols from straw-
berry extract have shown protective properties against breast cancer as well [235], 
while the specific polyphenol compound kaempferol, a natural flavonol, induces 
cell cycle arrest and is thought to have an effect on colorectal cancer [239]. It 
appears that the anticancer features of these extracts or compounds exert their effect 
by targeting multiple signaling pathways. The flavonol compound fisetin, present at 
the highest concentration only in strawberry [240], was also observed to affect pros-
tate cancer [241] and triple-negative breast cancer [242] plus other notable digestive 
cancers in cell cultures [243]. Besides being an anticancerous agent, fisetin has 
multiple other health benefits including neuroprotection [244, 245]. Fisetin seems to 
possess senolytic quality, i.e., extending lifespan. In laboratory animals it has been 
shown it is the most potent senolytic agent reducing senescence biomarkers in mul-
tiple tissues [246]. It is currently undergoing clinical trials in the USA to show 
efficacy in humans.

In various clinical intervention trials, strawberry consumption has been associated 
with better cardio-profile biomarkers and risk reduction of cardiovascular diseases 
[247–252]. Anthocyanin flavonoids in strawberries reduce the risk of myocardial 
infarctions [253]. Furthermore, the flavonoid quercetin in strawberries has anti-
inflammatory features that helps lower the risk of atherosclerosis [254]. Strawberries 
also contain significant amounts of potassium and magnesium [255], both of which 
are efficient in lowering high blood pressure. Potassium is a vasodilator that reduces 
high blood pressure as well as the rigidity of blood vessels, thereby decreasing the 
risk of cardiovascular diseases [256].

Strawberries are rich in vitamin C and phytochemicals that help boost the ner-
vous system and avert age-related cognitive deterioration and Alzheimer’s disease 
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[257]. Moreover, strawberries are also a very rich source of iodine that is useful for 
optimal brain functioning and healthy nervous system [258]. Potassium content has 
been linked to improved cognitive function by improving blood flow to the brain 
[259]. Likewise, potassium and flavonols together improve blood flow to the brain 
and improve the memory, thereby minimizing the risk of Alzheimer’s disease [260]. 
Actually, it has been suggested that high intake of potassium and fisetin, the flavonol 
that gives the strawberry its distinct red color, improves memory and may help 
reduce the risk of Alzheimer’s disease [261] besides other anthocyanins [184, 185] 
and vitamins [186].

Serving size of 100 g of raw strawberry
Per serving % Daily valuea

Calories 32
Total fat 0.3 g 0
  Saturated fat 0.0 g 0
  Polyunsaturated fat 0.2 g
  Monounsaturated fat 0.0 g
  Total omega-3 fatty acids 65.0 mg
  Total omega-6 fatty acids 90.0 mg
Cholesterol 0.0 mg 0
Phytosterols 12.0 mg
Total carbohydrates 7.7 g 3
  Dietary fiber 2.0 g 8
  Starch 0.0 g
  Sugars 4.9 g
Protein 0.7 g 1
Vitamins

  Vitamin A 0
  Vitamin C 98
  Vitamin E 1
  Vitamin B-6 2
  Vitamin K 3
  Folic acid 6
Minerals

  Sodium 0
  Potassium 4
  Calcium 2
  Iron 2
  Magnesium 3
  Manganese 19
  Copper 2
  Zinc 1

National Nutrient Database Nutrition
aBased on a 2000 calorie diet

Table 5 Strawberry nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)
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It has also been shown that strawberry polyphenol-enriched anthocyanin extract 
protects against ultraviolet radiation, thusly limiting skin damage [262]. 
Anthocyanins in strawberries improve vision and protect the eyes from age-related 
macular degeneration, cataract, and night blindness [180].

These beneficial fruits are not, however, free of some unwanted health effects, 
especially when consumed excessively. Strawberries contain histamine which 
causes itching, dizziness, and nausea and may complicate food intolerance and 
cause digestive problems [263]. People allergic to strawberry should avoid eating it. 
High fiber content in raw strawberries might prevent nutrient absorption and may 
lead to diarrhea when overconsumed. With its high potassium content, eating lots of 
strawberries may cause harm to the kidneys and the heart especially during the use 
of heart medications. Eating unripe strawberries may lead to mouth irritation and 
burning sensation.

Family: Ericaceae
Genus: Vaccinium (Blueberry, Cranberry, Huckleberry, and Lingonberry)
Genus: Arctostaphylos (Bearberry)
Genus: Empetrum (Crowberry)

3.4  Blueberry

Blueberries are perennial flowering shrubs with blue- or purple-colored fruits that 
grow in clusters. The fruit is a berry shape with a wide crown at the end; they have 
pale greenish color at the top that then changes to reddish-purple, and when ripe it 
turns dark purple. Ripe blueberries have light green flesh and a sweet taste with 
variable levels of acidity. There are two main types of blueberry bushes: the low-
bush or wild blueberries, which are typically smaller in size with fruits richer in 
certain antioxidants, and the highbush blueberries which are the most commonly 
grown type. Blueberries can be eaten raw, had as a juice, used in cooking recipes, 
or made into jam. Blueberry leaves are also used to make tea. Blueberries are low 
caloric fruit, high in carbohydrates and fiber. They are rich in vitamins C and K and 
minerals like manganese (Table 6). They are believed to be the richest source of 
antioxidants, including the important polyphenol flavonoid family, among all com-
mon vegetables and fruits.

Blueberries have been reported to have wide-ranging and generous health bene-
fits including impact on the biology of aging [186, 264] with their high antioxidant 
capacity [119, 126, 265, 266] and ability to improve DNA damage protection in 
humans [267, 268]. A significant portion of these health attributes is the result of 
flavonoids particularly the antioxidants subgroup anthocyanins [269] as they can be 
detected in the serum of human subjects upon ingestion [270, 271]. Anthocyanins 
are present in high concentrations in blueberries, are responsible for its blue color, 
and can partly explain the generous health benefits of this fruit.

Blueberries’ exceedingly rich content of flavonoids such as anthocyanin, catechin, 
quercetin, and kaempferol along with vitamin C makes them a potent anticancerous 
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fruit [272–274], fighting against breast cancer [275–278], colon and small intestine 
adenomas [279, 280], melanoma [281], and prostate cancer [282].

Another benefit of polyphenols in blueberries is their impact on risk factors of 
stroke and cardiovascular diseases [283]. High anthocyanin intake has been found 
to lower the risk of heart attacks in middle-aged women [253], and series of studies 
concluded that blueberries reduce LDL and that phenolic compounds in blueberries 
are thought to decrease the oxidation of the unhealthy LDL cholesterol [284–286]. 
Blueberries contain potassium, magnesium, and calcium which are known to lower 

Table 6 Blueberry nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)

Serving size of 100 g of raw blueberry
Per serving % Daily valuea

Calories 57
Total fat 0.3 g 1
  Saturated fat 0.0 g 0
  Polyunsaturated fat 0.1 g
  Monounsaturated fat 0.0 g
  Total omega-3 fatty acids 58.0 mg
  Total omega-6 fatty acids 88.0 mg
Cholesterol 0.0 mg 0
Phytosterols

Total carbohydrates 14.5 g 5
  Dietary fiber 2.4 g 10
  Starch 0.0 g
  Sugars 10.0 g
Protein 0.7 g 1
Vitamins

  Vitamin A 1
  Vitamin C 16
  Vitamin E 3
  Vitamin B-6 3
  Vitamin K 24
  Folic acid 1
Minerals

  Sodium 0
  Potassium 2
  Calcium 1
  Iron 2
  Magnesium 1
  Manganese 17
  Copper 3
  Zinc 1

National Nutrient Database Nutrition
aBased on a 2000 calorie diet
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blood pressure with several investigations showing that blueberries can lower the 
blood pressure in obese people [286–288]. The dietary fiber in blueberries amplifies 
the health of the digestive and cardiovascular systems, reduces cholesterol, prevents 
constipation, and helps control body weight [69].

Paradoxically, consuming the whole berry fruit is thought to decrease the risk of 
developing type 2 diabetes, while blueberry juice has been associated with a higher 
diabetes risk [289]. Anthocyanin compounds have also been thought to give blue-
berries their anti-diabetic properties observed in pancreatic cells and peripheral tis-
sues. Few studies, including ones with clinical intervention, have established that 
blueberries improve fasting glucose and insulin sensitivity [290, 291]. Extracts from 
the stem, leaf, and fruit have been shown to protect against glucose toxicity [292] 
and mend glycemic profile via digestion and absorption reduction of starch, thereby 
controlling glycemia [293]. Findings from animal studies support the contention of 
blueberries capability to promote weight loss [294, 295].

Blueberry juice antioxidants and anti-inflammatory polyphenolic compounds, 
especially anthocyanins, are thought to be neuroprotective [184, 185, 296]. They 
have been shown to improve cognitive functions and memory among older people, 
mitigating Alzheimer’s disease symptoms [297–299] as well as children cognition/
memory [300]. Blueberries contain vitamins such as A, C, and E and minerals like 
selenium, copper, magnesium, and phosphorus that also help thwart cognitive dam-
age and reduce mood swings/neurotic conditions [186, 301]. Consuming blueber-
ries is also thought to slow down degenerative processes in the eye, preventing 
age-related macular degeneration and blindness. Vitamin A content of blueberries 
has been shown to prevent retinal oxidative damage [302]. Blueberry and its prod-
ucts are thought to reduce the risk of urinary tract infections (UTI) [303] via its 
anti-adhesin bioactivity [304].

Blueberries’ high content of delphinidin, the major anthocyanin compound, was 
found to decrease bone loss, improve bone density, and induce bone formation 
[305]. Their richness in calcium, magnesium, phosphorus, manganese, iron, zinc, 
and vitamin K collectively augments bone health further. Zinc and iron were found 
to improve elasticity of bone and decrease the risk of osteoporosis [306], while 
vitamin K also decreases the risk of pathologic fractures [33].

Prolonged strenuous exercise may result in transient inflammation and muscle 
damage [307]. Blueberry intake prior to intensive exercising enhances performance, 
while supplementation after exercising was accompanied with decreased inflamma-
tion and oxidative stress biomarkers and increased total antioxidant status that 
extended 36  h post-exercise and accelerated muscle recovery [308–310]. These 
findings are comparable to those with cherry and watermelon consumption.

Ingesting blueberries in moderate amounts as part of a balanced diet is unlikely to 
cause serious health effects. However, individuals allergic to blueberries might expe-
rience diarrhea and vomiting once they eat it. On rare occasions, few allergic people 
might also develop an immune reaction in the form of rash, asthma, and/or nasal 
congestion. Those who use blood anti-coagulants, such as warfarin, should be extra 
cautious when consuming blueberries since the high vitamin K content may affect 
the blood clotting process. Furthermore, blueberries naturally contain excessive 
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quantities of salicylates—the active component in aspirin—which can lead to some 
health side effects in people who cannot tolerate salicylates. For such individuals, 
blueberry juice might cause skin rash, headaches, or gastrointestinal  symptoms such 
as nausea, vomiting, diarrhea or constipation, reflux, bloating, and gas formation. 
The blueberry fruit is expected to be safe for diabetics when eaten in moderate 
amounts, but blueberry leaves supplement was found to cause dangerous drop in the 
blood glucose.

Family: Moraceae
Genus: Morus (Red and White)

3.5  Mulberry

Mulberry is a berry from a wild flowering tree of few related species. Immature 
mulberries are white, green, or light yellow. Across most types, as they ripen, they 
become pink and then red, after which they turn dark purple or black. Mulberries 
can be eaten raw or dried and as part of different cooked sweets. Mulberries can be 
used to make jams, juice, jellies, smoothies, tea, pancakes, sauces, or canned food. 
Mulberry essential oil has a pleasant scent and can be added to give fragrance to 
goods such as lotions, shampoos, soaps, and candles. Leaves of white mulberries 
are the favorite or probably even the only food of silkworms. Mulberries were used 
in Chinese medicine to treat countless conditions including heart diseases, diabetes, 
anemia, and arthritis. They contain carbohydrates, fiber, fat, and proteins. They are 
a wealthy source of vitamins C, K, and B vitamins, calcium, and iron (Table 7). All 
parts of the plant are rich in antioxidants: the fruit, bark, stem, and leaves. Mulberries 
are antioxidants rich in simple phenols like chlorogenic acid (caffeic acid deriva-
tive); the flavonoids cyanidin, myricetin, and rutin, along with others like the stil-
bene resveratrol; and the carotenoids lutein and zeaxanthin.

Mulberries have few health benefits which have been reviewed recently along 
with its bioactives [311–313]. Mulberry anthocyanin (C3G) and its extract have been 
found to reduce oxidative stress and inflammation [314, 315]. They reduce the total 
cholesterol level and inhibit the oxidation of unhealthy LDL, thus lowering the risk 
of coronary heart diseases and atherosclerosis [316, 317]. Leaves extract was equally 
promising for modulating cardiometabolic risks and atherosclerosis [283, 318, 319]. 
Mulberry extract was demonstrated to treat a number of diseases including cancer 
[320–323], obesity [324], and type 2 diabetes [325–327]. The mulberry leaves con-
tain 1-deoxynojirimycin, a poly-hydroxylated piperidine alkaloid secondary product 
that slows down carbohydrate degradation in the gut, thereby reducing the release of 
glucose after meals [328–331]. Mulberries and their root bark extract possess the 
phytochemicals anthocyanins and resveratrol. Their antioxidants and anti-inflamma-
tory properties enable battling various cancers [332]. For example, resveratrol has 
been demonstrated to inhibit different cancer types including breast [333], prostate 
[334], thyroid [335], and colorectal cancers [336]. Resveratrol and potassium do 
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help lower the blood pressure and relax the blood vessels which reduces the risk of 
cardiovascular diseases [337]. Furthermore, resveratrol and zeaxanthin protect the 
eye from free radicals that cause macular degeneration and loss of vision and cata-
ract [338]. Extract from black mulberry—rich in antioxidants vitamins C and E—
has been found to enhance cognitive functions in older people ameliorating 
Alzheimer’s disease and age-related memory impairment [339, 340]. White mul-
berry has been shown to confer protection against nephrotoxicity [341].

Table 7 Mulberry nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)

Serving size of 100 g of raw mulberry
Per serving % Daily valuea

Calories 43
Total fat 0.4 g 1
  Saturated fat 0.0 g 0
  Polyunsaturated fat 0.2 g
  Monounsaturated fat 0.0 g
  Total omega-3 fatty acids 1.0 mg
  Total omega-6 fatty acids 206 mg
Cholesterol 0.0 mg 0
Phytosterols

Total carbohydrates 9.8 g 3
  Dietary fiber 1.7 g 7
  Starch 0.0 g
  Sugars 8.1 g
Protein 1.4 g 3
Vitamins

  Vitamin A 0
  Vitamin C 61
  Vitamin E 4
  Vitamin B-6 3
  Vitamin K 10
  Folic acid 1
Minerals

  Sodium 0
  Potassium 6
  Calcium 4
  Iron 10
  Magnesium 5
  Manganese
  Copper 3
  Zinc 1

National Nutrient Database Nutrition
aBased on a 2000 calorie diet
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Allergy to mulberries is not common, but pollen from its trees has been found to 
cause allergic reactions in sensitive individuals. The high potassium content may 
complicate kidney disorders. Mulberry extract may also cause sudden drop in blood 
glucose (hypoglycemia). Mulberries contain arbutin (a chalcone flavonoid), chemi-
cally a hydroquinone compound, which helps make the skin fairer. Since it prevents 
melanin release, it potentially raises the risk of skin cancer [342, 343].

4  Cherries

 

Family: Rosaceae
Genus: Prunus
Common name: Cherry

Cherries are small, round, deep red fruits with a pit in the middle which must be 
removed before eating or cooking. There are limited varieties that differ in their size 
and flavor. The two main types are sweet usually eaten fresh or sour which are used 
for cooking. Cherries are a good source of fiber, omega-3 and omega-6 fatty acids, 
vitamins A and C and folic acid, and minerals such as potassium, manganese, and 
copper (Table  8). They also contain very powerful antioxidants, e.g., quercetin, 
anthocyanins, and cyanidin, that also have anti-inflammatory and anticancerous 
properties [344, 345].

Cherries have high total antioxidant content [346]. Antioxidants along with other 
minerals and vitamins improve immune system status and help prevent infections. 
Researchers have found that consumption of cherry juice by marathon runners 
showed a significant reduction in upper respiratory tract symptoms [347]. 
Antioxidants, particularly anthocyanins, and the high fiber content in cherries aid in 
risk reduction of cancers like colon cancer [348]. Cherry antioxidants have cardio-
vascular benefits as well. Anthocyanin which gives the cherries its red color may 
contribute to its ability in regulating blood sugar and cholesterol levels, thereby 
lowering the risk of developing stroke via PPAR (peroxisome proliferator-activated 
receptors) isoforms activation that is involved in fat and glucose metabolism [349]. 
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The high polyphenol content in cherries’ juice including anthocyanin helps reduce 
blood pressure [350, 351]. Cherry also has the capacity to reduce the signs and 
symptoms of inflammation associated with different types of arteritis [352, 353]. 
The high level of anthocyanin in cherry juice has been shown to be neuroprotective 
[354] and improve memory and cognitive functions in older adults with dementia 
[355–357].

Consuming cherries may act as a natural pain reliever. Cherries have a long his-
tory as a treatment for gout [358] and joint pain [359, 360]. It reduces uric acid 
serum level precluding gouty arthritis [361, 362] and is an effective treatment for 
peripheral polyneuropathies [363]. It has been shown that eating or drinking the 
juice of cherries before and during strenuous exercises like running leads to less 

Table 8 Cherry nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)

Serving size of 100 g of red, raw cherry
Per serving % Daily valuea

Calories 50
Total fat 0.3 g 0
  Saturated fat 0.1 g 0
  Polyunsaturated fat 0.1 g
  Monounsaturated fat 0.1 g
  Total omega-3 fatty acids 44.0 mg
  Total omega-6 fatty acids 46.0 mg
Cholesterol 0.0 mg
Phytosterols 0
Total carbohydrates 12.2 g 4
  Dietary fiber 2.0 g 6
  Sugars 8.0 g
Protein 1.0 g 2
Vitamins

  Vitamin A 26
  Vitamin C 17
  Vitamin E 0
  Vitamin B-6 2
  Vitamin K 3
  Folic acid 2
Minerals

  Sodium 0
  Potassium 5
  Calcium 2
  Iron 2
  Magnesium 2
  Manganese 6
  Copper 5
  Zinc 1

National Nutrient Database
aBased on a 2000 calorie diet
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muscle inflammation and pain and less soreness and enhances faster recovery after 
vigorous workout [364, 365] by increasing total antioxidative capacity, reducing 
inflammation and lipid peroxidation, and hence aiding the recovery of muscle func-
tion. Cherries are significantly associated with weight management, specially 
reducing abdominal fat [366]. Cherries’ rich content of melatonin may improve 
sleeping quality and duration for individuals suffering from insomnia or disturbed 
sleep disorder [216] including older adults [367, 368].

Consuming cherries is fairly safe. If a person is not allergic to cherries, their 
consumption is unlikely to have grave effects on health. Among people sensitive to 
them, allergic reaction can lead to shortness of breath, difficulty in swallowing, 
hives, nausea, or diarrhea. Overconsumption of cherries may cause abdominal 
cramps and bloating due to its high dietary fiber content and high amounts of 
sorbitol.

5  Chili Peppers

 

Family: Solanaceae
Genus: Capsicum
Common name: Chili

Chili pepper is actually a berry fruit with a distinct burning, hot flavor. It can be 
eaten fresh or dried, raw or cooked or simply added to dishes as a spice or as the 
main ingredient in different sauces. The mildly bitter leaves are also edible and 
almost as hot as the fruit itself. Multiple pepper varieties exist and they differ in 
color and the degree of hotness the likes of habanero, jalapeño, cayenne, piri, fresno, 
etc. The hot spicy taste of chili depends on the amount of the active alkaloid capsa-
icin it contains: the more the capsaicin, the hotter it will be. The intensity of capsa-
icin reflects the pepper type and its growing conditions. Chili pepper contains 
multiple vitamins and minerals. It is a very rich source of vitamins B-6, C, and 
K. Red pepper in particular is rich in vitamin A. Chili is also a good source of cop-
per, manganese, and potassium (Table 9). Mature chili peppers have high levels of 
carotenoid antioxidants [369, 370], which protect against multiple chronic diseases, 
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like the capsanthin in red peppers [371, 372], violaxanthin in yellow peppers [373, 
374], lutein in green or immature peppers [375, 376], and phenolic compounds in 
the seeds such as hydroxycinnamic acids like sinapic acid and ferulic acid. In addi-
tion to other flavonoids and bioactive compounds [377, 378].

Chili pepper is the source of a unique set of bioactive compounds that have been 
associated with quite a few health benefits along with effectiveness against some 
chronic conditions [379, 380]. Chili peppers are also used as food preservatives 
[381]. Among these key bioactive chemical families are alkaloids (capsaicin and 
other capsaicinoids), the antioxidant carotenoids (capsanthin and xanthophylls), 
and phenolic acids (sinapic and ferulic acids). Capsaicin and other capsaicinoids 

Serving size of 100 g of raw, red, hot, chili pepper
Per serving % Daily valuea

Calories 40
Total fat 0.4 g 1
  Saturated fat 0.0 g 0
  Polyunsaturated fat 0.2 g
  Monounsaturated fat 0.0 g
  Total omega-3 fatty acids 11.0 mg
  Total omega-6 fatty acids 228 mg
Total cholesterol 0.0 mg
Phytosterols 0
Carbohydrates 8.8 g 3
  Dietary fiber 1.5 g 6
  Starch
  Sugars 5.3 g
Protein 1.9 g 4
Vitamins

  Vitamin A 19
  Vitamin C 239
  Vitamin E 3
  Vitamin B-6 25
  Vitamin K 17
  Folic acid 6
Minerals

  Sodium 0
  Potassium 9
  Calcium 1
  Iron 6
  Magnesium 6
  Manganese 9
  Copper 6
  Zinc 2

National Nutrient Database
aBased on a 2000 calorie diet

Table 9 Chili pepper 
nutrition facts of 100 g, from 
the United States Department 
of Agriculture (USDA 
SR-21)
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are well-studied compounds and responsible for chili peppers’ properties of pun-
gent hot flavor as well as irritant quality. Capsaicin binds to a receptor called the 
vanilloid receptor subtype 1 (TRPV1) on sensory neurons leading to the induction 
of the painful and burning sensations without causing real burns [382]. This desen-
sitization is temporary. By its very nature, capsaicins have been explored for pain 
management therapy [383] and neuropathic pain treatment [384]. Capsaicins are 
mainly utilized as an analgesic in topical ointments and dermal patches at low con-
centrations to relieve pain; however, it appears that topical formulations containing 
high capsaicin concentration at 8% are more effective and possess powerful pain- 
relieving properties [383, 384]. Capsaicin use in pain research and its mechanisms 
of action and use in pre-clinical as well as clinical utility have been reviewed 
recently [385–388]. Noteworthy are the initial findings among a small group of 
patients where capsaicin was used in migraine relief [389]. This work has since 
been extended, and the research area has been reviewed recently for the develop-
ment of anti-migraine therapeutics [390–392].

Capsaicins desensitize sensory receptors [393], yet retain anti-inflammatory 
effects [394, 395]. Therefore, it can be used topically to treat arthritis and osteoar-
thritis [396]. This research area and the safety profile and the efficacy of capsaicin 
in reducing arthritis/osteoarthritis pain have been reviewed extensively using clini-
cal trials findings that all indicate it is an effective sole or adjunct treatment [380, 
397–400]. It can also be used topically to relieve pain caused by diabetic neuropathy 
[401–404]. Besides capsaicin’s pain-relieving properties, it causes vasoconstriction 
of the blood vessels so it relieves nasal congestion [405, 406] or non-allergic rhinitis 
[407, 408] as well. Additionally, it can be used in cases of Helicobacter pylori- 
induced gastritis and/or gastric ulcers by either eliminating the bacteria or minimiz-
ing the inflammatory disease [409–412]. It also reverses dyspepsia pain commonly 
known as acid reflux or heartburn [413, 414]. However, by affecting other pain 
sensation capabilities, the person could be rendered insensitive to the heartburn 
caused by acid reflux.

There is an extensive body of literature that has explored capsaicins’ role in 
weight management and as an anti-obesity potency. Selected reviews are referenced 
here [415–420]. However, the exact mechanism of action of capsaicin is not under-
stood fully yet [386]. Several lines of evidence suggest that the desired outcome is 
through a combined effect of appetite suppression and gastrointestinal satiety [421–
423], enhanced fat oxidation [419, 424–426], thermogenesis and increase in energy 
expenditure [419, 427–430], and alteration in gut microbiota [431–433]. Other 
highlighted beneficial effects on glucose and insulin homeostasis and diabetes, car-
diovascular system (regulating blood pressure, atherosclerosis reduction, platelet 
aggregation inhibition, and cardioprotection) [386, 420, 434, 435], and cancer have 
been revealed. In terms of cancer, there is mixed and conflicting evidence showing 
capsaicin’s chemopreventive and chemotherapeutic effects and that it may also act 
as carcinogenic or co-carcinogenic agent [436–441].

The valuable health benefits of antioxidant carotenoids have been discussed in 
previous vegetables and fruit sections. Among chili pepper, lutein in green peppers 
and xanthophylls in orange/yellow peppers were found to improve eye health [442–
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447]. Several other types of antioxidant phenolic compounds have been isolated and 
identified in chili peppers [378, 448]. Prominent among these are phenolic acids 
[378, 449–452]. The therapeutic potential of phenolic acids has also been reviewed 
[448, 453–455]. Chief among these phenolic acids in chili peppers are sinapic acid 
and ferulic acid. Their strong antioxidant/oxidative stress capacity has been 
described in animal studies and clinical trials. Hence, they have the potential to 
protect or attenuate cellular stress-induced diseases and aging [456] [ferulic acid 
[457–459] and sinapic acid [460–462]]. The therapeutic potential of ferulic acid has 
been expounded including its use in cosmetics, as a food preservative, and as a pre-
cursor for vanillin for the flavor market [463, 464]. The medicinal potential of 
sinapic acid has been elucidated as well [462, 465]. A particular role for these acids 
is being ascribed in neurotoxicity protection and Alzheimer’s disease [466–471].

Chili pepper consumption is not free of certain, minor side effects. 
Overconsumption of peppers (capsaicin) may lead to damage in pain receptors 
and—over a period of time—to the loss of the burning flavor of chili. Oleoresin 
capsicum is an extract of chili peppers and the main component of self-defense pep-
per sprays [472]. The exposure to high concentration of oleoresin capsicum leads to 
temporary acute irritation of the eyes, excess secretion of tears, inflammation of the 
conjunctiva, and involuntary closure of eyelids (blepharospasm), in addition to mild 
to moderate respiratory distress [473]. Asthma patients using theophylline—a bron-
chodilator—should consume chili peppers moderately due to drug interaction and 
potentiation effect. Eating chili could cause gastrointestinal symptom issues in 
some people in the form of abdominal pain, painful diarrhea, and burning sensation 
in the gut. It can also temporarily cause hypersensitivity and worsen the symptoms 
of irritable bowel disease [474]. Some studies have associated chili consumption 
with different gastrointestinal cancers [475–477]. Excessive use of capsaicin cream 
products may cause skin irritation, burning, and itching.

6  Citrus Fruits

 

Family: Rutaceae
Genus: Citrus
Common names: Orange, Lemon, Grapefruit, Tangerine, Clementine, Mandarin, 

Pomelo, and Lime
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Owing to the sheer availability of variety and their distinct scent and flavorful taste, 
citrus fruits have become an integrated part of our daily diet. Interestingly, virtually 
a third of all citrus fruits are consumed as juice. They are known for their low pro-
tein and fat content and supplying different sugars (fructose, sucrose, and glucose) 
yet possessing low glycemic index [478] because of the attenuating influence of 
polyphenols and fiber [479]. Additionally, they are a good source of dietary fiber, 
vitamins C and B, and phytochemicals such as alkaloids, flavonoids, and carot-
enoids. The health benefits of citrus fruits have largely been attributed to the bioac-
tivity of these natural, secondary metabolites [480]. Since citrus fruits’ popular 
varieties, nutritious content, and contribution to health are decidedly comparable, 
they are collectively covered below with a particular focus on key biological active 
constituents. In ripe citrus fruits, the emphasis will be on fiber content; the antioxi-
dants alkaloid triterpenoids (limonoids), flavonoids (flavanones), and carotenoids 
(β,β-xanthophylls); and vitamin C.

Citrus fruits may supply up to 18% of the daily recommended dietary fiber 
intake. The main soluble fibers present are pectin and some hemicellulose, while the 
main insoluble fibers are cellulose, hemicellulose, and lignin [481], exclusively 
enjoying a higher ratio of soluble to insoluble fiber compared to other fruits or veg-
etables [482]. The role of dietary fiber in the prevention or management of chronic 
diseases [69, 483, 484] including metabolic disorders [485] has been discussed 
extensively in the vegetable section and key fruits in this section. By way of refer-
ence, we provide here a brief narrative that is applicable to citrus fruits [486]. Most 
studies have focused on the usual risk reduction of chronic diseases such as diabe-
tes, cardiovascular diseases, and colon cancer [487, 488]. Meta-analyses have sum-
marized findings with regard to metabolic syndromes [485, 489, 490] with recent 
investigations focusing on type 2 diabetes [491–493]. In addition, results from these 
reviews or research articles show significant metabolic profile improvement. 
Numerous meta-analyses and research investigations have established that dietary 
fiber intake is associated with a lower risk of both cardiovascular and coronary heart 
disease [75–77, 494, 495]. There seems to be a universal agreement on their ability 
of lowering blood pressure [496], reducing cholesterol [497, 498], decreasing glu-
cose levels [499], and contributing to weight loss [500] regardless of population 
age, i.e., young [501] or old [499, 502]; gender, i.e., male [503] or female [504]; and 
ethnicity [505–508]. Furthermore, a systematic review and meta-analysis impli-
cated the protective role of dietary fiber intake on colorectal cancer [509]. Other 
studies indicated better odds ratio with fruit fiber intake [510–512]. Indeed, fiber 
also aids in maintaining a healthy digestive system. Fiber was found to improve 
constipation condition [513–515], promote satiety [83, 516], and permit body 
weight management [500, 517, 518]. Finally, dietary fiber influences the gut micro-
biome [519]. As a result, the gastrointestinal microbiota indeed affects human health 
and disease states [520]. Several articles have reviewed the role of prebiotic dietary 
fiber [521–524].

The antioxidant properties, biological functions, potential applications, and con-
tribution to prevention/therapy of chronic diseases have been reviewed for terpe-
noids [525–530], flavonoids [99, 100, 531–534], and carotenoids [535–538]. The 
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antioxidant capacity of citrus fruits is enormous [539, 540]. They contain a variety 
of important compounds that contribute to their attributed health benefits [539, 
541–543].

Limonoids are phytochemicals classified as tetranortriterpenes. They exist in 
large quantities in sweet oranges and give the citrus juice its special taste [541]. The 
accumulation/distribution [544], chemistry and pharmacology [545], and bioactiv-
ity and biomedical prospects of limonoids have been reviewed [546, 547]. To illus-
trate, they have been shown to play an efficacious role in diabetes [548], 
atherosclerosis [549], cancer [550], and neurological diseases [551]. Citrus is the 
major food source for flavanones. They comprise approximately 95% of the total 
available flavonoids with many unique to the fruit. The nutraceutical value of citrus 
flavanones has been reviewed recently [552–561]. A subclass of citrus-derived 
 flavanones occur naturally as glycosides (i.e., the aglycone is coupled to a sugar 
moiety). The most predominant and widely studied of the flavanones in citrus are 
hesperidin (hesperetin) in oranges, naringin (naringenin) in grapefruit, eriodictyol 
in lemon, and tangeretin (exist as aglycone only) in tangerines, though it is a fla-
vone. For example, hesperidin’s health benefits have been reviewed [562–564]. Its 
anti-inflammatory properties [562, 565], role in prevention of cancer and cardiovas-
cular diseases [566, 567], and neuroprotective effects [568] have been reviewed. 
Likewise, naringin therapeutic potential has been reviewed [569, 570] including its 
effect on metabolic disorders [571] and cognitive dysfunction [572]. Citrus carot-
enoids have been studied widely, and their biological roles have been elucidated 
[573, 574]. They are responsible for the external and internal fruit color. The accu-
mulation pattern of carotenoids among the different citrus fruits is similar. However, 
the content and composition profile diverge with variety, growth condition, and sea-
son [575, 576]. For oranges, the most abundant carotenoids are β,β-xanthophylls 
contributing up to 98% of the total amount with violaxanthin, an epoxy carotenoid, 
being the predominant constituent. On the other hand, in mandarins β-cryptoxanthin, 
a bicyclic carotenoid considered a provitamin A, is the major component. In lemons 
and grapefruits, phytoenes, lineal carotenoids, can be the most accumulated com-
pound. Carotenoids’ role in human health and diseases has been expansively cov-
ered in the literature [535, 537, 577–581]. Here we select few references that pertain 
to anti-inflammatory activity [582–584], cardiovascular care [585–588], cancer pre-
vention [589–593], and diabetes care [1, 594, 595]. Vitamin A in citrus fruits along 
with other valuable carotenoids such as α- and β-carotenes, β-cryptoxanthin, zea-
xanthin, and lutein helps in maintaining eye health and prevents macular degenera-
tion [596]. Several reviews have covered this topic extensively [442, 445–447, 597].

Countless research articles have demonstrated the chronic disease prevention 
involvement and anticancer properties of these individual chemical constituents of 
citrus fruits [598, 599]. In our holistic view, these numerous, valuable antioxidants, 
for instance, were jointly found to contribute immensely to chemoprevention and 
chemoprotection against many types of cancers along with their anti-inflammatory, 
cardiovascular, and neuroprotective effects [480]. In the case of cancer, more impor-
tantly, citrus fruit intake specifically was inversely associated with the risk of sev-
eral types of cancers: esophageal [600], breast [601], pancreatic [602], stomach 
[603], and prostate [604].

Fruits
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Citrus fruits retain high amounts of citric acid (citrate derivatives—salt, ester, or 
metal complex forms), which contributes to the sour taste. Lemons and limes pos-
sess the highest concentration where it can constitute nearly 8% of the fruits’ dry 
weight. Consumption of citrus fruits and/or their juices correlates well with lower 
risk incidence of renal stones [1, 605–609]. Moreover, citrus fruits are an excellent 
source of vitamin C. Vitamin C has also been covered in the vegetable section and 
other key fruits in this section. In short, vitamin C seems to play a critical role in 
disease prevention and cure [610, 611]. As a strong antioxidant, it enhances immune 
functions to combat infections [612, 613], and it contributes to immune defenses as 
it is implicated in preventing chronic inflammation [614, 615], cardiovascular dis-
eases [616, 617], and cancer [598, 618–620]. Vitamin C is vital for the development 
and maintenance of connective tissues including wound healing; it also plays an 
essential role in bone formation [621] and musculoskeletal injuries recovery [622]. 
Vitamin C plays an important role in skin health since it is a potent antioxidant [44, 
623, 624]. Moreover, accompanied by collagen peptide, it diminishes age-related 
skin atrophy [625] and is highly efficient as a rejuvenation therapy [626]; along with 
folic acid, it also ensures better hair growth and prevents hair loss [627]. Both vita-
min C and citric acid can increase iron absorption in the digestive tract alleviating 
anemia caused by iron deficiency [628, 629].

6.1  Orange

Orange is the most common among the citrus fruits. It has two main varieties, 
sweet, such as Persian and blood oranges, and bitter oranges which can be used as 
part of different recipes. Oranges are low caloric and low-fat fruits with low glyce-
mic index. Oranges are a rich source of vitamin C and are a good source of fiber, 
antioxidants, polyphenols, folic acid (B-9), and potassium. They also contain fla-
vonoids; vitamins A, B-1 (thiamin), B-2 (riboflavin), B-3 (niacin), B-5 (panto-
thenic acid), and B-6 (pyridoxine); and calcium (Table 10). Orange peels, although 
not commonly eaten, are rich in fiber and vitamin C, even more than the flesh of 
the fruit.

Orange juice consumption has been associated with cognitive improvements 
[630, 631] and neurodegenerative disease protection [632, 633]. Orange peels are 
rich in many of the same compounds of the fruit flesh and as such provide similar 
health benefits [634, 635]. Eating oranges or applying it topically helps reverse skin 
damage caused by the ultraviolet light from the sun, reduces wrinkles, and improves 
the skin texture [636–638]. The peel has also displayed antimicrobial properties 
against periodontal pathogens [639]. Various citrus species including oranges pro-
duce essential oils with varied biological activities with few carrying low risk of 
irritation or phototoxicity [640].

It is rare to develop allergy to oranges or citrus fruits in general. Some people 
may experience heartburn, or it may aggravate acid reflux symptoms due to the high 
content of organic acids. Overeating oranges may lead to abdominal cramps and 
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diarrhea due to their high fiber content. The overconsumption of orange- or citrus- 
type beverages may also increase the risk of dental caries [641] or dental enamel 
erosion [642]. Citrus fruits, including oranges, are rich in furocoumarins, photocar-
cinogenic and/or phototoxic agents, due to interaction with cell DNA [643]; there-
fore, it is advisable to avoid prolonged sun exposure when consuming oranges in 
order to lower the chance of phytophotodermatitis condition or the risk of mela-
noma [644, 645], although this is more of an issue with grapefruit consumption 
including certain drug interactions.

Table 10 Orange nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)

Serving size of 100 g of raw oranges
Per serving % Daily valuea

Calories 47
Total fat 0.1 g 0
  Saturated fat 0.0 g 0
  Polyunsaturated fat 0.0 g
  Monounsaturated fat 0.0 g
  Total omega-3 fatty acids 7.0 mg
  Total omega-6 fatty acids 18.0 mg
Cholesterol 0.0 mg
Phytosterols

Total carbohydrates 11.7 g 4
  Dietary fiber 2.4 g 10
  Starch 0.0 mg
  Sugars 9.4 g
Protein 0.9 g 2
Vitamins

  Vitamin A 4
  Vitamin C 89
  Vitamin E 1
  Vitamin B-6 3
  Vitamin K 0
  Folic acid 8
Minerals

  Sodium 0
  Potassium 5
  Calcium 4
  Iron 1
  Magnesium 2
  Manganese 1
  Copper 2
  Zinc 0

National Nutrient Database
aBased on a 2000 calorie diet
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6.2  Mandarins

Mandarins are smaller-sized citrus fruit and appear less “rounded” than common 
oranges. Mandarins are of assorted hybrid types, such as clementine and tangerine 
oranges. Since clementine and tangerines are specific varieties of mandarin oranges, 
the names are used interchangeably. Tangerines are mostly seedless with few excep-
tions. It has a less sour, much sweeter, and stronger taste than an orange. A ripe 
tangerine is heavy for its size, firm to a little soft, and pebbly skinned with no deep 
grooves. It has thin reddish-orange color peel, with a thin layer of bitter-tasting 
white mesocarp, which makes it easier to peel and to split into segments. Tangerines 
are low caloric, rich in dietary fiber, antioxidants, vitamins C and A, and folic acid 
(Table 11).

There are a number of health benefits for mandarin orange peels as well. 
Tangerine peel is used to treat bronchial asthma, pain, and indigestion [646]. The 
peel also can be utilized in anti-wrinkle skin care formulations [647]. The phytonu-
trients from the pulp or peel of mandarin oranges provide a protective effect against 
age-related cognitive dysfunction decreasing chronic inflammation and limiting cell 
damage. For instance, cell culture studies showed that hesperidin, nobiletin, and 
tangeretin are collectively responsible for the anti-neuroinflammatory capacity of 
tangerine peel [648], while β-cryptoxanthin, a potent antioxidant abundant in man-
darins, was found to suppress DNA oxidative damage and enhance cognitive abili-
ties in mice [649]. Tangerine juice contains vitamin A that stimulates the immune 
system [650] and has antimicrobial activity [540] to combat infections. Tangerine 
essential oil is a potent antiseptic and bactericide that combats Staphylococcus 
aureus sepsis, the most common cause in the pediatric age group [651–655]. In 
addition, tangerine essential oils promote cell division, stimulate cell growth, and 
help tissue repair [640]. They also have a sedative effect and are able to regulate 
stress symptoms and insomnia [656–658]. On the other hand, vitamin B-12 in tan-
gerine helps hair growth and reduces hair loss [659].

Tangerine has no reported serious side effects. However, anaphylactic reaction of 
tangerine seeds—but not the fruit pulp itself—has been described [660]. 
Overconsumption of tangerine and the high fiber it contains may lead to abdominal 
pain and diarrhea.

6.3  Grapefruit

Grapefruit is a citrus fruit known for its sour to semi-sweet, slightly bitter taste. It is 
yellow-orange skinned and generally has a spherical shape. It grows in clusters, 
similar to grapes, hence the derivation of their name. The flesh is segmented and 
acidic and variable in color and sweetness depending on the variety. Among the 
common types of the fruit are the white, yellow, pink, and red pulp grapefruits. 
Grapefruits are low caloric, low fat, and full of nutrients. It is an excellent source of 
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vitamins C and A and fiber (Table 12). The bitter taste pith, the white flesh inside the 
peel which is often thrown out, is rich in antioxidants and fibers.

Key attributes ascribed to grapefruit have been its quality to control appetite and 
manage weight loss and diabetes condition. It is reasonable to conclude that fea-
tures like high water content, low caloric input, and high fiber content all contrib-
ute to appetite control and promote fullness leading to low calorie intake [69, 83, 
500, 661–663]. These findings have been substantiated by clinical trials [661, 664, 
665] even in the case of overweight/obese adults [666, 667], prominently assuring 
better health [482, 668]. The two primary risk factors in diabetes are insulin resis-
tance and high blood sugar levels [669, 670]. With grapefruit’s low glycemic 

Serving size of 100 g of raw tangerine (mandarin orange)
Per serving % Daily valuea

Calories 53
Total fat 0.3 g 0
  Saturated fat 0.0 g 0
  Polyunsaturated fat 0.1 g
  Monounsaturated fat 0.1 g
  Total omega-3 fatty acids 18.0 mg
  Total omega-6 fatty acids 48.0 mg
Cholesterol 0.0 mg
Phytosterols

Carbohydrates 13.3 g 4
  Dietary fiber 1.8 g 7
  Sugars 10.6 g
Protein 0.8 g 2
Vitamins

  Vitamin A 14
  Vitamin C 44
  Vitamin E 1
  Vitamin B-6 4
  Vitamin K 0
  Folic acid 4
Minerals

  Sodium 0
  Potassium 5
  Calcium 4·
  Iron 1
  Magnesium 3
  Manganese 2
  Copper 2
  Zinc 0

National Nutrient Database
aBased on a 2000 calorie diet

Table 11 Tangerine 
(mandarin orange) nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)
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index, it appears that eating a fresh grapefruit before meals controls glucose levels 
and reduces both insulin levels and insulin resistance [661] and, consequently, the 
risk of type 2 diabetes [671, 672]. The actual mechanism of this is not known. 
Fresh red grapefruit was found to reduce the total cholesterol and triglycerides, as 
well as the unhealthy LDL cholesterol, which reduces the risk of coronary artery 
diseases and stroke [673]. Grapefruit flavonoids were found to reduce the risk of 
ischemic stroke in women [674]. Another value of the red and pink grapefruits is 
that they possess higher content of the antioxidants β-carotene and lycopene add-
ing to its health benefits. The combination of vitamin A and C in grapefruits not 
only boosts the immune system but also plays an important role in wound healing 

Serving size of 100 g of raw, pink, and red and white 
grapefruit
Per serving % Daily valuea

Calories 32
Total fat 0.1 g 0
  Saturated fat 0.0 g 0
  Polyunsaturated fat 0.0 g
  Monounsaturated fat 0.0 g
  Total omega-3 fatty acids 5.0 mg
  Total omega-6 fatty acids 19.0 mg
Cholesterol 0.0 mg
Phytosterols

Carbohydrates 8.1 g 3
  Dietary fiber 1.1 g 4
  Sugars 7.0 g
Protein 0.6 g 1
Vitamins

  Vitamin A 19
  Vitamin C 57
  Vitamin E 1
  Vitamin B-6 2
  Vitamin K 0
  Folic acid 2
Minerals

  Sodium 0
  Potassium 4
  Calcium 1
  Iron 0
  Magnesium 2
  Manganese 1
  Copper 2
  Zinc 0

National Nutrient Database
aBased on a 2000 calorie diet

Table 12 Grapefruit 
nutrition facts of 100 g, from 
the United States Department 
of Agriculture (USDA 
SR-21)
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[675] and managing bronchial asthma and its symptoms [676]. Grapefruits have 
high water content of about 88% of its total weight, which keeps the body well 
hydrated.

Grapefruit consumption is not risk-free. Grapefruits are rich in furanocoumarin, 
a natural phototoxic chemical that affects the liver’s drug metabolism [677]. This 
compound inhibits a cytochrome P450 enzyme called CYP3A4, which plays a vital 
role in the metabolism of about 50% of all drugs in the body. This may lead to cer-
tain adverse effects [678] and potentially dangerous drug interaction [679]. This has 
prompted the US FDA to put out a consumer advisory note on some prescription 
and over-the-counter (OTC) medication use and simultaneous grapefruit consump-
tion [680]. Therefore, it is not advisable to eat grapefruit or drink its juice prior to 
some medications. Examples from this list include anti-retrovirals like Indinavir, 
allergic drugs like loratadine (Claritin) or fexofenadine (Allegra), cholesterol- 
lowering agents like some statins (Lipitor and Zocor), anti-hypertensive Ca+2- 
channel blockers (nifedipines), immunosuppressants such as cyclosporines, some 
pain killers, and some corticosteroids and anti-anxiety (Buspirone and Zoloft) or 
psychotic medications (benzodiazepines and Carbamazepine). As a citrus, it is a 
rich source for furocoumarins (psoralens) which intercalate into DNA and forms 
cross-links upon ultraviolet radiation. This characteristic in grapefruit is used as a 
form of therapy for the treatment of skin problems resembling psoriasis. Therefore, 
it is advisable to limit sun exposure upon grapefruit consumption. Grapefruit over-
consumption was shown to be associated with the highest risk of developing malig-
nant melanoma [645]. Grapefruit is very citric and consuming it with poor oral 
hygiene might cause teeth erosion [681]. Considering its richness in fiber content, 
overconsumption may lead to diarrhea and abdominal pain.

7  Cucumbers

 

Family: Cucurbits or Cucurbitaceae
Genus: Cucumis
Common name: Cucumber
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Cucumber is actually a fruit that is commonly thought to be a vegetable. There are 
two main kinds of cucumbers available all year around: fresh type (also known as 
slicing) and pickled type. Among both varieties there are different cultivars bred for 
specific characteristics. Cucumber is low in saturated fat, cholesterol, and sodium. 
It is a good source of vitamin A, magnesium, and phosphorus. It is a very rich source 
of fiber, vitamins C and K, and the minerals potassium and manganese. It also con-
tains multiple B vitamins such as B-6, B-5, and B-1 (Table 13).

Cucumbers have one of the highest water contents (approx. 95%) when com-
pared to other vegetables imparting important qualities. Water is essential for bodily 

Table 13 Cucumber 
nutrition facts of 100 g, from 
the United States Department 
of Agriculture (USDA 
SR-21)

Serving size of 100 g of raw cucumber with peel
Per serving % Daily valuea

Calories 15
Total fat 0.1 g 0
  Saturated fat 0.0 g 0
  Polyunsaturated fat 0.0 g
  Monounsaturated fat 0.0 g
  Total omega-3 fatty acids 5.0 mg
  Total omega-6 fatty acids 28.0 mg
Cholesterol 0 mg
Phytosterols 14.0 mg
Carbohydrates 3.6 g 1
  Dietary fiber 0.5 g 2
  Starch 0.8 g
  Sugars 1.7 g
Protein 0.7 g 1
Vitamins

  Vitamin A 2
  Vitamin C 5
  Vitamin E 0
  Vitamin B-6 2
  Vitamin K 21
  Folic acid 2
Minerals

  Sodium 0
  Potassium 4
  Calcium 2
  Iron 2
  Magnesium 3
  Manganese 4
  Copper 2
  Zinc 1

National Nutrient Database
aBased on a 2000 calorie diet
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function [682] since hydration affects physical performance and metabolism [683, 
684]. About 40% of people obtain their total water intake from food [685]. 
Cucumbers keep the body hydrated. One study found that fruit and vegetable intake 
was associated with improvements in hydration status in children [686] and helps 
control body temperature as well [685]. An additional benefit of water content, i.e., 
improved hydration status along with magnesium presence, is that cucumber poten-
tially alleviates headaches or migraines [687]. The high water content, low calories, 
and high fiber composition, specifically pectin, of cucumber make it ideal for weight 
management [662] and a healthy digestive system [688] overall, by preventing con-
stipation [689–691], helping remove excess water and toxins from the body, and 
maintaining healthy kidney, liver, and pancreatic activity [688]. The natural diuretic 
effects of cucumber juice help remove the uric acid preventing gouty arthritis and 
kidney stones [688]. Along with vitamin K and other essential nutrients like calcium 
and magnesium, cucumbers’ richness in silica, a compound that is instrumental in 
connective tissue formation and calcium assimilation, collectively contributes to 
maintaining healthy ligaments, tendons, cartilage, and bones [692]. The high water 
content and vitamin C coupled with silica make eating cucumber and applying its 
extracts topically a good hydrating and soothing treatment for various skin prob-
lems including burns [688].

Cucumbers’ high magnesium, potassium, and fiber contents help reduce blood 
pressure [693]. Cucumbers can be used to control blood sugar. They contain a hor-
mone required by the beta-cells during insulin production and in fact have a very 
low glycemic index [694]. In a study, cucumber peel was shown to reverse diabetes 
complications [695], while in another study, aqueous extracts showed protective 
effects and prevented diabetes-related complications as well [696].

The role of antioxidants in disease and health is well studied [542]. Cucumbers 
are rich in antioxidants such as flavonoids and tannins that block accumulation of 
free radicles and improve antioxidant function, thus reducing the risk of diseases. 
They impart an analgesic effect as well [697, 698]. Other antioxidant compounds 
include cucurbitacins, glucosides, lignans, apigenin, and firestin [688]. Cucurbitacins 
were found to possess anticancer activity via apoptosis pathways induction mecha-
nism [699]. Firestin was found to possess multiple biological activities relevant to 
the maintenance of brain function. The molecule is neuroprotective and preserves 
cognitive abilities; therefore, it delays the onset of age-related decline in brain func-
tion [700].

Cucumbers are generally well tolerated, but overconsumption is linked to some 
unwelcome health effects. Excessive cucumber consumption can increase the 
diuretic effect triggering excessive loss of water and electrolytes leading to dehydra-
tion. High potassium content of cucumbers may initially lead to abdominal pain and 
bloating, then causing further complications that affect kidney function. High doses 
of vitamin C may be harmful and trigger the growth and spread of free radicals 
increasing the risk of cancer and premature aging. Cucumbers contain cucurbitacins 
or toxic triterpenoids that cause its bitter taste. Cucumbers can trigger allergic reac-
tions in certain individuals.
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8  Figs

 

Family: Moraceae
Genus: Ficus
Common name: Fig

Figs are sweet and juicy fruits when ripe. They come in multiple varieties: each with 
a unique taste. Types include red figs, the yellow figs, or the purple-skinned figs or 
green-striped figs. The paste of sweet and soft figs is used as a sugar replacement. 
Figs can be eaten fresh, dried, or cooked. Figs’ health benefits are in the fruit, skin, 
pulp, and leaves and come from its high content of minerals such as calcium, iron, 
phosphorus, manganese, magnesium, potassium, and copper and vitamins like A, K, 
B-1, and B-6 and fiber (Table 14). Dried figs are thought to have more nutrients such 
as calcium and phenolic antioxidant compounds than fresh ones [701].

Dried fig’s low fat content and high content of fiber (9.8  g/100  g) guarantee 
numerous health benefits. First, it ensures a healthy digestive system as it alleviates 
constipation and helps regulate bowel movements [702]. As a low-calorie snack 
replacement, fiber keeps one feeling full longer. Thus, it helps in weight control 
[703]. Pectin, a soluble fiber in figs, may assist in lowering cholesterol [704] and 
control blood sugar levels [705, 706].

The phytochemistry and pharmacology of figs have been reviewed recently [703, 
707, 708]. Figs are rich in antioxidants such as flavonoids and polyphenols which 
prevent the damage caused by free radicals [709]. Dried figs have higher amounts of 
antioxidants [710, 711]. High fiber and antioxidant content in figs decreases the risk 
of colon [712] and breast cancers. Figs contain tirucallane-type triterpenoids that 
are toxic to different human cancer cell lines [713]. The bioactive compounds of fig 
leaves were also shown to have phototoxic capabilities and are being used to develop 
new photodynamic therapy for the treatment of skin cancer [714]. Fig extracts could 
also be used to help treat other skin conditions such as abnormal skin pigmentation, 
eczema, acne, psoriasis, and freckles [707, 715].

Studies have shown fig effectiveness in stimulating immune system response 
[716]. Furthermore, fig extract showed strong antibacterial activity against oral bac-
teria and fungi [708]. Moreover, fig leaves have also shown significant protective 
effects against certain fungal infections like Candida albicans and can be a strong 
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natural antibacterial. The methanol extract in figs showed synergistic effect when 
used with antibiotics [717, 718]. Meanwhile, ethanol extract has recently shown 
powerful body temperature reduction capability when compared to antipyretic 
agents [703, 719].

Figs are rich in calcium and phosphorus which are vital in bone health and reduce 
the risk of osteoporosis, described earlier. Low sodium and high potassium content 
(7–19% of daily intake) of figs helps control the blood pressure and eliminate excess 
water as well as uric acid from the body preventing arthritis and kidney stones per 
aforementioned discussions. High fiber and potassium content in fig leaves helps 
regulate blood glucose and prevent sugar level instability [720].

Table 14 Fig nutrition facts 
of 100 g, from the United 
States Department of 
Agriculture (USDA SR-21)

Serving size of 100 g of raw figs
Per serving % Daily valuea

Calories 74
Total fat 0.3 g 0
  Saturated fat 0.1 g 0
  Polyunsaturated fat 0.1 g
  Monounsaturated fat 0.1 g
  Total omega-3 fatty acids
  Total omega-6 fatty acids 144 mg
Cholesterol 0.0 mg
Phytosterols 31.0 mg
Carbohydrates 19.2 g 6
  Dietary fiber 3 g 12
  Sugars 16.3 g
Protein 0.7 g 1
Vitamins

  Vitamin A 3
  Vitamin C 3
  Vitamin E 1
  Vitamin B-6 6
  Vitamin K 6
  Folic acid 1
Minerals

  Sodium 0
  Potassium 7
  Calcium 4
  Iron 2
  Magnesium 4
  Manganese 6
  Copper 4
  Zinc 1

National Nutrient Database
aBased on a 2000 calorie diet
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Allergic reactions to figs are uncommon. However, skin contact with the fruit or 
leaves can cause rashes among those with skin sensitivity. Individuals allergic to rub-
ber, latex, or birch pollen may also be allergic to figs [721]. Dried figs are rich in 
vitamin K and should be consumed with caution by people taking blood-thinning 
medications such as warfarin. They are also high in oxalates running the risk of kid-
ney stones. Applying fig leaves on the skin may cause skin to be more sensitive to 
sun. Due to its laxative effect, overconsumption of high fiber figs may lead to diarrhea.

9  Grapes

 

Family: Vitaceae
Genus: Vitis
Common name: Grape (Red Wine)

Technically, grapes are berries that grow generally in clusters. They are of two main 
types: table grapes, which are usually large, seedless, and with fairly thin skin, and 
wine grapes, which are smaller in size, usually seeded, and with comparatively 
thicker skin. Grapes have multiple different colors, including crimson, black, purple 
or blue (Concord), yellow, green, orange, red, and pink. “White” grapes are in fact 
green and are derived from the purple grape. Grapes can be consumed fresh as table 
grapes or dried as raisins. They are also used for making different wines (green 
grapes are used to make white wine, and purple grapes are used for red wines), 
vinegar, and jam. Concord grapes are used to make juice and jelly and for grape 
flavoring. Grape seeds are used for their oil and their extract. They are a good source 
of dietary fiber, potassium, and a number of vitamins and other minerals (Table 15). 
Grapes contain a number of well-known strong antioxidants such as vitamins A and 
C and manganese as well as polyphenols such as flavonoids and the non-flavonoid 
resveratrol, a type of natural polyphenol also known for its anti-inflammatory activ-
ity and decreasing oxidative stress.

There are countless health benefits for grapes that make them an excellent choice 
for a healthier diet [722]. The following discussion will focus on the antioxidants/
antioxidative stress capacity of grapes [723–725] with a particular reference to res-
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veratrol [726]. Resveratrol is a natural phytoalexin found in the skin and leaves of 
red grapes. It is also thought to possess strong anti-inflammatory properties [727–
729]. Several reviews have summarized resveratrol’s therapeutic potential based on 
human clinical trials [730, 731]. We will pay a particular attention to chronic dis-
eases such as cancer [732], diabetes [733], and cardiovascular disease [734]. One 
aspect of a future research direction for resveratrol is its activation of genes associ-
ated with aging and longevity [735, 736].

Resveratrol has been shown to slow the growth of a wide variety of cancer cells 
including multiple gastrointestinal cancers [737–739], breast cancer [740–743], 
prostate cancer [744], and melanoma and leukemia [745–747]. Quercetin, a 
flavonol- type flavonoid found in grapes, is known for its ability to induce apoptosis 

Table 15 Grape nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)

Serving size of 100 g of raw, red, or green grapes
Per serving % Daily valuea

Calories 69
Total fat 0.2 g 0
  Saturated fat 0.1 g 0
  Polyunsaturated fat 0.0 g
  Monounsaturated fat 0.0 g
  Total omega-3 fatty acids 11.0 mg
  Total omega-6 fatty acids 37.0 mg
Cholesterol 0.0 mg
Phytosterols 4.0 mg
Carbohydrates 18.1 g 6
  Dietary fiber 0.9 g 4
  Sugars 15.5 g
Protein 0.7 g 1
Vitamins

  Vitamin A 1
  Vitamin C 18
  Vitamin E 1
  Vitamin B-6 4
  Vitamin K 18
  Folic acid 0
Minerals

  Sodium 0
  Potassium 5
  Calcium 1
  Iron 2
  Magnesium 2
  Manganese 4
  Copper 6
  Zinc 0

National Nutrient Database
aBased on a 2000 calorie diet

Fruits



318

and slow cancer cell growth without affecting normal cells [748]. This is in addition 
to other polyphenols like anthocyanins and catechins that contribute to its antican-
cer properties [749]. Resveratrol is also presumed to be useful in the treatment of 
diabetes and its complications [750]. For example, it improves fasting sugar levels 
[751], increases insulin sensitivity [752], and decreases the risk of diabetic compli-
cations such as diabetic neuropathy and nephropathy [750]. Studies have also 
showed that consuming whole grapes, but not its juice, reduces the risk of develop-
ing type 2 diabetes [289, 753, 754]. Overall, grapes or grape products contribute to 
type 2 diabetes management [671, 755]. Grapes play a major role in enhancing heart 
and cardiovascular system health [734]. Resveratrol is believed to possess anti- 
atherogenic effects [756]. Along with other polyphenols in red grapes, they are 
thought to decrease LDL cholesterol levels, reduce lipid peroxidation and platelet 
aggregation, and combat oxidative stress and inflammation [756–758]. Additional 
benefits are derived from their high dietary fiber content that helps reduce both total 
cholesterol and LDL levels, further boosting heart and vascular health [75]. The 
value of grape flavonoids of the red or white varieties as nutraceuticals has been 
reviewed [723, 759] including their antioxidant and anti-inflammatory biological 
properties and cardioprotective activities. For instance, grape flavonols [760], in 
particular rutin, were found to reduce the risk of heart attacks and strokes through 
ERK1/2 and Akt signaling pathways [761] and by inhibiting of protein disulfide 
isomerase (PDI) that is associated with blood clot formation [762]. In addition, 
grapes’ high potassium content [763] and grape seed polyphenols have been shown 
to have antihypertensive properties [751, 764]. Resveratrol also has major ophthal-
mic health effects via its numerous biological properties that have been demon-
strated in in  vitro and in  vivo experimental studies [765]. It has been shown to 
decrease the risk of glaucoma, cataract, age-related ocular degeneration, and even 
the retinopathy secondary to diabetes [765–767]. Grapes contain the carotenoids 
antioxidants, lutein and zeaxanthin, which also were found to reduce age-related 
macular degeneration and prevent cataract [42, 445].

Resveratrol was shown to reduce cognitive impairment and play a neuroprotec-
tive role, decreasing the amyloid burden and reducing tau hyper-phosphorylation in 
Alzheimer’s disease [768], and improve age-related memory and mood dysfunction 
[769, 770]. Polyphenols in grape juice were also found to improve memory in 
healthy older adults [771] or adults with mild cognitive impairment but not demen-
tia, reducing the risk of Alzheimer’s disease [772].

The flesh, skin, and seeds of grape extract were found to improve immune func-
tions and have potent antimicrobial properties [773–775]. Resveratrol exhibits 
strong antiviral and cytoprotective activities [776] and antibacterial activity against 
foodborne pathogens [777]. Extracts from grape seeds have been shown to have 
antiviral activity against the influenza virus [778] and polio and herpes simplex 
viruses [779]. The topical application of pro-anthocyanidins, a class of flavonoid 
polyphenols [99] present in grape seeds extract, promotes wound healing. The 
extract cream concoction possesses anti-inflammatory and antimicrobial properties 
and triggers the release of vascular endothelial growth factor leading to wound con-
traction and closure [780].
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In general, grapes are safe when consumed in moderate quantities. Some people 
may develop allergy against grapes and its products. Allergic reactions can range 
from hives and rashes to sneezing, wheezing, and difficulty in breathing. Serious 
anaphylactic reaction develops rarely when eating grapes or any of its products. 
Grapes have high vitamin K content that may increase the risk of bleeding, so it 
must be consumed with caution before surgical procedures and when taking anti- 
coagulant medications. Grapes might interfere with medications like phenacetin, an 
analgesic fever-reducing drug, that metabolize in the liver. Consuming a lot of 
grapes on a regular basis may cause carbohydrate overload and promote weight 
gain. The high fiber content in grapes and raisins might lead to diarrhea and vomit-
ing due to overconsumption. Those with fructose intolerance must avoid eating 
grapes and its products to avoid harming the liver and kidney or indigestion and 
abdominal pain complications.

10  Kiwi

 

Family: Actinidiaceae
Genus: Actinidia
Common name: Kiwi or Chinese Gooseberry

Kiwi is an exotic fruit, mostly oval in shape and about the size of a big chicken’s 
egg. It has a fibrous, dull greenish-brown skin and bright green or golden flesh—
depending on the type—speckled with rows of small, black, edible seeds. Kiwi has 
a soft texture, with a sweet and distinctive taste. Kiwifruit is full of different nutri-
ents and phytochemicals that have enormous health benefits. It is a rich source of 
vitamins such as vitamins C, K, E and A and minerals such as potassium and copper 
in addition to sugar, fiber, and the antioxidant lutein (Table 16).

Interestingly, the kiwifruit, its skin, its seeds, and even its roots all contribute to 
multiple health benefits it has to offer [781]. Both green and gold kiwis contain two 
proteins called thaumatin-like protein and actinchinin which act against two differ-
ent types of fungi and bacteria [782]. The golden kiwi seeds show antibacterial 
activities as well [783]. Kiwi’s skin—mainly in the green variety—contains an 
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active protease enzyme called actinidain, which helps break down proteins to 
amino acids to ease its absorption [784, 785]. Kiwifruit supplies 275% of the daily 
vitamin C intake. As such, they have been shown to reduce upper respiratory tract 
infection symptoms [786, 787] and asthma in few studies along with decreasing 
wheezing [788]. Kiwi juice is a rich source of antioxidants like polyphenols includ-
ing vitamins C and E, which are immunostimulatory [789] and prevent oxidative 
stress/DNA damage [786, 790, 791]. The high concentration of vitamin C in kiwi 

Table 16 Kiwi nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)

Serving size of 100 g of raw, fresh kiwi
Per serving % Daily valuea

Calories 61
Total fat 0.5 g 1
  Saturated fat 0.0 g 0
  Polyunsaturated fat 0.3 g
  Monounsaturated fat 0.0 g
  Total omega-3 fatty acids 42.0 mg
  Total omega-6 fatty acids 246 mg
Cholesterol 0.0 mg 0
Phytosterols

Carbohydrates 14.7 g 5
  Dietary fiber 3.0 g 12
  Starch 0.0 g
  Sugars 9.0 g
Protein 1.1 g 2
Vitamins

  Vitamin A 2
  Vitamin C 155
  Vitamin E 7
  Vitamin B-6 3
  Vitamin K 50
  Folic acid 6
Minerals

  Sodium 0
  Potassium 9
  Calcium 3
  Iron 2
  Magnesium 4
  Manganese 5
  Copper 6
  Zinc 1

National Nutrient Database
aBased on a 2000 calorie diet
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also enhances the absorption of iron, preventing iron deficiency, i.e., anemia [792]. 
The availability of vitamin C plays a critical role in the maintenance of a normal 
mature collagen network [793, 794]. On the other hand, the presence of lutein pro-
tects the skin from UV light [795]. Moreover, kiwi’s high levels of zeaxanthin and 
lutein along with vitamin A contribute to its ability to prevent vision loss and age-
related macular degeneration [580, 796–798]. The root extracts of the golden kiwi 
(abundance of antioxidants and polysaccharides) were found to have anticancerous 
properties against some tumors like lung, liver, colon, and oral cancer cell lines 
[799–801]. Furthermore, it displayed antitumor activity and tumor remission in 
animal studies [802].

The appreciable potassium concentration in kiwi helps reduce the risk of devel-
oping kidney stones [94]. This high potassium level coupled with low sodium con-
tent also helps regulate blood pressure [803, 804]. In addition, the high vitamin K 
content in kiwi contributes to a healthy cardiovascular system due to its ability to 
decrease triglyceride levels, increase HDL cholesterol [786, 805], and reduce plate-
let aggregation [806]. Kiwi’s fiber also helps enhance lipid profile and is vital in 
weight control [805]. The high fiber composition and low glycemic index of the 
green kiwi make it suitable to regulate blood glucose levels [807].

In mice, green kiwi has been shown to reduce the resorption of bone minerals 
[808], whereas the substantial supply of vitamin K along with its content of cal-
cium, magnesium, potassium, and phosphorus aids in bone strength, reduces the 
risk of bone-related injuries, and prevents diseases like osteoporosis [809].

It appears that kiwifruit consumption may improve sleep onset, duration, and 
efficiency in adults. Kiwi has high amounts of serotonin [810], a hormone linked to 
REM (rapid eye movement) sleep. Lack of serotonin in addition to folic acid and 
some antioxidants found in kiwi correlates with insomnia [811]. There is also sug-
gestive evidence that serotonin may help improve memory and mood/depression 
disorders [812].

Kiwis are allergenic. The allergic reaction that sensitive people might develop 
when eating kiwi is not the only negative health effect associated with this fruit. 
Overconsumption of kiwi is reported to induce asthma, rash, and hives. Eating a lot 
of kiwis can lead to local mouth irritation and swelling of mouth, lips, and tongue. 
It also may lead to tingling and itching sensations in the mouth which is known as 
oral allergy syndrome (OAS). It may even cause skin irritation and dermatitis. Kiwi 
has high concentrations of potassium, serotonin, vitamin E, and vitamin C. Excess 
concentration of these has its own side effects. Overeating kiwi potentially affects 
triglyceride level in the blood leading to acute pancreatitis. Kiwi is also known to 
interact with some anti-fungal medications. It can increase the risk of bleeding in 
case of use of anti-coagulant, anti-platelet, or non-steroidal anti-inflammatory 
agents such as aspirin. Overeating of kiwi possibly evokes nausea, vomiting, and 
abdominal pain or even fainting.
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11  Pomegranate

 

Family: Lythraceae
Genus: Punica
Common name: Pomegranate

Pomegranate shrub is a small tree with several spiny branches and high longevity: 
some types living up to 200 years. Pomegranate is a jewel-like fruit that is classified 
as a berry. The edible part of the pomegranate is its seeds which are known as arils. 
Hundreds of slightly ruby red-colored, sweet seeds lie inside the thick, brownish 
yellow to deep red and inedible peel. Pomegranates are a very rich source of dietary 
fiber, vitamins C and K, and potassium (Table 17). The pomegranate fruit, and the 
juice made from its seeds, is loaded with antioxidants, bioactive compounds, 
and sugar.

There are innumerable health benefits for pomegranates that make them an 
exceptional choice for a healthier diet [813]. The following discussion will focus on 
antioxidant and anti-inflammatory capacity of pomegranates. It is an antioxidant 
powerhouse showing activity three times higher than those of red wine and green 
tea [814]. A particular reference will be made to polyphenols such as ellagitannins 
(including punicalagins) and fatty acids like punicic acid considered the most abun-
dant bioactive chemical constituents in pomegranates [815–817]. Several reviews 
have summarized the therapeutic potential of pomegranate [813, 816, 818–821] and 
proposed few mechanisms of action for these bioactives. We will pay particular 
attention to chronic diseases such as diabetes, cancer, and cardiovascular diseases 
[816, 822, 823].

There are two unique compounds in pomegranates that are mostly responsible 
for their health benefits. The first one is punicalagins that are ellagitannin-type phe-
nolic compounds, a group of powerful antioxidants available in pomegranate juice 
and peels [824]. The second is punicic acid that is a conjugated linoleic acid, a type 
of polyunsaturated omega-5 fatty acid, which is the main fatty acid found in pome-
granate seeds [825, 826].
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Punicalagins in pomegranate juice have been found to reduce inflammation and 
lower the risk of chronic diseases caused by inflammatory reactions [827] including 
type 2 diabetes mellitus [828] and digestive tract inflammation [829]. Punicic acid 
was also shown to possess anticancerous and anti-diabetic properties in in vitro, 
in vivo, and patient intervention studies [825, 830]. Numerous reviews have sum-
marized the pre-clinical and clinical cancer studies on the use of pomegranate 
extracts suggesting its use as a promising chemopreventive and/or chemotherapeu-
tic agent [831–835] with few describing molecular targets and mechanisms of the 
extract’s major constituent polyphenols. By way of example, pomegranate extracts 

Table 17 Pomegranate 
nutrition facts of 100 g, from 
the United States Department 
of Agriculture (USDA 
SR-21)

Serving size of 100 g of raw pomegranate
Per serving % Daily valuea

Calories 83
Total fat 1.2 g 2
  Saturated fat 0.1 g 1
  Polyunsaturated fat 0.1 g
  Monounsaturated fat 0.1 g
  Total omega-3 fatty acids
  Total omega-6 fatty acids 79.0 mg
Cholesterol 0.0 mg 0
Phytosterols

Carbohydrates 18.7 g 6
  Dietary fiber 4 g 16
  Starch
  Sugars 13.7 g
Protein 1.7 g 3
Vitamins

  Vitamin A 0
  Vitamin C 17
  Vitamin E 3
  Vitamin B-6 4
  Vitamin K 21
  Folic acid 10
Minerals

  Sodium 0
  Potassium 7
  Calcium 1
  Iron 2
  Magnesium 3
  Manganese 6
  Copper 8
  Zinc 2

National Nutrient Database
aBased on a 2000 calorie diet
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have been shown to affect several types of cancer, including breast [836–838], pros-
tate [839–843], and colon cancer [844–846], in different ways.

Cell culture studies reported the cartilage protective and arthritis inhibitory 
effects of pomegranate extract [847, 848]. In animal studies, pomegranate 
polyphenol- rich extract preferentially inhibited inflammatory markers and was 
found to lower the risk of collagen-induced arthritis [849]. An interventional study 
using pomegranate juice for knee osteoarthritis patients improved physical function 
and stiffness, decreased breakdown cartilage enzymes, and increased antioxidant 
status in patients [850]. A review highlighted evidence-based studies for treatment 
of osteoporosis, osteoarthritis, and rheumatoid arthritis [851].

Pomegranate juice contains antioxidants and polyphenols that have been found 
to support a healthy cardiovascular system [852]. Pomegranate juice consumption 
inhibits serum ACE activity and reduces systolic blood pressure [853]. A meta- 
analysis of randomized controlled trials and clinical investigation of hypertensive 
subjects indicated control of blood pressure by employing different mechanisms 
[854–856]. Pomegranate seed oil contains punicic acid which has been found to 
have anti-atherogenic effects. In hyperlipidemic subjects, it had favorable effects as 
it lowered triglyceride level and improved the triglyceride:HDL ratio [857]. Both 
mice [858, 859] and human [860, 861] studies concluded that pomegranate juice 
consumption reduces oxidative stress, lipid peroxidation, and platelet aggregation 
even attenuated the development of atherosclerosis. Pomegranate juice was also 
found to lower total cholesterol and blood glucose in diabetic patients which further 
boosted heart and blood vessel health [862]. Pomegranate is a rich source of dietary 
nitrates. Besides its cardioprotective role [863, 864], it has been hypothesized to be 
an ergogenic, i.e., improving or enhancing blood flow and assuaging exhaustion 
during physical exercise [865–867].

There is a great body of in vivo animal studies and patient intervention studies 
evidence that support the role of pomegranate products in neuroprotection [868–
871] and improvement of memory [872–874], cognition [148, 875, 876], age-related 
cognitive function impairment [877], and Alzheimer’s disease [878–880].

Pomegranate seeds and pulp extracts display a broad range of antimicrobial 
properties in vitro and in vivo that enable stopping or preventing pathogenic infec-
tions [819, 881–884]. By way of example, possessing broad antibacterial activities 
[885–890] against  antibiotic-resistant bacteria such as clinical strains of multidrug-
resistant S. epidermidis [891], methicillin-resistant Staphylococcus aureus (MRSA) 
[892], and other β-lactamase producer species [893–895], cariogenic bacteria 
[896–899], antifungal activities [900–905] in particular oral Candida sp. [897, 906, 
907] and dermatophyte fungi [908], and antiviral activities [884, 909–914]. Most of 
the clinical studies conducted so far have been in the oral health area to prevent 
dental plaques, gingivitis, or periodontitis [884, 915].

In addition, its extracts have shown good wound healing potential [916]. In rat 
studies, pomegranate extract accelerated the wound healing process, characterized 
by collagen deposition improvement, neutrophil infiltration in the wound area, 
angiogenesis, and fibrosis degree [917]. In another animal study, an ointment for-
mulation of three herbal extracts that included pomegranate demonstrated its wound 
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and topical infection healing potential [918]. It also demonstrated anti-acne and 
skin repair capacity [919, 920].

Additional benefits of pomegranate are in its seeds with rich fiber content that 
enhances digestive health and resolves constipation issues. The presence of vita-
mins C and E in them is vital for eye and skin health. Even the inedible peel is 
loaded with phytonutrients which affect health and make it a novel medicament. 
Pomegranate peels are used as sun block to reduce the effect of ultraviolet light and 
hence the potential for skin cancer. Pomegranate peel extract added to toothpaste 
was found to reduce plaque and gingivitis. The peel powder traditionally has been 
used as a medication for bronchitis, sore throat, and pulmonary tract infections.

Pomegranate could be unsafe to consume for the following reasons. Pomegranate 
juice or seeds may cause serious side effects due to drug interaction. Pomegranate 
lowers blood pressure and hence should be used cautiously with antihypertensive 
agents’ angiotensin-converting enzyme inhibitors (ACEIs), including Capoten, 
Vasotec, and Prinivil, and also statins like Lipitor that lower cholesterol and blood 
anti-coagulants like warfarin. Pomegranate and its products should not be consumed 
when there are signs of food allergies. Pomegranate is rich in fiber, and its juice 
should be avoided in the event of diarrhea.

12  Tomatoes

 

Family: Solanaceae
Genus: Solanum
Common name: Tomato

Scientifically speaking tomato is a berry fruit that is categorized as a vegetable. 
With a history dating back to 500BC and over 7,500 varieties, tomato ranks as 1 of 
the top 3 most popular fresh market vegetables. When first cultivated, tomatoes 
were yellow or orange. However, through breeding, the standard color of tomatoes 
is now red. Furthermore, there are over ten different lower classifications of toma-
toes that differ in shape, flavor, and size. Tomatoes are a good source of vitamins A, 
K, and C, folic acid, and other antioxidants such as lycopene and chlorogenic acid 
(a caffeic acid ester). It is rich in potassium and has low sodium content (Table 18). 
Tomato phytochemicals can vary greatly between different tomato varieties and 
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sampling periods [921, 922]. The levels of these compounds are strongly influenced 
by the maturity of the tomatoes.

Tomato consumption has been linked to many health benefits [923]. The water 
content in tomatoes is around 95%. They are also a good source of fiber (1.5 g/
average size), which is mostly the insoluble type in the form of hemicellulose, cel-
lulose, and lignin [924]. The significance of this combination has been discussed 
in the cucumber section. By way of example, the high content of water in tomatoes 
stimulates urination which increases the elimination of toxins from the body and 
excess of water, uric acid, and salts [925–927]. Tomatoes’ fiber content prevents 

Table 18 Tomato nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)

Serving size of 100 g of raw, ripe, red tomatoes
Per serving % Daily valuea

Calories 18.0
Total fat 0.2 g 0
  Saturated fat 0.0 g 0
  Polyunsaturated fat 0.1 g
  Monounsaturated fat 0.0 g
  Total omega-3 fatty acids 3.0 mg
  Total omega-6 fatty acids 80.0 mg
Cholesterol 0.0 mg 0
  Phytosterols 7.0 mg
Carbohydrates 3.9 g 1
  Dietary fiber 1.2 g 5
  Starch 0.0 g
  Sugars 2.6 g
Protein 0.9 g 2
Vitamins

  Vitamin A 17
  Vitamin C 21
  Vitamin E 3
  Vitamin B-6 4
  Vitamin K 10
  Folic acid 4
Minerals

  Sodium 0
  Potassium 7
  Calcium 1
  Iron 1
  Magnesium 3
  Manganese 6
  Copper 3
  Zinc 1

National Nutrient Database
aBased on a 2000 calorie diet
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constipation [928], and they are widely recognized as being one of the high anti-
oxidant foods [929]. Their health value has greatly reduced the risk of heart dis-
ease and cancer. Some of these key antioxidants are β-carotene [536, 930, 931], 
lycopene [932–934], naringenin [571, 935], and chlorogenic acid [936, 937]. The 
ensuing discussion will largely focus on cardiovascular diseases and cancer pre-
vention by these antioxidants with a particular focus on the role of lycopene in 
coronary heart diseases [938] and cancer [939, 940]. Lycopene is a non-provitamin 
A carotenoid that has up to twice the antioxidant capacity of β-carotene in vitro 
and is responsible for the red color seen in tomatoes. It has been shown that low 
levels of lycopene in the blood are linked to increased risk of heart attacks and 
strokes [934, 941, 942]. Clinical studies have shown that lycopene and tomato 
products decreased plasma total cholesterol and LDL cholesterol and increased 
high-density lipoprotein cholesterol [943]. In addition, they positively affect plate-
let anti-aggregation activity and promote endothelial protection [944]. Parallelly, 
vitamin K availability in tomatoes controls bleeding and blood clot formation. 
Several studies have also demonstrated that lycopene possesses anti-hypertensive 
qualities [945–948]. Low sodium and high potassium content of tomato along with 
the constituent chlorogenic acid together supports vascular health and may lower 
blood pressure or prevent hypertension [949–952].

Epidemiologic studies consistently support the notion of lower risk of cancer 
being associated with higher consumption of tomatoes and tomato-based products 
[953, 954]. Observational studies suggest that tomatoes or tomato product con-
sumption correlates with fewer incidents of prostate cancer [955–958]. This poten-
tial role for prostate cancer prevention is supported by clinical evidence [959]. A 
diet rich in carotenoids including lycopene may protect against the development of 
breast cancer as well [960–962]. The high quantity of lycopene in tomatoes has 
been shown to reduce the effects of carcinogens in cigarettes and can protect against 
lung cancer [963]. Beta-carotene in tomatoes is associated with lower rate of 
colorectal cancer [964].

Beta-carotene, lycopene, and lutein are antioxidants that have been shown to 
protect the eyes from harmful light effects and age-related macular degenerative 
changes [596].

Tomatoes are well tolerated in general. The immune system may react to the 
proteins in tomatoes releasing histamine and leading to joint swelling and pains. 
Allergic reaction may occur in some individuals due to protein cross-reactivity 
[965]. Tomato leaves are unsafe to eat; eating large quantities may lead to poisoning 
in form of nausea, vomiting, headache, muscle spasm, and even death in severe 
cases. Tomatoes grown in contaminated soil may contain high levels of fluoride 
[966]. Overconsumption of tomatoes is associated with a few undesirable side 
effects. Tomatoes are high in acid which can cause “heartburn” for those affected 
with gastro-esophageal reflux diseases. They induce gastric acid, which when taken 
in high amounts can flow up the esophagus. Tomato acids may irritate the bladder 
and exhibit symptoms of incontinence and cystitis. Tomatoes’ diuretic effect is 
associated with increase of uric acid levels and gouty arthritis. Lycopene may have 
its nutritional benefits. However, it can also cause low blood pressure and increase 
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tendency of bleeding, and it should be used with caution in individuals with gastric 
ulcers. Lycopene can interfere with some chemotherapy agents, and it may cause 
reversible lycopenodermia, the deep-orange coloration of the skin.

13  Watermelons

 

Family: Cucurbitaceae
Genus: Citrullus
Common name: Watermelon

Watermelon is a low caloric, edible summer fruit. There are more than 1200 differ-
ent existing cultivars. Watermelon is a smooth, deep green to yellow color with a 
thick exterior rind with light green to gray stripes. The interior flesh has different 
colors like pink, red, or yellow depending on the variety, with numerous black 
seeds. Watermelon species are rich in antioxidants such as lycopene, β-carotene, 
lutein, zeaxanthin, and cryptoxanthin and vitamins A, C, and B-6. It is a good source 
of the minerals potassium, manganese, magnesium, and copper (Table 19).

The health benefits associated with watermelon consumption are numerous. 
Watermelon water content is nearly 92%. Its high water and electrolyte content 
keeps the body hydrated and protects it against heat stroke in the summer. They also 
have an appreciable amount of fiber [482]. The significance of this combination has 
been discussed in the aforementioned cucumber and tomato sections. Both the high 
water and fiber content in watermelon improves digestion and digestive system con-
ditions such as constipation. These also aid in weight management. As a natural 
diuretic, it may help to cleanse the kidneys and bladder of impurities as well [967].

Antioxidants have been associated with a wide range of health benefits. 
Watermelon has been demonstrated to have high antioxidant capacity [968]. 
Watermelon’s lycopene health-enhancing potential has been recently reviewed 
[969]. Another phytochemical is cucurbitacin E which is both an antioxidant and an 
anti-inflammatory. Watermelon antioxidants lower inflammation and oxidative 
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damage [969–972]. These compounds, lycopene and cucurbitacin E, in water-
melon, including vitamin C, are found to have anticancerous effects. Lycopene 
intake is associated with a lower risk of some types of cancer such as prostate can-
cer [973]. Refer to the tomato section for further details. The anticancer bioactivi-
ties of cucurbitacin E were reviewed as well [974, 975]. In obesity-associated 
cancer, it is hypothesized that cucurbitacin E exerts its effect by lowering the insu-
lin-like growth factor (IGF) levels [976, 977]. Vitamin C has been used to support 
cancer patient therapy [978]. Lycopene influence on cardiovascular health has been 

Table 19 Watermelon 
nutrition facts of 100 g, from 
the United States Department 
of Agriculture (USDA 
SR-21)

Serving size of 100 g of raw watermelon
Per serving % Daily valuea

Calories 30
Total fat 0.2 g 0
  Saturated fat 0.0 g 0
  Polyunsaturated fat 0.1 g
  Monounsaturated fat 0.0 g
  Total omega-3 fatty acids
  Total omega-6 fatty acids 50.0 mg
Cholesterol 0.0 mg 0
Phytosterols 2.0 mg
Carbohydrates 7.5 g 3
  Dietary fiber 0.4 g 2
  Starch 0.0 g
  Sugars 6.2 g
Protein 0.6 g 1
Vitamins

  Vitamin A 11
  Vitamin C 13
  Vitamin E 0
  Vitamin B-6 2
  Vitamin K 0
  Folic acid 1
Minerals

  Sodium 0
  Potassium 3
  Calcium 1
  Iron 1
  Magnesium 2
  Manganese 2
  Copper 2
  Zinc 1

National Nutrient Database
aBased on a 2000 calorie diet
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discussed in the tomato section [938, 979]. Watermelon supplementation was found 
to reduce arterial stiffness and lower blood pressure [980]. Along with other carot-
enoids, it reduces the risk of atherosclerosis [981, 982] and decreases cholesterol 
levels [969, 981]. Other health claims have been made for watermelon lycopene 
[969]. Citrulline is an amino acid which is found in watermelon. It is a condensa-
tion product of ornithine and carbamoyl phosphate in the urea cycle. It is also an 
arginine by-product of the reaction catalyzed by NOS family resulting in the con-
comitant release of nitric oxide. Nitric oxide plays an essential role in cardiovascu-
lar and immune functions. Watermelon juice consumption increases plasma 
concentration of arginine, ornithine, and citrulline. Increased nitric oxide levels 
help reduce the blood pressure [983] and regulate the immune system [984], which 
gets a boost from availability of vitamin C in watermelon [612]. The presence of 
potassium and magnesium in watermelon positively affects hypertension [54, 985]. 
Their role in reducing blood pressure has been extensively covered in the vegetable 
and fruit chapters. Interestingly, watermelon may control blood glucose levels as 
well. In animal studies, watermelon was shown to have anti-diabetic potential 
[986–988]. It seems that watermelon juice’s antioxidative capacity resulted in the 
restoration of induced diabetic condition that mimics type 1 [986]. Consumption of 
watermelon juice is known to increase plasma concentrations of lycopene and beta-
carotene in humans [989]. Another study used a type 2 animal model [988]. Here, 
a potential explanation was L-citrulline conversion into L-arginine. In the end, argi-
nine availability reduced serum concentrations of cardiovascular risk factors, ame-
liorates vascular dysfunction, and improves glycemic control in obese animals.

In a manner similar to cherry, watermelon has the ability to promote muscle 
recovery and alleviate aches and pains in athletes [990]. Citrulline has been pro-
posed as an ergogenic aid. In athletes, either natural or enriched L-citrulline water-
melon juice helped reduce recovery heart rate and muscle soreness after 24 h. High 
doses of citrulline or watermelon juice as a pre-exercise supplement perhaps are 
effective in improving exercise performance [991, 992]. The presence of potassium 
also contributes to regulation during exercise and recovery [993].

Watermelon antioxidants beta-carotene, lutein, zeaxanthin, and vitamin C pro-
tect the eyes and prevent macular degeneration and glaucoma [994]. Watermelon 
seeds are rich in phytonutrients, proteins, and fats, which are beneficial overall and 
have protective effect on eyes and on excretory system functions [995].

A sensible amount of watermelon is well tolerated, but overconsumption can 
cause complication related to high vitamin concentrations. High vitamin C, sorbitol, 
and lycopene in watermelon may lead to diarrhea, nausea, bloating, and vomiting. 
Lycopene interacts with alcohol leading to increased liver oxidative stress capacity 
[996] and inflammation sensitivity [997]. High potassium leads to irregular heart 
rhythm and heart attacks. Watermelon is high in natural sugars and should be con-
sumed cautiously under diabetic conditions.
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1  Wheat

 

Family: Poaceae
Genus: Triticum
Common name: Wheat

Wheat is a grasslike cereal grain commonly grown for its seeds. Whole-grain  kernels 
consist of three parts:

• First, the bran, which is the hard, outer shell. Dietary fiber comes mostly from the 
bran, along with minerals and antioxidants including phytic acid, lignin, and 
sulfur compounds

• Second, the endosperm, which is the middle layer and is mostly made up of 
carbohydrates

• Third, the germ which is the inner layer that contains vitamins, minerals, pro-
teins, and other plant compounds such as lignans, stanols, and sterols.

As long as these three parts are retained in the grain preparation, they are consid-
ered a whole grain. It is classified as a refined grain when the germ and bran have 
been removed, thus keeping only the endosperm. Wheat grain flour can be rolled, 
while the grains are either crushed or cracked. Whole grains can be eaten as bread 
and pasta or made into breakfast cereals. Whole-grain wheat is rich in B vitamins, 
including thiamin (B-1) niacin (B-3), pyridoxine (B-6), and folic acid (B-9). It con-
tains also minerals like manganese, magnesium, zinc, copper, and iron (Table 1).

Wheat, especially the whole grain, has a number of described health benefits. 
Whole-grain wheat contains B vitamins and complex carbohydrates, which provide 
energy and keep the person feeling satisfied for longer time. It has been reported 
that consuming whole wheat is associated with better weight control than consum-
ing refined wheat [1]. Refined wheat tends to increase weight and was found to 
increase the risk of diabetes and insulin resistance [2]. Whole wheat has been poten-
tially linked to decrease in the risk of other diseases including osteoporosis and 
heart diseases [3]. Wheat also contains the amino acid betaine, a trimethylglycine. 
The physiologic function of betaine is either as an osmolyte to protect cells under 
stress or as a catabolic source of methyl groups via transmethylation for use in many 
biochemical pathways and detoxification of homocysteine diseases [4]. Betaine has 
been postulated to prevent chronic diseases such as inflammation in rheumatic 

S. G. Mohammed et al.



379

heart, joints, and/or connective tissues and improve cardiac as well as liver func-
tions [5]. Wheat bran however has been shown to reduce the risk of breast cancer 
development as it has a consistently protective effect in mammary carcinogenesis 
[6]. Lignans (phytochemicals), more specifically phytoestrogens, along with fiber, 
decrease the risk of colorectal cancer [7] and cardiovascular diseases [8]. The insol-
uble fiber in whole wheat has been correlated with a significant decrease of gall-
bladder/bile duct cancer in a Japanese population-based cohort study [9] and a 
reduction in blood pressure [10]. The high fiber content of whole wheat reduces 
constipation and gas accumulation as well. Iron, folic acid, other B vitamins, and 
vitamin E enhance serotonin production and reduce the risk of cognitive function 
deterioration of Alzheimer’s disease [11]. Vitamin E, niacin, and zinc in whole 

Serving size of 100 g of ground whole wheat flour
Per serving % Daily valuea

Calories 339
Total fat 1.9 g 3
Saturated fat 0.3 g 2
Polyunsaturated fat 0.8 g
Monounsaturated fat 0.2 g
Total omega-3 fatty acids 38.0 mg
Total omega-6 fatty acids 738 mg
Cholesterol 0.0 mg 0
Phytosterols

Carbohydrates 72.6 g 24
Dietary fiber 12.2 g 49
Starch
Sugars 0.4 g
Protein 13.7 g 27
Vitamins

Vitamin A 0
Vitamin E 4
Vitamin K 2
Vitamin C 0
Vitamin B-6 17
Folic acid 11
Minerals

Sodium 0
Calcium 3
Magnesium 34
Copper 19
Potassium 12
Iron 22
Manganese 190
Zinc 20

National Nutrient Database
aBased on a 2000-calorie diet

Table 1 Wheat nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)
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wheat lower the risk of macular degeneration and cataract, whereas carotenoids, 
specifically lutein and zeaxanthin, improve the overall eye health status [12].

High intake of refined grains—including wheat—has been linked to some health 
problems. Wheat is rich in the protein gluten that is also found in barley and rye. 
Gluten is a storage protein composed of proteins, termed prolamins (water-soluble 
fraction), and glutelins (water-insoluble fraction). The wheat glutelins are called 
glutenin. Gluten can trigger gastrointestinal inflammatory disorders and allergies. In 
people with food sensitivity, gluten can damage the intestinal lining and may lead to 
pain, anemia, bloating, bowel irregularity, fatigue, and possibly a serious immune 
condition known as celiac disease [13]. Gluten sensitivity is also associated with 
cerebellar ataxia [14]. It has been shown that a gluten-free diet improved the condi-
tion of ataxia in gluten-sensitive patients [15]. An Autism Speaks article indicated 
that parents of autistic children reported behavior improvement when children were 
put on gluten-casein-free diet (GFCF) [16]. This improvement may be entirely 
attributed to healthier diet and not necessarily to being on a GFCF regimen. There 
is insufficient clinical evidence showing the clear benefit of such diet [17]. This 
controversy about effective diet intervention and favorable outcome in patients with 
autism continues to exist as others report the opposite with GFCF nutrition [18, 19]. 
Clearly, further research is needed to provide sound, compelling scientific evidence. 
The GFCF diet is discussed in separate chapters (Chapters 17 and 19).

Consumption of products prepared from refined grains, such as white bread, 
leads to spikes of blood sugar, followed by rapid glucose drop and hunger leading 
to weight gain. Phytic acid, a saturated cyclic acid, in both refined and whole wheat 
has the capacity to bind minerals such as calcium, zinc, iron, and magnesium, hence 
preventing their absorption [20]. Rich oxalate content in wheat may cause health 
problems such as gallbladder stones, kidney stones, and gout among certain indi-
viduals [21]. Other studies found that whole wheat significantly raises the unhealthy 
low-density lipoprotein (LDL) cholesterol [22].

2  Oats

 

Family: Poaceae
Genus: Avena
Common name: Oats
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Oats are a whole-grain cereal, scientifically known as Avena sativa, and are 
more commonly eaten as oatmeal (crushed and toasted oat groats) or porridge. 
However, they may be used in a variety of other goods. Whole oats are the only 
source of a unique group of antioxidants, avenanthramides (phenolic alkaloids), 
which not only are believed to have protective effects against coronary heart disease 
but also exhibit anti-inflammatory, antiproliferative, and anti-itching activity which 
may provide additional protection against colon cancer and skin irritation [23]. 
Oats contain high amounts of many vitamins and minerals such as B vitamins, 
manganese, magnesium, phosphorus, copper, iron, selenium, and zinc (Table 2). 

Table 2 Oats nutrition facts 
of 100 g, from the United 
States Department of 
Agriculture (USDA SR-21)

Serving size of 100 g of oats
Per serving % Daily valuea

Calories 389
Total fat 6.9 g 11
Saturated fat 1.2 g 6
Polyunsaturated fat 2.5 g
Monounsaturated fat 2.2 g
Total omega-3 fatty acids 111 mg
Total omega-6 fatty acids 2424 mg
Cholesterol 0.0 mg 0
Phytosterols

Carbohydrates 66.3 g 22
Dietary fiber 10.6 g 42
Starch
Sugars
Protein 16.9 g 34
Vitamins

Vitamin A 0
Vitamin E
Vitamin K
Vitamin C 0
Vitamin B-6 6
Folic acid 14
Minerals

Sodium 0
Calcium 5
Magnesium 44
Copper 31
Potassium 12
Iron 26
Manganese 246
Zinc 26

National Nutrient Database
aBased on a 2000-calorie diet
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Oats are also high in carbohydrates, starch and fiber, especially the polysaccharide 
beta-glucan. Oats contain more fat and protein than the other grains. Pure oats are 
free of gluten.

Oats are definitely among the healthiest of grains. The soluble fibers present in 
oats, mainly beta-glucan, affect insulin sensitivity, stabilize blood glucose levels, 
and lower the risk of type 2 diabetes [24]. Beta-glucan also lowers cholesterol 
levels and reduces blood pressure. Therefore, it protects against coronary heart 
disease, and furthermore, the antioxidants present in oats are very important as 
they contribute to enhancing the heart health [25]. Similarly, the insoluble fibers 
decrease constipation, improve intestinal health, lower blood pressure and along 
with soluble fiber, control weight as well [10]. One of the greatest advantages of 
consuming oats is that it keeps you feeling “full” for a longer period of time when 
compared with other foods [26]. For example, beta-glucan releases putative sati-
ety or appetite- regulating- type peptides which in turn reduce calorie intake and 
help control the body weight [27, 28]. Beta-glucan can be used both as a treatment 
and as a prophylactic measure. It is thought to be a good radioprotective drug for 
chemotherapy and radiotherapy or in case of nuclear emergencies [29]. Oats have 
very high manganese content ultimately ensuring proper growth, development, 
and metabolism [30]. Copper helps reduce blood pressure and lower blood choles-
terol [31]. Selenium has pleiotropic effects ranging from antioxidant and anti-
inflammatory effects to  hormone production. Selenium in whole grains has been 
shown to have relevance in decreasing the risk of premature death, improving 
cognitive condition, and boosting the immune system. It also has some beneficial 
effects on the risk of prostate, lung, colorectal, and bladder cancers [32]. The poly-
phenol avenanthramides’ potent antioxidant properties were also reported to 
decrease inflammation, reduce the risk of coronary heart diseases and colon can-
cer, and control blood pressure [23]. In addition, finely ground oats are dermato-
logically beneficial. As a topical treatment, it can help people with dry skin and 
relieve symptoms of many skin conditions including itching, erythema, and 
eczema [33].

Despite these many health benefits, oats have their share of secondary effects. 
Eating too much oats can cause intestinal gas and bloating. However, eating a small 
portion daily may allow the body to get used to it, and these minor effects may dis-
appear. Poorly chewed oats may also cause blockage of the intestine. So it is better 
for people with chewing disorders to either eliminate consumption or consume oats 
with plenty of water. Overeating oat bran may lead to diarrhea due to the effect of 
the fibers present. Oats do not contain gluten, but they do contain avenin, a protein 
similar to gluten. Avenin sensitivity seems to be extremely rare. Individuals allergic 
to avenin might experience symptoms similar to gluten intolerance. Though, oat 
proteins can act as both respiratory (dust allergy) and skin allergens (dermatitis). 
However, oat sensitivity can be explained due to frequent contamination with other 
grains containing gluten, and so it should not be consumed in case of gluten allergy 
or celiac disease [34].
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3  Barley

 

Family: Poaceae
Genus: Hordeum
Common name: Barley

Being a member of the grass family, barley was one of the first grains ever culti-
vated. There are few types of commercial barley. These include “hulled,” i.e., the 
whole barley grain; “hulless,” the most common type of barley which is minimally 
processed requiring the removal of the hull covering, most of the bran layer, and the 
germ too; and finally, “pearled” barley type which has been processed to remove its 
hull and bran. During medieval times, barley was actually very common among 
peasants. Today, it is a main cereal grain that is commonly used to make breads, 
salads, and soups and brew alcoholic drinks in several cuisines worldwide. Barely 
is also utilized as a natural sweetener. The reason barley gained popularity over the 
years is largely due to its various health benefits. Whole barley provides a range of 
important nutrients like fiber, B vitamins like niacin (B-3) and pyridoxine (B-6), and 
minerals such as selenium, copper, chromium, phosphorus, and magnesium 
(Table 3). Moreover, barley contains several important antioxidants. Drinking bar-
ley tea or water is just as healthy as eating the grain itself.

When compared to many other grains, whole barley is higher in dietary fiber 
and is essentially an excellent source of both soluble and insoluble fibers. It is 
lower in fats and calories yet contains greater amounts of certain trace minerals. 
The high fiber content regulates bowel movement; prevents constipation and 
intrinsically, colorectal cancer; permits weight control; and reduces blood pres-
sure [10]. Barley contributes to lowering the total amount of cholesterol especially 
the unhealthy LDL cholesterol and total triglycerides [35], thereby decreasing the 
risk of heart disease. Beta-glucan soluble fiber in barley has numerous benefits. 
Beta-glucan appears to control blood glucose and insulin levels effectively [36]. 
Beta-glucan also helps reduce the hungry feeling and aids in controlling body 
weight [37]. Furthermore, barley beta-glucan was reported to strengthen the 
immune system and reduce the chance of cold and flu [38]. Interestingly, barley 
tea acts as a natural diuretic and helps treat urinary tract infections and similarly 
shows a great ability to reduce the intensity of symptoms related to inflammatory 
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arthritis [39]. Barley’s high mineral content contributes to building and maintain-
ing bone structure/strength. Additionally, it also plays a role in the production and 
maturation of collagen and in that way increases the flexibility of rigid body joints 
even enhancing blood vessel regeneration. For instance, the high copper concen-
tration contributes to hemoglobin and red blood cell production [40]. Low sele-
nium intake has been associated with increased risk of mortality, poor immune 
function, and cognitive decline and may adversely affect risk of cancers [32]. 
Actually, selenium deficiency has been associated with different types of  epithelial 

Table 3 Barley nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)

Serving size of 100 g of hulled barley
Per serving % Daily valuea

Calories 354
Total fat 2.3 g 4
Saturated fat 0.5 g 2
Polyunsaturated fat 1.1 g
Monounsaturated fat 0.3 g
Total omega-3 fatty acids 110 mg
Total omega-6 fatty acids 999 mg
Cholesterol 0.0 mg 0
Phytosterols

Carbohydrates 73.5 g 24
Dietary fiber 17.3 g 69
Starch
Sugars 0.8 g
Protein 12.5 g 25
Vitamins

Vitamin A 0
Vitamin E 3
Vitamin K 3
Vitamin C 0
Vitamin B-6 16
Folic acid 5
Minerals

Sodium 1
Calcium 3
Magnesium 33
Copper 25
Potassium 13
Iron 20
Manganese 97
Zinc 18

National Nutrient Database
aBased on a 2000-calorie diet
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cancers where selenium- binding protein 1 is downregulated in malignant mela-
noma, prostate cancer, and lung carcinoma [41]. Low selenium status may also 
lead to some skin disorders including dermatitis [42]. Barley can likely protect 
against cutaneous inflammation and cancer conditions since selenium is present in 
high amounts and due to its protective inflammatory and neoplastic properties. 
One probable mechanism is the downregulation of selenoproteins, namely gluta-
thione peroxidase 4 (GPX4) that results in significantly improved skin lesions 
[43]. Barley cereal contains lignans, i.e., phytoestrogens. These are vital phytonu-
trients that have shown antioxidant activities even they are more potent than vita-
min E [44]. This is mainly because they scavenge free radicals and protect the 
cells from its harmful effects. In addition, lignans exhibit strong anti-inflammatory 
properties in endothelial cells, at least in part, through attenuation of NF-κB and 
extracellular signal-regulated kinase phosphorylation [45] and accompanying 
decreased risk of cardiovascular disease [8]. Moreover, lignans lower the risk of 
ER+ breast cancer, because of their potential for weak estrogenic or antiestrogenic 
effects in a woman’s body [46, 47], and other forms of hormone-related cancers 
such as prostate cancer and endometrial cancer [48]. Choline, a water-soluble-like 
vitamin, is a constituent of lecithin which is found in barley. Choline derivatives 
like phosphatidylcholine and other classes play a role in cell membrane integrity 
and signaling along with acting as a source for methyl groups via its metabolite 
betaine [49]. It is also a precursor for the neurotransmitter acetylcholine, thus 
involving in vital functions including muscle movement, learning, long-term 
memory, and cognitive abilities [50]. It has also been associated with sleep regula-
tion, positively influencing long sleep duration [51]. Finally, studies indicate that 
choline diminishes homocysteine levels associated with greater risk of cardiovas-
cular disease, lowers the levels of several inflammatory markers (CRP, homocys-
teine, IL-6, and TNF), limits DNA damage and apoptosis, and accordingly 
decreases the risk of breast cancer [49]. Likewise, barley’s antioxidants lower the 
risk of some cancers, like breast cancer [52], and heart disease by inhibiting 
inflammation processes plus the toll of aging on the body. In addition, the low 
sodium level in barley [53] coupled with appreciable amounts of potassium, cal-
cium, and magnesium [54] has been found to lower hypertension and boost the 
heart health.

Barley is likely safe for most people. However, it is not immune to a few second-
ary effects. Overconsumption of barley causes unpleasant abdominal cramps, bloat-
ing, and gas formation. Since barely is not gluten-free, it triggers an immune 
response in the small intestine of individuals with celiac disease. Because barley 
lowers blood sugar levels, diabetic patients have to be cautious and consider adjust-
ing their medication dose. Phytic acid in whole grains including barley is known to 
bind nutrients such as vitamins, minerals, and proteins, thereby preventing their 
absorption [20]. Barley flour can sometimes cause asthma [55].
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4  Rye

 

Family: Poaceae
Genus: Secale
Common name: Rye

Rye is a grass widely grown as a cereal grain and a cover crop to manage soil ero-
sion. Rye looks much like wheat, but it is longer and slenderer and ranges in color 
from yellowish brown to grayish green. Historically, rye was known as the poor 
man’s grain. Rye grain is used in flour, as animal fodder, and as a fermented ingredi-
ent in some alcoholic drinks. It can be eaten as a whole grain in different types of 
breads. In contrast to refined wheat flour, rye flour usually retains more nutrients 
because it is not easy to detach the germ and bran from the endosperm layers. Rye 
is very rich in fiber and contains a number of minerals like copper, zinc, magnesium, 
and manganese. Rye is also a decent source of phenolic antioxidant compounds and 
some vitamins like cobalamin (B-12) and folic acid (B-9) (Table 4).

This tasty, rich grain provides numerous health benefits. Rye contains non- 
cellulose polysaccharides and fibers displaying high binding capacity to water that 
increase the satiety feeling and, as a result, help in controlling body weight. Whole 
grains, including rye, contain high concentration of dietary fiber and different types 
of antioxidants that were found to reduce the risk of multiple diseases like coronary 
heart diseases and certain types of cancer, especially colorectal cancer [56]. The 
dietary fiber in rye regulates bowel movement, prevents constipation [57], protects 
from colon cancer, and even decreases the risk of cholesterol gallstones [58]. It has 
been concluded that consuming rye products lowers the risk of type 2 diabetes [59]. 
Phenolic acid antioxidants in rye have significant health benefits in prevention of 
chronic diseases such as cardiovascular disease, diabetes, and cancer [60]. One 
type, the hydroxyl-cinnamate family, has been linked to a number of beneficial 
health effects like protecting low-density lipoprotein (LDL) from oxidation which 
may help prevent atherosclerosis and coronary heart disease [61]. They have also 
been implicated in prevention of obesity, diabetes [62], and breast cancer [63]. In 
other investigations, these antioxidants were observed to reduce the risk of colon 
(other digestive cancers), breast, and prostate cancers [64]. Whole-grain consump-
tion, including rye, has been thought to lower the risk of childhood asthma and 
allergies [65].
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Rye, like other grains, has a number of undesirable health consequences. As a 
grain containing gluten, people with gluten sensitivity or celiac disease should avoid 
eating rye [66]. Overconsumption of rye may cause nausea, abdominal pain, and 
bloating. Rye is exceptionally sensitive to a toxin-producing parasitic fungus, 
Claviceps purpurea. When ingested, some people can exhibit a range of hallucino-
genic effects. Some grains, including rye, contain potentially toxic proteins termed 
gliadins. Gliadin proteins are a type of prolamin (i.e., proteins rich in prolines and 
glutamines typically found in the water-soluble component of gluten while glutenin 
is the insoluble fraction). These prolamins are called gliadins in wheat, hordeins in 
barley, avenins in oats, or secalins in rye. The rye form of gliadin that is named 

Table 4 Rye nutrition facts 
of 100 g, from the United 
States Department of 
Agriculture (USDA SR-21)

Serving size of 100 g of rye
Per serving % Daily valuea

Calories 335
Total fat 2.5 g 4
Saturated fat 0.3 g 1
Polyunsaturated fat 1.1 g
Monounsaturated fat 0.3 g
Total omega-3 fatty acids 157 mg
Total omega-6 fatty acids 958 mg
Cholesterol 0.0 mg 0
Phytosterols

Carbohydrates 69.8 g 23
Dietary fiber 14.6 g 58
Starch
Sugars 1.0 g
Protein 14.8 g 30
Vitamins

Vitamin A 0
Vitamin E 6
Vitamin K 7
Vitamin C 0
Vitamin B-6 15
Folic acid 15
Minerals

Sodium 0
Calcium 3
Magnesium 30
Copper 23
Potassium 8
Iron 15
Manganese 134
Zinc 25

National Nutrient Database
aBased on a 2000-calorie diet
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secalin sometimes cannot be tolerated and induces inflammatory response, e.g., 
TNF-α, IL-1β, and other chemokines [67]. Secalin, besides lectin, affects mucosal 
immunity and can cause intestinal toxicity. Secalin, for instance, elicited toxic reac-
tions in intestinal Caco-2 epithelial cells. It induced epithelial cell layer permeabil-
ity, tight junctional protein distortion, and actin reorganization similar to gliadin 
[68]. On the other hand, mice deficient in a C-type lectin receptor experienced 
aggravated fungal infection [69]. Another possible effect for secalin is red blood cell 
aggregation; for example, lectins are believed to contribute to the pathogenesis of 
acute coronary syndromes through cell aggregation/adhesion mechanisms [70]. 
Finally, it has the potential to provoke abnormal immune system reaction and acti-
vate zonulin (haptoglobin) signaling in the gut which is an insulin mimic that modu-
lates permeability and cellular communication in the digestive tract. It has been 
implicated in the pathogenesis of celiac disease and type 1 diabetes [71].

5  Quinoa

 

Family: Amaranthaceae
Genus: Chenopodium
Common name: Quinoa

Quinoa, a flowering plant in the amaranth family, is grown as a grain crop. Quinoa 
is a pseudo-cereal which means that it is in fact a seed but is consumed as a grain. 
Quinoa is often referred to as a “super food” because of its high fiber and quality 
protein content (gluten-free). It is packed with micronutrients such as magnesium 
(helps to relax blood vessels, thus alleviating migraines and promoting blood sugar 
control), manganese (protects against free radicals and prevents damage of mito-
chondria), B vitamins (improves energy metabolism), and other minerals like iron, 
potassium, calcium, and phosphorus, which, generally, are higher than in most 
grains [72, 73]. It is high in vitamin E, an antioxidant, and plant antioxidant com-
pounds like flavonoids, in particular, quercetin and kaempferol. In animal studies, 
these classes of flavonols have been shown to possess anti-inflammatory [74], anti-
cancer [75], and antidepressant activities [76]. Its extracts possess strong antimicro-
bial activities against foodborne pathogens as well [77] (Table 5).
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Quinoa is known for having all nine essential amino acids that the body cannot 
produce (therefore needs to be consumed), one of which is lysine that is important 
for normal tissue growth and repair [78]. Quinoa is even considered a complete 
protein by some [79]. Furthermore, using quinoa in a gluten-free diet may increase 
the value of antioxidants and nutrients in said diet [80]. Hence, this is an excellent 
alternative for individuals with autism on the gluten-casein-free (GFCF) diet. Due 
to its high fiber content, it helps control the body weight [81, 82], regulate blood 
pressure, lower blood sugar (since it is very low on the glycemic index) [83, 84], 
and  reduce cholesterol levels [85], eventually reducing the risk of heart disease. 
Quinoa plays great role in handling mineral levels preventing uric acid renal stone 

Table 5 Quinoa nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)

Serving size of 100 g of uncooked quinoa
Per serving % Daily valuea

Calories 368
Total fat 6.1 g 9
Saturated fat 0.7 g 4
Polyunsaturated fat 3.3 g
Monounsaturated fat 1.6 g
Total omega-3 fatty acids 307 mg
Total omega-6 fatty acids 2977 mg
Cholesterol 0.0 mg 0
Phytosterols

Carbohydrates 64.2 g 21
Dietary fiber 7.0 g 28
Starch 52.2 g
Sugars
Protein 14.1 g 28
Vitamins

Vitamin A 0
Vitamin E 12
Vitamin K 0
Vitamin C
Vitamin B-6 24
Folic acid 46
Minerals

Sodium 0
Calcium 5
Magnesium 49
Copper 30
Potassium 16
Iron 25
Manganese 102
Zinc 21

National Nutrient Database
aBased on a 2000-calorie diet
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formation [86, 87]. High fiber content in quinoa may also protect against gallblad-
der stones [88]. Quinoa is also high in iron, needed for hemoglobin formation, and 
is rich in copper, manganese, and vitamin B-2 that are vital for metabolism and 
development [89, 90].

Not much is known about potential overconsumption of quinoa. Like other cereal 
grains, quinoa contains phytic acid which interferes with absorption of some micro-
nutrients such as iron and zinc [91]. In addition, the seeds have a coating of sapo-
nins, natural detergents, especially concentrated in the seed hull (that can be 
removed by rinsing well with water) giving it a bitter taste and, when digested, lead 
to stomach irritation [92]. Oxalate content in quinoa may lead to kidney stone for-
mation when consumed excessively [93]. Individuals with chronic kidney disease 
need to limit their potassium intake in their diet [94].
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1  Almonds

 

Family: Rosaceae
Genus: Prunus
Common name: Almond

Almonds are the seeds of fruits grown from the almond tree. There are two types of 
almonds: edible sweet ones, and bitter almonds which are used for making oil and 
flavoring food. They are usually sold raw, roasted, or blanched (skin removed). 
They can be eaten as a snack or added to salads and other dishes. Almond milk is 
also a tasty drink that can be an alternative to less nutritious cow’s milk. Almonds 
can be eaten preferably on an empty stomach to increase and speed up the absorp-
tion of their nutrients. Despite the fact that they contain high amount of fat, almond 
is a highly nutritious nut and a rich source of healthy essential fatty acids, namely 
linoleic and linolenic acids, vitamin E, calcium, iron, phosphorus, manganese, and 
magnesium. It also contains fiber, phytic acid, zinc, selenium, copper, riboflavin 
(B-2), and niacin (B-3) (Table 1). The brown layer of almond skin is a very rich 
source of antioxidants.

Almonds have a wide array of notable health benefits. The high content of anti-
oxidants and polyphenols in almond skin protects the body from oxidative damage 
that contributes to different diseases notably diabetes and coronary heart disease [1] 
and reduces some of the oxidative damage biomarkers, namely plasma malondial-
dehyde (MDA) and urinary isoprostanes (prostaglandin-like compound) [2]. The 
rich amount of vitamin E in almonds is linked to their protective effects against 
coronary heart disease [3], colon cancer [4], and age-related cognitive damage and 
Alzheimer’s disease [5]. The low levels of carbohydrates and high levels of healthy 
unsaturated fats, proteins, and dietary fiber in almonds contribute to their ability to 
control type 2 diabetes and cardiovascular diseases [6]. Low carbs and high fiber 
help control body weight, decrease hunger, and promote satiety [7]. Additionally, 
the high fiber content of almonds regulates bowel movement and prevents constipa-
tion [8]. The high magnesium concentration in almonds is also thought to improve 
insulin function and decrease blood glucose [9] and lower the blood pressure [10], 
consequently reducing the risk of stroke and renal problems. Almonds were also 
found to lower the oxidation of unhealthy LDL cholesterol further boosting the 
heart and blood vessel health [11].
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Table 1 Almond nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)

Serving size of 100 g of almond
Per serving % Daily valuea

Calories 575
Total fat 49.4 g 76
Saturated fat 3.7 g 19
Polyunsaturated fat 12.1 g
Monounsaturated fat 30.9 g
Total omega-3 fatty acids 6.0 mg
Total omega-6 fatty acids 12,065 mg
Cholesterol 0.0 mg 0
Phytosterols

Carbohydrates 21.7 g 7
Dietary fiber 12.2 g 49
Starch 0.7 g
Sugars 3.9 g
Protein 21.2 g 42
Vitamins

Vitamin A 0
Vitamin E 131
Vitamin K 0
Vitamin C 0
Vitamin B-6 7
Folic acid 12
Minerals

Sodium 0
Calcium 26
Magnesium 67
Copper 50
Potassium 20
Iron 21
Manganese 114
Zinc 21

National Nutrient Database
aBased on a 2000-calorie diet

Like any other food, almonds have their disadvantages. They contain oxalates, 
and excessive consumption could cause crystallization in different tissues leading to 
kidney or gallbladder stones [12]. Overconsumption of almonds may cause loss of 
appetite, constipation, and bloating. On the other hand, the high content of fats in 
almonds might increase body weight especially when no regular physical activities 
are being performed. Overconsumption of bitter almonds might be toxic; they have 
high levels of the poisonous compound hydrocyanic acid (cyanide), which poten-
tially leads to breathing difficulty, nervous breakdown, choking, and even death. It 
is strictly prohibited for pregnant women to eat. Allergic reactions of almonds are 
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common, and they might lead to serious reactions or anaphylactic shock. Manganese 
content of almonds might interfere with certain medication such as some laxatives, 
antihypertensive drugs, and antibiotics.

2  Hazelnuts

 

Family: Betulaceae
Genus: Corylus
Common names: Hazelnut or cobnut or filbert

Hazelnuts are group of roughly spherical to oval or a bit elongated nuts—depending 
on the species—with a smooth shell covered by an outer fibrous husk. When ripe, 
hazelnut falls out of its husk. The marble-size seeds have thin, dark-brown- colored 
skin which is customarily removed before cooking. Hazelnut can be eaten raw, 
roasted, or utilized in recipes to prepare pastes, to give ice cream a special flavor, 
and to add in chocolates. Hazelnut oil is highly flavorful and can be used for cook-
ing. Hazelnuts are rich in protein, monounsaturated fat, vitamin E, pyridoxine (B-6), 
folic acid (B-9), copper, manganese, and many other nutrients essential for health 
(Table 2).

Like other nuts, hazelnut health benefits extend to reach most if not all body 
systems. Hazelnuts contain a number of vitamins and minerals that boost heart and 
blood vessel health. Apart from the rich dietary fiber content in hazelnuts, the high 
amounts of fatty acids, antioxidants, potassium, and magnesium they contain help 
lower blood pressure [13]. The significant amount of monounsaturated fatty acids, 
like oleic acid, also helps reduce the unhealthy LDL cholesterol, increase healthy 
HDL cholesterol, and reduce inflammation [14]. Hazelnuts are loaded with different 
potent antioxidants like proanthocyanidins [15] in addition to some vitamins like 
vitamin E [16] and minerals like manganese [17] that have been demonstrated to 
have anticancer properties, reduce oxidative stress, and safeguard cells from dam-
age caused by free radicals. Hazelnut extracts have been shown to protect individu-
als against several cancers such as cervical [18], liver, breast [19], and colon cancers 
[20]. β-Sitosterol, a plant phytosterol found in hazelnuts—its chemical structure 
similar to cholesterol—has been observed for its protective effect against few 
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Table 2 Hazelnut nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)

Serving size of 100 g of hazelnut
Per serving % Daily valuea

Calories 628
Total fat 60.7 g 93
Saturated fat 4.5 g 22
Polyunsaturated fat 7.9 g
Monounsaturated fat 45.7 g
Total omega-3 fatty acids 87.0 mg
Total omega-6 fatty acids 7832 mg
Cholesterol 0.0 mg 0
Phytosterols 96.0 mg
Carbohydrates 16.7 g 6
Dietary fiber 9.7 g 39
Starch 0.5 g
Sugars 4.3 g
Protein 15.0 g 30
Vitamins

Vitamin A 0
Vitamin E 75
Vitamin K 18
Vitamin C 11
Vitamin B-6 28
Folic acid 28
Minerals

Sodium 0
Calcium 11
Magnesium 41
Copper 86
Potassium 19
Iron 26
Manganese 309
Zinc 16

National Nutrient Database
aBased on a 2000-calorie diet

 cancers particularly breast [21] and prostate [22] cancers. Hazelnut’s minerals have 
been reported to control blood glucose level and are linked to lower risk of type 2 
diabetes, chief of these minerals being manganese [23] and magnesium [24]. 
Similarly, monounsaturated fatty acids also influence type 2 diabetes along with 
other inflammatory diseases and cancer [25]. Magnesium in hazelnuts is also vital 
in bone health as it decreases the risk of fractures and osteoporosis [26]. Hazelnuts 
contain elements that boost brain and nerve health as they possess some neuropro-
tective abilities since they improve memory and ensure healthy aging [27]. Both 
manganese [28] and vitamin E [29] help lower age-related cognitive deterioration 
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and have a fundamental role in the prevention and the treatment of dementia such as 
Alzheimer’s and Parkinson’s diseases. Vitamin E also plays a protective role for the 
skin by shielding it from the ultraviolet ray damage, the risk of skin cancer, and the 
signs of premature aging [30].

However, hazelnuts have their own set of unwanted health effects they come 
with. They, like other nuts, contain phytic acid, which has been shown to bind some 
minerals, such as iron and zinc, thus preventing their absorption [31]. Hazelnut 
allergens induce mild-to-severe allergic reactions in sensitized individuals [32].

3  Peanuts

 

Family: Fabaceae
Genus: Arachis
Common names: Peanut, groundnut, earth nuts, or goober

Peanut is technically not a true nut. Rather, it is a legume grain. The peanut pod 
develops underground, and this is why it is called a groundnut. It is also classified 
as an oil crop due to its high oil content. Peanut is grown mostly for its seeds which 
are covered by a brown paperlike coat contained in an outer shell. It is mostly con-
sumed as roasted whole peanuts with salt or as peanut butter or to a lesser extent 
eaten raw. Peanut products such as oil, flour, and protein are used in a variety of 
foods: sweets, snacks, and sauces. Peanuts are low in carbs and very rich in fiber, 
proteins like arachin and conarachin, and fats that are often used to make peanut oil. 
Peanut fat consists mostly of mono- and polyunsaturated fatty acids. They are also 
a main source for vitamin E, B vitamins including thiamin (B-1), riboflavin (B-2), 
niacin (B-3), pantothenic acid (B-5), pyridoxine (B-6), folic acid (B-9), and choline, 
and several minerals including copper, magnesium, manganese, and zinc (Table 3).

Peanuts contain several nutrients that are essential for health. Their rich content 
of B vitamins such as niacin [33] and thiamin [34] in addition to minerals like mag-
nesium [35] and copper [36] is particularly beneficial for the heart and cardiovascu-
lar system. Peanuts contain high amounts of monounsaturated fatty acids such as 
oleic acid which have been shown to reduce the unhealthy LDL cholesterol and 
increase healthy HDL cholesterol, thereby preventing coronary artery disease [37]. 
The main composition of phytosterols in peanut oil is β-sitosterol. Due to its 
 substantial amounts and structural similarity with cholesterol, it competes with cho-
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lesterol absorption by the gut, in essence, lowering the blood level of the unhealthy 
LDL cholesterol [38]. Other B vitamins contained in peanuts like biotin [39] and 
folic acid [40] are vital for healthy pregnancy. It has also been suggested that biotin 
could be helpful in treating multiple sclerosis [41]. Biotin crosses the blood–brain 
barrier, and deficiency may lead to brain and central nervous system disorder symp-
toms like ataxia, dysphagia, and dysarthria and perhaps even lead to sensory loss 
[42]. Biotin in combination with chromium (but not alone) was found to lower blood 
glucose level in diabetics [43]. Peanuts are a rich source of different types of potent 
antioxidants that help in preventing many diseases. They contain resveratrol, an 
 antioxidant that prevents heart diseases and Alzheimer’s disease and lowers the risk 
of cancer [44]. Peanuts contain p-coumaric acid, a phenolic acid antioxidant—a 

Table 3 Peanut nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)

Serving size of 100 g of raw peanut
Per serving % Daily valuea

Calories 567
Total fat 49.2 g 76
Saturated fat 6.8 g 34
Polyunsaturated fat 15.6 g
Monounsaturated fat 24.4 g
Total omega-3 fatty acids 3.0 mg
Total omega-6 fatty acids 15,555 mg
Cholesterol 0.0 mg 0
Phytosterols 220 mg
Carbohydrates 16.1 g 5
Dietary fiber 8.5 g 34
Starch
Sugars 4 g
Protein 25.8 g 52
Vitamins

Vitamin A 0
Vitamin E 42
Vitamin K 0
Vitamin C 0
Vitamin B-6 17
Folic acid 60
Minerals

Sodium 1
Calcium 9
Magnesium 42
Copper 57
Potassium 20
Iron 25
Manganese 97
Zinc 22

National Nutrient Database
aBased on a 2000-calorie diet
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hydroxyl derivative of cinnamic acid—with antibacterial properties [45] that have 
been found to lower the risk of stomach cancer perhaps owing to its bactericidal 
effect against H. pylori [46]. Regular consumption of peanuts has been found to 
reduce the risk of gallstone formation possibly attributable to its cholesterol- lowering 
properties [47]. Peanuts are very filling as a result of their high fiber content making 
them very effective for weight control as they lessen the intake of other foods [48].

Peanuts present some negative health effects too. The abundant amounts of 
arachin and conarachin proteins conceivably cause severe allergic reactions in some 
people, sometimes resulting even in life-threatening anaphylactic reactions [49]. 
Phytic acid in peanut possibly prevents the absorption of some nutrients like iron 
and zinc if consumed at the same time [31]. Therefore, overconsumption of peanuts 
over time may lead to nutritional deficiencies of such minerals. Depending on their 
storage conditions, when peanuts are stored in humid conditions, they may get con-
taminated by fungi Aspergillus species producing aflatoxins. This toxin contamina-
tion can cause serious liver damage and cancer and even lead to death [50].

4  Pine Nuts

 

Family: Pinaceae
Genus: Pinus
Common name: Pine nuts, cedar nuts, pinon nuts, pinyon nuts, or pignoli

Pine nuts are not actually nuts. They are the edible, small, and elongated seeds of 
pine cones. Pine nuts are usually hard and go through several processing steps 
before becoming palatable. Pine cones are dried in a burlap clothing sack in the sun 
for 20 days after which they are smashed to rapidly release the seeds. The seeds are 
then separated by hand from the smashed fragments of the cone. Pine nuts have 
another shell which has to be removed before eating it. They are generally eaten as 
a raw or roasted snack or put in vegetable dishes and in pesto sauces. Pine nut oil 
has a mild flavor and a sweet aroma. It has been used in traditional medicine, for 
cooking, and in salad dressings and is additionally utilized as a carrier oil in aroma-
therapy and in cosmetic products. Pine nuts contain appreciable amounts of fiber, 
fats, and protein. They are a rich source of antioxidants and minerals comprising of 
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manganese, magnesium, copper, iron, and zinc and vitamins such as vitamins E and 
K and folic acid (B-9) (Table 4).

Pine nuts are a very nutritious food and contain a mixture of compounds which 
together have plenty of positive health effects on the heart, bones, and immune system 
and have the ability to fight chronic diseases such as diabetes and cancer. These 
include monounsaturated fatty acids, magnesium, manganese, vitamin E, and vitamin 
K. Monounsaturated fatty acids such as pinolenic acid found in pine nut oil appear to 
lower the blood cholesterol [51]. Another fatty acid, oleic acid, has been observed to 
lower the triglycerides level in blood, lower the risk of atherosclerosis, and prevent 
coronary artery diseases and strokes [52]. Pine nuts are a natural source of phytoster-

Table 4 Pine nut nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)

Serving size of 100 g of dried pine nut
Per serving % Daily valuea

Calories 673
Total fat 68.4 g 105
Saturated fat 4.9 g 24
Polyunsaturated fat 34.1 g
Monounsaturated fat 18.8 g
Total omega-3 fatty acids 112 mg
Total omega-6 fatty acids 33,606 mg
Cholesterol 0.0 mg 0
Phytosterols 141 mg
Carbohydrates 13.1 g 4
Dietary fiber 3.7 g 15
Starch 1.4 g
Sugars 3.6 g
Protein 13.7 g 27
Vitamins

Vitamin A 1
Vitamin E 47
Vitamin K 67
Vitamin C 1
Vitamin B-6 5
Folic acid 8
Minerals

Sodium 0
Calcium 2
Magnesium 63
Copper 66
Potassium 17
Iron 31
Manganese 440
Zinc 43

National Nutrient Database
aBased on a 2000-calorie diet
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ols, namely beta-sitosterol [53] and polyphenol antioxidants such as catechin, epicat-
echin, and tyrosol [54] that have also been shown to lower the risk of atherosclerosis 
and decrease the total and the unhealthy LDL cholesterol levels in the blood. In addi-
tion, pine nuts have been observed to lower body weight, possibly by being a satiating 
food as it suppresses the appetite and lowers the intake of other foods [55]. Their high 
magnesium content seems to decrease blood pressure and lower the risk of coronary 
heart disease as well [56]. The appreciable amounts of magnesium and zinc are 
thought to boost the immune system and have been associated with the prevention and 
treatment of many mental health disorders, like depression, anxiety, and attention-
deficit hyperactivity disorder (ADHD) [57]. Though ADHD itself is not part of autism 
spectrum disorders, the symptoms of autism and ADHD overlap. High content of 
vitamin K was found to promote blood coagulation and prevent bleeding after injuries 
and has also been shown to play a role in osteoporosis prevention and reducing the 
risk of fractures [58]. Regular consumption of pine nuts seems to lower the blood 
glucose level and decrease the risk of type 2 diabetes and its complications [59]. Pine 
nuts contain very high concentrations of antioxidants including vitamins A, B, C, D, 
and E and lutein. Antioxidants are believed to scavenge free radicals, thereby reducing 
the risk of some cancers and controlling aging symptoms. They also act as antibacte-
rial and antiviral agents mitigating infections [60]. Lutein is a carotenoid pigment that 
has been associated with lowering the risk of non-Hodgkin lymphoma development 
[61]. Lutein has also been suggested to protect the eye from age-related macular 
degenerative changes and ultraviolet light and decrease the danger of glaucoma [62].

Pine nut consumption, however, may have some adverse health effects too. Some 
people experience harmless taste disturbance few days after raw pine nut consump-
tion. They develop a persistent bitter, metallic aftertaste known as pine nut syn-
drome, which can last over a week and disappear spontaneously [63]. People 
sensitized to peanut or other nuts can also have allergic reaction when eating pine 
nuts. The reactions include vomiting, diarrhea, abdominal pain, and skin itching. 
Overconsumption of pine nuts may cause nausea.

5  Walnut

 

Family: Juglandaceae
Genus: Juglans
Common name: Walnut
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Walnuts are rounded, single-seeded stone fruits with a wrinkly hard shell of the 
walnut tree commonly used for its core heart after being fully ripe. There are two 
major species of walnuts grown for their seeds—the Persian or English walnut and 
the black walnut. It can be eaten raw as a snack or added to different recipes includ-
ing salads or powdered into dips and sauces, while its oil can be used in vinaigrette 
dressing. Walnut has strong antioxidant characteristics that mainly come from its 
skin which is rich in vitamin E, melatonin, and polyphenols. Walnut is a rich source 
of folic acid (B-9), pyridoxine (B-6), thiamin (B-1), zinc, copper, and manganese 
(Table 5). It also contains very high levels of fiber and fatty acids such as omega-3 
and omega-6.

Table 5 Walnut nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)

Serving size of 100 g of walnut
Per serving % Daily valuea

Calories 654
Total fat 65.2 g 100
Saturated fat 6.1 g 31
Polyunsaturated fat 47.2 g
Monounsaturated fat 8.9 g
Total omega-3 fatty acids 9079 mg
Total omega-6 fatty acids 38,092 mg
Cholesterol 0.0 mg 0
Phytosterols 72.0 mg
Carbohydrates 13.7 g 5
Dietary fiber 6.7 g 27
Starch 0.1 g
Sugars 2.6 g
Protein 15.2 g 30
Vitamins

Vitamin A 0
Vitamin E 4
Vitamin K 3
Vitamin C 2
Vitamin B-6 27
Folic acid 25
Minerals

Sodium 0
Calcium 10
Magnesium 40
Copper 79
Potassium 13
Iron 16
Manganese 171
Zinc 21

National Nutrient Database
aBased on a 2000-calorie diet
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Walnuts have incredible health benefits. Numerous elements in walnut are 
proven to reduce inflammation and its related diseases such as type 2 diabetes, 
cardiovascular diseases, Alzheimer’s disease and some types of cancers [64, 65]. 
Walnuts’ significantly high level of omega-3 essential fatty acid has been shown 
to decrease the risk of cardiovascular diseases [66]; they lower serum cholesterol 
by reducing cholesterol absorption, inhibition of HMG-CoA reductase, and 
increased bile acid production by stimulation of 7-α-hydroxylase, especially the 
levels of the unhealthy LDL cholesterol [67]. It has been suggested that omega-3 
fatty acids and different antioxidants contained in walnuts may boost the immune 
system and exhibit anticancer effects [68] against many cancers including breast 
[69], colorectal [70], and prostate cancers [71]. Omega-3 fatty acid, magnesium, 
and the amino acid arginine have been established to improve inflammation, oxi-
dative stress, endothelial function, and blood pressure [65]. Although walnuts are 
high in fat, they can help in weight management. Their high fiber and protein 
content suppresses hunger and enhances satiety [72]. Fiber and polyphenols may 
also have antidiabetic effects by altering gut microflora. The unsaturated fatty 
acids may favorably influence glucose homeostasis and suppress appetite to aid 
in weight control [65]. Walnut and its oil potentially exert control over blood 
sugar and lower the risk of type 2 diabetes possibly due to its effect on body 
weight and body mass index (BMI) [73] or more directly lower blood sugar and 
hemoglobin A1C (HbA1c), the 3-month average of blood glucose [74]. Their 
high content of antioxidant polyphenols and polyunsaturated fatty acids helps 
reduce oxidative stress causing brain inflammation and age- related cognitive dis-
orders [75]. Dietary supplementation with walnuts has a protective effect against 
Aβ-induced oxidative stress and cellular death. Moreover, findings suggest posi-
tive effect on learning skills, memory, anxiety, locomotor activity, and motor 
coordination [64].

Walnuts can affect the body health adversely in many ways too. Overconsumption 
of walnut may lead to weight gain. Allergic reactions are also common with the 
overconsumption of walnuts. Individuals with sensitivity may exhibit minor allergic 
reactions resulting in rashes or swelling, while for others, a walnut allergy can lead 
to life-threatening symptoms. As an allergen, walnut consumption could cause few 
digestive complications including diarrhea, nausea, and abdominal pain. Juglone 
content of black walnut may rarely cause lip and tongue cancers when overindulged 
over long period of time. Topical application of walnut leaf on the skin can lead to 
acne, eczema, ulcers, and multiple skin infections. They can also cause excessive 
sweating of the hands and feet.
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6  Other Nuts

6.1  Cashew Nuts

 

Family: Anacardiaceae
Genus: Anacardium
Common name: Cashew

Anacardium occidentale is a tropical tree that produces the kidney-shaped cashew 
seed and apple. The nut is attached to the lower portion of the apple which is coni-
cally shaped. They are low-fiber nuts, packed with antioxidants and vitamins E, K, 
and B-6, along with minerals like copper, manganese, phosphorus, zinc, magne-
sium, iron, and selenium (Table 6). Cashew nuts can be eaten raw or roasted, used 
in different recipes, or processed to make cashew cheese or cashew butter. The 
cashew apple pulp can be processed into a sweet fruit drink. The by-product of liq-
uid obtained from processing cashew nut shell is a natural source of phenols which 
are raw materials used in the preparation of some drugs, pesticides, paints, plastics, 
resins, and wood treatments.

Not only do cashews have a lower fat content than most other nuts, but also they 
are cholesterol-free. They may lower the risk of cardiovascular disease by bringing 
down systolic blood pressure [13], total cholesterol and unhealthy LDL cholesterol 
levels [76]. Phosphorus is crucial for the development of healthy teeth and bones as 
it promotes their mineralization [77]. Likewise, magnesium preserves healthy bones 
and decreases the risk of fractures [26]. Magnesium may regulate blood sugar levels 
by altering the insulin activity [78]. Iron on the other hand is important in carrying 
oxygen around the body and reduces the risk of anemia. Cashews are also good for 
eye health as the antioxidants have shielding effect against light damage. It has been 
shown that antioxidants such as anacardic acids, cardanols, and cardols in cashew 
are effective for people undergoing cancer treatment [79]. Anacardic acids in the 
cashew nut shell liquid have antibacterial properties [80] and were observed to be 
advantageous in treating skin inflammation-related conditions [81]. Frequent con-
sumption of nuts like cashews may also lower the risk of gallstone disease [82] and 
lower the need to surgically remove such stones [83].
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Overeating cashews can be harmful to health. Cashews do display laxative effect. 
However, oxalate content though moderate, dietary excess and hyper-absorption do 
lead to several kidney disorders including kidney stones [84]. Oxalates can also 
interfere with the absorption of calcium in the body. In addition, unroasted cashew 
can aggravate the skin and cause blisters. The nut shell oil from raw cashews is 
mordant and can cause contact dermatitis and skin burns [85]. Moreover, diabetics 
that consume cashews should keep track of their blood sugar as eating large amounts 
may elevate blood sugar levels. Allergic reaction to cashew nuts is quite common. 
People with sensitivity may develop a life-threatening anaphylactic reaction when 
consuming cashews.

Table 6 Cashew nut 
nutrition facts of 100 g, from 
the United States Department 
of Agriculture (USDA 
SR-21)

Serving size of 100 g of raw cashew nuts
Per serving % Daily valuea

Calories 553
Total fat 43.8 g 67
Saturated fat 7.8 g 39
Polyunsaturated fat 7.8 g
Monounsaturated fat 23.8 g
Total omega-3 fatty acids 62.0 mg
Total omega-6 fatty acids 7782 mg
Cholesterol 0.0 mg 0
Phytosterols

Carbohydrates 32.7 g 11
Dietary fiber 3.3 g 13
Starch 23.5
Sugars 5.9 g
Protein 18.2 g 36
Vitamins

Vitamin A 0
Vitamin E 4
Vitamin K 43
Vitamin C 1
Vitamin B-6 21
Folic acid 6
Minerals

Sodium 1
Calcium 4
Magnesium 73
Copper 110
Potassium 19
Iron 37
Manganese 83
Zinc 39

National Nutrient Database
aBased on a 2000-calorie diet
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6.2  Pistachio

 

Family: Anacardiaceae
Genus: Pistacia
Common name: Pistachio

Pistachio is a small tree, with pinnate (feather-like) leaves that tend to fall off in the 
autumn. The tree produces elongated seeds that are widely consumed as food. The 
fruit is a drupe that has a hard, cream-colored outer shell covering the edible seed 
with mauve-colored skin, light-green flesh, and a unique flavor. When the fruit rip-
ens, the outer shell changes its color from green to yellow/red and splits partly open. 
The seeds are commonly eaten whole as a snack either fresh or roasted, with or 
without salt. They are also used to make ice cream, butter, and paste and are an 
ingredient of different sweets like baklava, chocolate, halva, Turkish delight 
(lokum), or biscotti. Pistachio is added in cold cuts such as mortadella and to salads. 
Pistachios are nutritionally very rich food. They are an excellent source of protein; 
fatty acids; dietary fiber; minerals including potassium, copper, and iron; and 
 vitamins like pyridoxine (B-6). Pistachio also contains calcium, folic acid (B-9), 
and other B vitamins (Table 7).

Pistachio nuts are not only delicious but also extremely nutrient-dense. Pistachios 
are rich in phytosterols which are structurally similar to cholesterol and compete 
with dietary cholesterol to prevent their absorption [38]. They were found to lower 
the total as well as the unhealthy LDL blood cholesterol levels and lower the risk of 
heart disease [86]. Pistachios help to reduce hypertension. The high content of the 
amino acid L-arginine in pistachio nuts that is converted to nitric oxide in the body 
has been shown to help in dilating the blood vessels [87]. Pistachios contain more 
antioxidants than most nuts. The antioxidants and anti-inflammatory potential of 
polyphenols and tocopherols were shown to lower blood pressure, improve vascular 
health [88], and protect against a number of cancers [89] including colon [90], lung 
[91], breast [92], and thyroid [93] cancers. Lutein and zeaxanthin antioxidants are 
important for eye health since they lower the risk of age-related macular degenera-
tion, prevent cataract and loss of vision, and protect the eyes from harmful light 
[94]. Likewise, vitamin E has antioxidant properties that protect the skin from the 
ultraviolet light damage, keep the skin moisturized, and combat antiaging skin signs 
[30]. The presence of biotin, a water-soluble B vitamin, enables battling nail brittle-
ness and hair loss adequately with regular pistachio consumption [95]. The presence 
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of copper helps increase iron absorption, increase the hemoglobin level, and lower 
the risk of anemia. The combination of copper and vitamin B-6 improves blood flow 
and brain functions [96] and enhances immune system status [97]. Furthermore, 
vitamins A and E prevent inflammation-related health problems, and pistachio 
extract has been shown to demonstrate marked anti-inflammatory and antinocicep-
tive activities [98]. Pistachios’ rich content of dietary fibers is valuable for weight 
control as they increase satisfaction and decrease food intake along with maintain-
ing digestive tract optimal capacity. Despite their high carbohydrate content, pista-
chios have low glycemic index. Collectively, antioxidants, magnesium, carotenoids, 
and phenolic compounds play a role in glucose control in type 2 diabetes and 
decrease the HbA1c [59, 99].

Table 7 Pistachio nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)

Serving size of 100 g of raw pistachio
Per serving % Daily valuea

Calories 557
Total fat 44.4 g 68
Saturated fat 5.4 g 27
Polyunsaturated fat 13.5 g
Monounsaturated fat 23.3 g
Total omega-3 fatty acids 254 mg
Total omega-6 fatty acids 13,200 mg
Cholesterol 0.0 mg 0
Phytosterols 214.0 mg
Carbohydrates 28.0 g 9
Dietary fiber 10.3 g 41
Starch 1.7 g
Sugars 7.6 g
Protein 20.6 g 41
Vitamins

Vitamin A 11
Vitamin E 11
Vitamin K
Vitamin C 8
Vitamin B-6 85
Folic acid 13
Minerals

Sodium 0
Calcium 11
Magnesium 30
Copper 110
Potassium 29
Iron 23
Manganese 60
Zinc 39

National Nutrient Database
aBased on a 2000-calorie diet
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Pistachio nuts naturally have low sodium. However, salted pistachio nuts increase 
sodium intake and subsequently elevate blood pressure. Overconsumption of pista-
chio with its high content of fiber may lead to diarrhea and abdominal pain. While 
the fiber makes a person feel satisfied nevertheless, as it is high caloric, eating a 
handful of nuts at a time may result in increased weight and larger waist girth. In 
people sensitive to fructan, pistachio nuts can cause gastrointestinal symptoms such 
as bloating, flatulence, diarrhea, constipation, and abdominal cramps. In addition, 
individuals that suffer from nut allergies are also expected to be allergic to pistachio. 
Pistachio is contraindicated for allergic individuals to circumvent the possible life- 
threatening anaphylactic reaction. Moreover, exceedingly high levels of manganese 
can give rise to headaches and neurological disorders. Pistachio has high oxalate 
content which may stimulate kidney stone formation as well. Overconsumption of 
pistachios increases potassium load and may worsen the preexisting kidney prob-
lem and therefore should be eaten with caution.

6.3  Macadamia Nuts

 

Family: Proteaceae
Genus: Macadamia
Common name: Macadamia, Queensland nut, Hawaii nut, bush nut, maroochi nut, 
or bauple nut

The macadamia nut is the seed of the macadamia tree and was named after the 
Scottish-Australian scientist John Macadam. Hardest of all nut shells, the macada-
mia is a tough nut to crack. Moreover, the shelled nuts should be stored carefully so 
that they do not spoil quickly. Macadamias are a rich source of protein and B vita-
mins like thiamin (B-1), riboflavin (B-2), niacin (B-3), and folic acid (B-9). They 
also contain decent amounts of minerals like iron, zinc, copper, calcium, phospho-
rus, potassium, and magnesium. The macadamia nut is a good source of carbohy-
drates and fiber (Table 8). In addition, the nuts contain antioxidants like polyphenols, 
amino acids, flavones, and selenium.

The presence of monounsaturated fatty acids in macadamia nuts reduces platelet 
aggregation [100], regulates cholesterol metabolism, and improves blood lipid pro-
files [101]. Therefore, monounsaturated fatty acids are able to prevent coronary 
heart disease [102]. Macadamia nuts are linked to glucose and insulin metabolism. 
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Nut consumption seems to counter the diabetic effects by improving glycemia lev-
els [59]. Omega fatty acids boost brain and nerve health since they stimulate gene 
expression and neuronal activity, increase synaptogenesis and neurogenesis, and 
prevent neuroinflammation and apoptosis. Furthermore, macadamia content of 
alpha-linolenic acid, a type of anti-inflammatory omega-3 fatty acid, may prevent 
arthritis [103] and has been shown to improve cognitive functions [104]. Erucic 
acid, an omega-9 fatty acid, has been found to have memory-enhancing effects on 
cognitive impairment and decrease the risk of Alzheimer’s disease [105]. The avail-
ability of copper, vitamin B1, manganese, and magnesium aids the production of 
neurotransmitters to improve cognition. Oleic acid, another omega-9 fatty acid, 

Table 8 Macadamia 
nutrition facts of 100 g, from 
the United States Department 
of Agriculture (USDA 
SR-21)

Serving size of 100 g of raw macadamia nuts
Per serving % Daily valuea

Calories 718
Total fat 75.8 g 117
Saturated fat 12.1 g 60
Polyunsaturated fat 1.5 g
Monounsaturated fat 58.9 g
Total omega-3 fatty acids 206 mg
Total omega-6 fatty acids 1296 mg
Cholesterol 0.0 mg 0
Phytosterols 116.0 mg
Carbohydrates 14.2 g 5
Dietary fiber 8.6 g 34
Starch 1.1 g
Sugars 4.6 g
Protein 7.9 g 16
Vitamins

Vitamin A 0
Vitamin E 3
Vitamin K
Vitamin C 2
Vitamin B-6 14
Folic acid 3
Minerals

Sodium 0
Calcium 9
Magnesium 33
Copper 38
Potassium 11
Iron 20
Manganese 207
Zinc 9

National Nutrient Database
aBased on a 2000-calorie diet
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demonstrates widespread modulatory effects from reducing blood pressure and pre-
venting stroke to enhancing skin repair [106]. Palmitoleic acid, an omega-7 fatty 
acid, is an important component of myelin which is a fatty layer that protects nerve 
cells in the brain. It has been suggested that palmitoleic acid has hormonelike prop-
erties and improves some metabolic parameters that are impaired in obesity and 
type 2 diabetes by lowering insulin resistance and inducing glucose homeostasis 
[107]. Palmitoleic acid supposedly has other benefits such as delaying the onset of 
skin aging and strengthening the hair. In addition, vitamin K and its derivatives can 
significantly reduce the risk of certain cancers including breast [108], cervical 
[109], stomach [110], and prostate cancers [111] and play a role in wound healing 
[112]. Vitamin E enables the production of new skin cells that replace the older lay-
ers of the skin. As a result of the nut’s low carbohydrate yet high fiber content, it is 
able to regulate bowel movement, eliminate toxins, keep the person feeling “full” 
for a longer time, and reduce dietary intake, thus controlling body weight. The high 
amount of iron in macadamia nuts can help boost the iron level and form hemoglo-
bin. Macadamia is high in B vitamins and minerals like zinc, calcium, and magne-
sium which regulate calcium release in the blood and its distribution in the bones, 
all contributing collectively to preserving bone health [113].

In general, there are no negative side effects observed when eating macadamia 
nuts. If the nuts purchased are salted, they may elevate blood pressure. Macadamia 
nuts contain allergens. Hence, excessive intake may cause allergic reactions like 
skin rash and coughing. The high fiber content of the nut can cause gastrointestinal 
issues like gas, diarrhea, bloating, and even constipation. When the nuts are dried in 
order to make them suitable for consumption, the water content is lowered. So, it is 
advisable to drink plenty of water before munching on macadamia nuts.
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Abstract A wide variety of plant species provide edible seeds. Seeds are the 
 dominant source of human calories and protein. The most important and popular 
seed food sources are cereals, followed by legumes and nuts. Their nutritional con-
tent of fiber, protein, and monounsaturated/polyunsaturated fats make them 
extremely nutritious. They are important additions to our daily food consumption. 
When consumed as part of a healthy diet, seeds can help reduce blood sugar, cho-
lesterol, and blood pressure.
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1  Anise

 

Family: Apiaceae
Genus: Pimpinella
Common name: Anise, aniseed, or sweet cumin

Anise is a widely planted flowering spice plant with a sweet and aromatic flavor, 
native to the Eastern Mediterranean and Southwest Asia regions (not to be confused 
with the star anise). Special anise fragrant essential oil can be acquired from its 
liquorice-like flavored fruit (aniseed). The active ingredient in the oil is the aromatic 
compound anethole. The fresh leaves of anise are occasionally used for cooking. It 
is utilized in mouthwashes, mouth freshening materials, and soaps. Anise has been 
used to flavor cakes, candies, and pastries, in herbal teas and other drinks. It is 
widely utilized in herbal medicine. Anise seeds contain antioxidants, many 
B-vitamins, and minerals including iron, calcium, copper, potassium, manganese, 
magnesium, and zinc (Table 1).

Anise seeds and their oil have widely recognized health benefits. The chemical 
composition of anise seeds has been described [1–5] and its valuable pharmacologi-
cal ingredients and traits have been reviewed as well [6, 7]. Its hallmark active 
component is anethole (aka anise camphor), which is responsible for its unique and 
distinct aroma and flavor. Additionally, its next of kin are fennel seeds as they belong 
to the same family and hence have similar health benefits and properties [8, 9].

Anise is widely reputed for its digestive properties and is acknowledged for its 
antimicrobial properties. Chewing raw seeds or drinking anise tea provides immedi-
ate relief from mild indigestion, flatulence, and bloating [6, 10, 11]. It was also 
discovered to have anti-ulcer effects [12–14] and manage abdominal pain, nausea, 
and diarrhea. Intervention clinical studies have proven its usefulness in patients with 
dyspepsia and in circumstances of chronic constipation for safe and effective 
improvement in the quality of life [15–17].

Anise seed oil extract has shown powerful anti-inflammatory activities [18, 19]. 
They provide pain relief in cases like joint pain and arthritis [20, 21]. Preparations 
from aniseed have showed to be an excellent treatment for asthma and cough [22]. 
Essential oils are used in aromatherapy for mild depressive symptom treatment 
[23]. Aniseed extracts [24] and essential oil have proven to be effective in treatment 
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of mood disorders [25] including the postpartum depression [15]. It has also been 
determined to possess anti-seizure and neuroprotective effects in laboratory animals 
[26]. It is well documented that aniseed is a phytoestrogen [27, 28] along with its 
major compound, anethole, exhibiting estrogenic-like activity [29]. Aniseeds are 
often used to comfort and ease menopausal symptoms like recurrent hot flashes [30] 
and promote breast-milk production in nursing mothers due to its structural sem-
blance to catecholamines as a result of the ability to stimulate prolactin secretion 
[31, 32].

Serving size of 100 g of anise seed
Per serving % Daily valuea

Calories 337
Total fat 16 g 24
  Saturated fat 0.6 g 3
  Polyunsaturated fat 3.2 g
  Monounsaturated fat 10 g
  Total omega-3 fatty acids mg
  Total omega-6 fatty acids 3150 mg
Cholesterol 0.0 mg
Phytosterols

Carbohydrates 50 g 17
  Dietary fiber 14.6 g 58
  Starch
  Sugars
Protein 17.6 g 35
Vitamins

  Vitamin A 6
  Vitamin E
  Vitamin K
  Vitamin C 35
  Vitamin B-6 33
  Folic acid 2
Minerals

  Sodium 1
  Calcium 65
  Magnesium 43
  Copper 46
  Potassium 41
  Iron 205
  Manganese 115
  Zinc 35

National Nutrient Database
aBased on a 2000 calorie diet

Table 1 Anise seeds 
nutrition facts of 100 g, from 
the United States Department 
of Agriculture (USDA 
SR-21)
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Aniseed extracts or anethole have been established to affect the activity of a 
number of essential enzymes involved in carbohydrates metabolism and therefore 
reduced blood glucose levels [33, 34]. It had also been used in recipes of traditional 
medicine as an anti-obesity mixture [35, 36].

Spices and essential oils are well-known for their antimicrobial properties [37–
39]. Anise seeds’ essential oil, its fluid extracts, and its chief component anethole 
are responsible for its unique antimicrobial property. They have been validated to be 
potent antifungals [40, 41] that also aid in the treatment of some fungal infections 
including athlete’s foot or ringworm [42]. Its essential oil also showed strong anti-
bacterial and antiviral properties [43–47] including bacterial pathogens or multi-
drug resistant strains [48, 49].

Aniseed is likely safe. However, anise might cause allergic reactions—involving 
the skin, respiratory and gastrointestinal tracts in people allergic to other plants 
similar to anise. As anise has estrogenic properties and so might worsen hormone 
sensitive conditions including endometriosis, uterine fibroids, and some cancers 
like breast, uterine, and ovarian cancers [50]. It might also interfere with hormone- 
based medications like oral contraceptives as well as anti-cancer medication like 
tamoxifen. Anise oil consumption has been associated with nausea, vomiting, sei-
zures, pulmonary edema [51], and CNS drugs interaction [52].

2  Flax

 

Family: Linaceae
Genus: Linum
Common names: Flax, common flax, or linseed

Flax is a food and a fiber crop. It is commonly grown for its seeds. Flaxseeds are 
traditionally roasted, powdered, and then mainly made into breads or the seeds can 
be pressed to produce vegetable oil. Whole flaxseeds are usually stable to store. 
However, ground seeds may be oxidized if left at room temperature, exposed to air, 
and light and become rancid. Flaxseeds come in two main colors: brown, and yel-
low or golden. Both are edible and generally have similar nutritional value. Flaxseeds 
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are also grown for their plant fiber. Flax textiles (aka linen) are commonly used as 
sheets and garments. Flax oil or linseed oil is a comestible oil and is also used as a 
component in several wood-finishing products like paints and varnishes. A linseed 
meal is a protein-rich flaxseed by-product typically used as a livestock feed. 
Flaxseeds are a natural source of phenolic acids, plant phytoestrogens, lignans, and 
fatty acids. Flaxseeds are rich in dietary fiber, protein, B-vitamins, and several min-
erals (Table 2).

Serving size of 100 g of flaxseeds
Per serving % Daily valuea

Calories 534
Total fat 42.2 g 65
  Saturated fat 3.7 g 18
  Polyunsaturated fat 28.7 g
  Monounsaturated fat 7.5 g
  Total omega-3 fatty acids 22,813 mg
  Total omega-6 fatty acids 5911 mg
Cholesterol 0.0 mg
Phytosterols

Carbohydrates 28.9 g 10
  Dietary fiber 27.3 g 109
  Starch 0.0 g
  Sugars 1.5 g
Protein 18.3 g 37
Vitamins

  Vitamin A 0
  Vitamin E 2
  Vitamin K 5
  Vitamin C 1
  Vitamin B-6 24
  Folic acid 22
Minerals

  Sodium 1
  Calcium 26
  Magnesium 98
  Copper 61
  Potassium 23
  Iron 32
  Manganese 124
  Zinc 29

National Nutrient Database
aBased on a 2000 calorie diet

Table 2 Flaxseeds nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)
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Flaxseeds are highly nutritious and potentially help in fighting off a number of 
health problems. This extraordinary advantage is primarily attributed to their excep-
tional composition of fiber, lignans, and omega-3 fatty acids [53–55]. Additionally, 
their protein is rich in the amino acids arginine, aspartate, and glutamate [56, 57]. 
Essentially, investigations on both lignans [58–63] and omega-3 fatty acids [64–74] 
have focused on benefits to patients with cardiovascular disease. Besides this value, 
we will discuss research in the areas of cancer and inflammation [75].

Plant phenolics (simple or polyphenols) possess both antioxidant and anti- 
inflammatory properties. Flaxseeds as a source enriched in the polyphenol lignans 
have several general health benefits [76] including modulating gut microbiota [77]. 
A recent systematic review and several other specific studies concluded that lignans 
lower the risk of breast cancer development, suppress metastasis [78–85], and 
enhance cytotoxicity of therapeutic agents [86]. Others have shown capability to 
suppress the proliferation of prostate cancer cells [87, 88] and colorectal cancers 
[89, 90]. Lignans have been also reported to have radio-protective capability against 
radiation exposure. They prevent DNA damage and enhance antioxidant capacity to 
protect normal cells from being damaged due to cancer radiotherapy [91].

Omega-3 in flaxseeds and its oil have equally lowered cancer incidence and anti- 
tumor activities [92–96] against several of its types such as breast [97], prostate 
[98], colorectal [99], and gastrointestinal cancer [100]. They have also been effec-
tive in combination therapy [101]. For instance, they were observed to induce apop-
tosis in cancerous cells and improve the efficacy of some anti-cancer therapies 
[101]. Evidence suggests that the flaxseeds’ powerful composition of lignans, 
omega-3 fatty acids, and dietary fiber is connected to lower risk of colorectal cancer 
[89]. Omega-3 fatty acids in flax oil also exhibit anti-inflammatory activities and 
help prevent and manage chronic inflammatory disorders [102–107] including rheu-
matoid arthritis [104, 108, 109] and osteoarthritis [110–112].

The dietary fiber, lignans, and omega-3 fatty acids, individually or as a mixture, 
are proven potent anti-hypertensive and delipidemic supplements. Numerous stud-
ies have established that these lower the blood pressure effectively [113–115] and 
reduce the level of total and unhealthy LDL cholesterol in the blood [116–120] 
across ethnicity, gender, and age, thereby furthering heart health and reducing the 
risk of cardiovascular diseases and stroke as stated above.

Research data suggests that flaxseeds either reduce the incidence or delay the 
onset of diabetes [121–124]. Several lines of evidence strongly propose that they 
regulate sugar level [125–129], improve insulin resistance [130–133], and manage 
weight [134, 135]. Flax’s dietary fiber, both soluble and insoluble, was affirmed to 
regulate blood glucose, lipid profile, and constipation [136] even among diabetes 
type 2 patients. It also aids in governing their weight [137]. Flaxseeds used as a 
substitute snack enable appetite and weight control [138–141]. Flaxseeds are gluten 
free and as such are good replacement for grains for people suffering from celiac 
disease or gluten sensitivity [142].

Flaxseed ingestion may lower the blood sugar and blood pressure and so, people 
on anti-hypertensive and sugar lowering medication must be cautious. Flax may 
slow blood clot formation and increase tendency of bleeding. It is recommended to 
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stop eating flaxseeds before surgery. It is also recommended that they be avoided by 
people suffering from bleeding disorders or taking anti-coagulants. It has an estro-
genic effect and might aggravate hormone-related conditions. Ground flaxseeds are 
easier to digest but excessive consumption of flaxseeds with inadequate amounts of 
water may cause bowel obstruction.

3  Legumes

 

Family: Fabaceae or Leguminosae
Genus: Medicago (Alfalfa)
Genus: Pisum (Pea)
Genus: Cicer (Chickpea)
Genus: Lens (Lentil)
Genus: Glycine (Soybean)
Genus: Tamarindus (Tamarind)
Common bean family:
Genus: Phaseolus (Lima bean, Pinto bean, Kidney bean, and Black bean)
Genus: Vicia (Fava bean)
Genus: Vigna (Cowpea, Ricebean, and Black-eyed pea)

The Fabaceae family (aka Leguminosae) is a huge, diverse, widely distributed, eco-
nomically important group of crops and a staple human food. From a taxonomic, 
botanical standpoint, they constitute over 750 genera and about 19,000 known spe-
cies with some that are designated weedy pests and/or as non-edible items due to 
high amounts of alkaloids. The palatable grain legumes are exceedingly nutritious 
and nourishing as they are a substantial source of dietary fiber, proteins, carbohy-
drates, macronutrients, and micronutrients [143–145]. They are also a major source 
of medicinal herbs as they have evolved with unique chemistries and have been 
exploited as part of traditional medicine since ancient times [146]. Nowadays, they 
are an imperative component of a regime and are on a physician’s recommendation 
list for a plant-based diet [147, 148]. Aside from their standard health benefits, 
legumes, grain legumes in particular, are highly acclaimed for the prevention and 
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treatment of chronic disease as they can be consumed in infinite combinations [149, 
150]. Most intervention studies carried out are in the areas of cardiovascular dis-
eases [151–153], cancer [154–159] metabolic syndromes [160–164], and weight 
management [165, 166]. Undoubtedly, more in-depth research needs to be per-
formed on legume species that are highly consumed as part of a healthy dietary 
pattern.

To cover the entire common legumes collection is daunting and so, for this sec-
tion, we will focus on commonly consumed legumes. Even within this we will stick 
only to very few that are relevant to people’s conventional daily lives. We will mean-
ingfully underscore only a minority of phytochemicals that are deemed extra 
 important to health and have not been discussed in the Vegetables, Fruits, and Grains 
chapters.

3.1  Lentils

The lentil is an eatable legume with a lens-shaped seed. It mostly consists of two 
halves covered in a husk that contains most of its dietary fiber. Lentils can be eaten 
with or without the husk. There are multiple varieties including black, red, brown, 
yellow, macachiados, and French green lentils. Lentils are low caloric, low fat food, 
and contain a high protein content which make them a good choice for vegetarians. 
Lentils are included in many dishes all over the world and are also added to salads. 
They are a rich source of amino acids such as methionine, isoleucine, lysine, and 
cysteine as well as phytochemicals and phenols. They are also a good source of 
vitamins like folic acid and vitamin B-6 and minerals such as iron and copper 
(Table 3).

Lentil is one of the highly admired functional foods. A couple of reviews are able 
to truly capture the overall nutrition and health values of lentils based on in vitro, 
in vivo, and clinical studies with a particular emphasis on its bioactives including its 
polyphenols-rich content [167, 168]. Lentil consumption is associated with a lower 
risk of multiple lifestyle and health related conditions such as heart diseases, cancer, 
and type-2 diabetes. Of particular interest as well are lentil’s content of the biomol-
ecules lectins and defensins which partake in the development of innate immunity 
[169] and their potential theranostics application [170].

Lentils are considered a valuable source for dietary fiber including resistant 
starches. Besides fiber that ensures a healthy digestive system avoiding constipation 
[171], studies have established its positive effects on appetite control [172] and 
body weight management [165, 166]. Lentils have been shown to cause a favorable 
lipid profile lowering unhealthy LDL cholesterol and triglyceride levels and increas-
ing the level of healthy HDL cholesterol in obese patients with type-2 diabetes 
[173]. Other investigations have demonstrated equally favorable metabolic features 
[162]. It also helps control the blood glucose level and prevent its complications 
in rats [174]. This glycemic response regulation was demonstrated in few small 
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intervention studies [172, 175, 176] while a large prospective intervention study 
revealed that eating lentil in the context of Mediterranean diet is inversely associ-
ated with diabetes type 2 incidence in adults [160].

Systematic reviews of clinical trials have shown that lentils reduce cardiovascu-
lar risk vis-à-vis lipid measurements [177] and lower blood pressure per  animal 
studies [178], and per controlled feeding clinical trials [179]. One possible explana-
tion for this hypotensive effect is that they escalate the level of arginine amino acid 
and several arginine-related compounds that have the potential to increase the 

Serving size of 100 g of boiled, unsalted lentil
Per serving % Daily valuea

Calories 116
Total fat 0.4 g 1
  Saturated fat 0.1 g 0
  Polyunsaturated fat 0.2 g
  Monounsaturated fat 0.1 g
  Total omega-3 fatty acids 37.0 mg
  Total omega-6 fatty acids 137.0 mg
Cholesterol 0.0 mg
Phytosterols

Carbohydrates 20.1 g 7
  Dietary fiber 7.9 g 32
  Starch
  Sugars 1.8 g
Protein 9 g 18
Vitamins

  Vitamin A 0
  Vitamin E 1
  Vitamin K 2
  Vitamin C 2
  Vitamin B-6 9
  Folic acid 45
Minerals

  Sodium 0
  Calcium 2
  Magnesium 9
  Copper 13
  Potassium 11
  Iron 19
  Manganese 25
  Zinc 8

National Nutrient Database
aBased on a 2000 calorie diet

Table 3 Lentil nutrition 
facts of 100 g, from the 
United States Department 
of Agriculture (USDA 
SR-21)

Seeds
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 production of the vasodilator nitric oxide (NO) thus lowering blood pressure [180]. 
Lentils rich source of folate and magnesium further boost heart health. Folic acid is 
recognized to lower the level of the homocysteine amino acid, which is a major risk 
factor for several heart diseases [181]. Magnesium helps relax the cardiovascular 
muscles, increase blood flow and the oxygenation of the body tissues, and helps 
naturally reduce blood pressure [182].

Lectins, carbohydrate-binding proteins widely spread in lentils, were reviewed 
recently [183]. They were suggested to have great potential as anti-cancer agents 
[159, 184–186]. Lectins have great cytotoxic activities. They affect several signal-
ing pathways in cancer pathophysiology such as the caspase, P53, ERK, and Ras- 
Raf pathways leading to apoptosis which makes them a promising anti-cancer 
therapeutic biomolecule [185, 187]. Raw or cooked lentils have been shown to be 
chemopreventative (anti-carcinogenesis) particularly in the colon [188–190], pros-
tate [156], and breast cancer recurrence [191]. Selenium, a trace element especially 
found in lentils, is a known antioxidant that possesses anti-cancer properties. It has 
been shown that selenium interferes with multiple pathways vital in the initiation, 
promotion, and progression of some types of cancer. This includes its role in promo-
tion of apoptosis and prevention of angiogenesis [192]. The anti-cancer role of sele-
nium and its effect on the development and treatment of multiple cancers, including 
breast cancer [193], colorectal cancer [194], and oral squamous cell carcinoma 
[195] were studied. Selenium is also expected to affect the liver enzymes and help 
detoxify the body preventing hepatocellular carcinoma [196]. Generally, selenium 
has been found to decrease inflammatory reactions and improve immune system 
vigor [197]. Undeniably, lentils’ rich polyphenols content is another contributory 
factor as it reduces the incidence of various cancers.

The effect of nutrients on brain function has been reviewed [198]. In animal stud-
ies, red lentil extract was confirmed to be neuroprotective [199]. Lentils’ content of 
vitamins and minerals like folic acid and potassium were shown to be equally help-
ful for ideal brain functioning [200]. Lectins, mainly microglial lectins family, func-
tion on central nervous system and have been suggested as effective targets to treat 
some neurological disorders [201].

Although lentils are the best alternative for animal protein and provide many 
health benefits, they also have some undesirable health effects when consumed 
excessively. Consuming a lot of lentils may lead to digestive complications includ-
ing upset stomach, flatulence, and constipation. Lysine, an amino acid found in 
lentils, may lead to gallbladder stones, increase cholesterol levels, and kidney com-
plications. High oxalate content in lentils may also result in kidney stone formation 
[202]. The high protein and potassium content in lentils may cause a load on the 
kidneys and overtime leads to renal impairment and hyperkalemia. Some people 
may develop an allergic reaction when eating lentils. Selenium in lentils contribute 
to number a of health benefits. However, consumption in large quantities could 
cause selenium toxicity and lead to nausea, vomiting, irritability, fatigue, discolor-
ation and brittleness of the nails, and loss of hair [203].
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3.2  Fava Beans

Fava bean, also known as the broad bean or fava bean, is a type of bean propagated 
for human consumption or “phytoremediation” as a cover crop to prevent soil ero-
sion. They are widely popular in the Mediterranean region. The seed, after remov-
ing its outer cover, can be eaten raw or cooked. The young pod is green in color and 
blackish brown once matured. In younger plants, the young green pod is appetizing. 
Fava beans are of low fat, a rich source of dietary fiber, carbohydrate, protein, gener-
ally moderate levels of B-vitamins but a good source of vitamins like folic acid 
(B-9), vitamin K, and minerals such as iron, potassium, magnesium, and manganese 
(Table 4).

Fava bean, as a functional food, has been ascribed several health benefits with 
various in vivo biological activities [204, 205]. The methanolic and phenolic com-
pound content of the fava bean pod are potent antioxidants [206] that help fight free 
radicles and prevent chronic diseases caused by free radicle damage [207]. They 
possess strong anti-inflammatory activity and work by down regulating pro- 
inflammatory gene expression or inhibiting inflammation related parameters [208] 
and even by improving arthritic condition in adults [209]. Fava beans consumption 
helps boost heart health. A couple of reviews have summarized the state of the epi-
demiological and clinical evidence for plant seeds influence on coronary heart dis-
ease including fava beans [210, 211] and their rich polyphenol content in 
cardioprotection along with highlighting their role in other important inflammatory 
diseases [212]. The complementary effect of fava beans’ high dietary fiber reduces 
total cholesterol, the unhealthy LDL cholesterol, and triglycerides levels, helps 
increase the level of healthy HDL, and promotes better blood sugar regulation even 
in adults with type 2 diabetes [213–217]. The high fiber and protein content of fava 
beans allow control of body weight by suppressing appetite and increasing satiety, 
and tested subjects experienced improved BMI [166, 218, 219]. Fibers also promote 
digestive system function, e.g., preventing constipation and, along with other com-
ponents, reducing the risk of colorectal cancer [220, 221]. Positive effects on pros-
tate and breast cancers have been suggested as well by some articles [191, 222].

Fava bean is a great source of manganese, an antioxidant. It supports the immune 
[223], nervous [224], and endocrine systems’ functions and may assist in reducing 
the risk of arthritis [225], osteoporosis [226], and diabetes mellitus type 2 [227]. 
Magnesium, potassium, and phosphorus content of fava beans are essential for con-
trolling blood pressure levels as well.

Natural dopamine compound, L-dopa is an aromatic amino acid isolated from 
fava beans seedlings and is a precursor for catecholamines type neurotransmitters. 
It is present in high concentrations in fava beans and it was discovered to improve 
mood and reduce the risk of depression [228, 229]. L-dopa (aka levodopa) has been 
used therapeutically to help reduce the symptoms associated with Parkinson’s dis-
ease [230–232]. It remains the gold standard for treatment. Fava beans have been 
employed as a natural product supplement to combat Parkinson’s disease [233–
235]. Fava bean has a rich reserve of iron which ameliorates iron deficiency anemia 
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and folic acid and calcium that ensure healthy pregnancy. These benefits have been 
discussed previously.

Eating fava beans is associated with some negative health effects. People with 
hereditary condition of glucose-6-phosphate dehydrogenase deficiency (G6PDD), 
known as favism, develop hemolytic anemia when eating fava beans due to its con-
tent of glycosides such as vicine and convicine that break the membrane of red 
blood cells [236, 237]. Tyramine (discussed in the fruit-banana section) is an amino 
acid present in high concentrations in fava beans. It may trigger migraine headaches 
in some people and may also interact with the antidepressant monoamine oxidase 

Serving size of 100 g of boiled, unsalted fava beans
Per serving % Daily valuea

Calories 110
Total fat 0.4 g 1
  Saturated fat 0.1 g 0
  Polyunsaturated fat 0.2 g
  Monounsaturated fat 0.1 g
  Total omega-3 fatty acids 12.0 mg
  Total omega-6 fatty acids 152.0 mg
Cholesterol 0.0 mg
Phytosterols

Carbohydrates 19.7 g 7
  Dietary fiber 5.4 g 22
  Starch
  Sugars 1.8 g
Protein 7.6 g 15
Vitamins

  Vitamin A 0
  Vitamin E 0
  Vitamin K 4
  Vitamin C 0
  Vitamin B-6 4
  Folic acid 26
Minerals

  Sodium 0
  Calcium 4
  Magnesium 11
  Copper 13
  Potassium 8
  Ion 8
  Manganese 21
  Zinc 7

National Nutrient Database
aBased on a 2000 calorie diet

Table 4 Fava beans nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)
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inhibitors (MAOI). MAO is an enzyme that breaks down excess tyramine in the 
body, dysregulating blood pressure and causing a dangerous increase [238]. Fava 
beans also contain levodopa (L-dopa), a prescribed treatment for Parkinson’s dis-
ease patients, which interferes with the metabolism of vitamin B-6 and might result 
in vitamin B-6 deficiency [239, 240].

3.3  Soybean

Soybean or soya bean is a type of legume plant grown for its edible bean which, like 
other beans, are enclosed in pods. They are commonly green but can also be yellow, 
brown, or even black. Soybean is considered a meat and dairy substitute. Soya beans 
can be processed into a variety of food products like soymeal feed for livestock, 
while for humans as soya burgers, tempeh (soy cake), soya milk/cheese/yogurt, tofu 
(bean curd), soy-based infant formula, and soya protein (meat replacement). Soy 
flour, soy sauce, miso soup, and soybean oil have become one of the main ingredi-
ents of many Asian dishes. Soya beans also called edamame when fresh from the 
pod are a very rich source of protein and can be chosen as a meat alternative for 
vegetarians and vegans. Soya beans are a rich source of dietary fiber, fatty acids, 
B-vitamins (like vitamin B-9) and K, and minerals such as manganese, iron, copper, 
magnesium, potassium, calcium, and zinc. They are low in cholesterol and contain 
the flavonoid antioxidants, isoflavones. They contain a significant amount of phytic 
acid and other important phytochemicals. Soybean oil is the primary source of bio-
diesel fuel (Table 5).

Soybeans are exceptionally nutritious food and help maintain good health. 
Several articles in existing literature have tackled the soya bean health issue from 
different angles. For example, primary evaluation of the clinical and epidemiologic 
evidence of health benefits [241–243], soybean nutritional role and diet [244, 245], 
their topmost phytochemical isoflavones [246], or their anti-nutrient phytoestro-
genic health risk feature [247, 248], to name a few. Yet a few others implicated their 
intake as potential factors in cardiovascular disease and cancer prevention [241, 
249]. Needless to say, some research findings seem controversial or cast doubt on 
their efficacy. However, in the basic sense, their nutritional value is undeniable, and 
recent research and meta-analyses suggest that soybeans have helped reduce risk of 
coronary heart disease.

The role of fiber in cardiovascular health is well established [210, 211]. A review 
article summarized soy foods cardiovascular data [241] and a recent meta-analysis 
provided evidence that consumption of soya beans was inversely associated with the 
risk of cardiovascular disease, stroke, and coronary heart disease risk [250]. Human 
intervention studies have demonstrated that soya beans fiber and soya proteins have 
been found to reduce the levels of total cholesterol, unhealthy LDL cholesterol, 
and triglycerides and raise HDL levels which prevent atherosclerosis, stroke, and 
heart attacks [145, 251]. As a matter of fact they are on the nutritional list of 
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recommended foods [252]. A continuous stream of information, even large cohort 
studies support claims of soybeans’ impact on lipid profile [213, 253–255] and blood 
pressure [256–258] including isoflavones [259–261]. Significant amounts of linoleic 
and linolenic essential fatty acids in soya beans are presumed to control the function 
of the aortic smooth muscles [262] and help regulate blood pressure levels [263]. 
Other non-protein soy constituents influence cardiovascular risk factors reduction 
such as isoflavones, lecithins, and saponins [264, 265]. Phytosterols compounds 
from soya beans have been shown to reduce cholesterol absorption from the gut 
which further helps to lower the level of total cholesterol and augment heart health 

Serving size of 100 g of boiled unsalted soybeans
Per serving % Daily valuea

Calories 173
Total fat 9.0 g 14
  Saturated fat 1.3 g 6
  Polyunsaturated fat 5.1 g
  Monounsaturated fat 2.0 g
  Total omega-3 fatty acids 598 mg
  Total omega-6 fatty acids 4466 mg
Cholesterol 0.0 mg
Phytosterols 161 mg
Carbohydrates 9.9 g 3
  Dietary fiber 6.0 g 24
  Starch
  Sugars 3.0 g
Protein 16.6 g 33
Vitamins

  Vitamin A 0
  Vitamin E 2
  Vitamin K 24
  Vitamin C 3
  Vitamin B-6 12
  Folic acid 14
Minerals

  Sodium 0
  Calcium 10
  Magnesium 21
  Copper 20
  Potassium 15
  Iron 29
  Manganese 41
  Zinc 8

National Nutrient Database
aBased on a 2000 calorie diet

Table 5 Soybean nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)
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[266–268]. Soy phytoestrogen supplementation also significantly reduced insulin 
resistance, hsCRP, and blood pressure in patients [269, 270].

Dietary phytoestrogens revealed a number of potential health benefits [246, 270] 
with the archetypal isoflavones as a potential therapeutic agent [271]. Soya bean 
consumption is thought to preclude a number of cancer types. Its rich antioxidant 
isoflavones content induces apoptosis and inhibits proteins involved in certain cell 
survival pathways in breast cancer [272]. In general, soybean intake is associated 
with lower risk of breast cancer [273–275], specifically, the isoflavones’ anti- 
estrogenic effects are believed to reduce the risk of estrogen-dependent breast can-
cer [274, 276–278] and endometriosis [279]. A large cohort study showed that 
post-diagnosis soy intake statistically significantly reduces breast cancer relapse 
and improves survival [277]. Soya beans were also shown to be involved in the 
prevention and treatment of lung cancer [280], gastrointestinal cancer [281, 282], 
bladder cancer [283], prostate cancer [284, 285], and ovarian cancer [286] through 
multiple mechanisms including isoflavones role in DNA repair, cell cycle arrest, 
induction of apoptosis, and preventing angiogenesis and metastasis of cancer cells. 
As discussed above, legumes’ dietary fiber including soybeans have been confirmed 
to improve the overall functions of the digestive system. Regular dietary soya bean 
intake that is, in essence, high content fiber and isoflavones, has been accepted to 
lower the risk of colorectal cancer [287–289]. Soybean contains the polypeptides 
lunasins and lectins glycoproteins that display anti-carcinogenic potentials [185, 
290–293]. The isoflavones in soybeans are anti-inflammatory by nature though the 
underlying mechanisms remain vague [294]. Anti-inflammatory activities of luna-
sin has allegedly prevented and treated cardiovascular disorders including athero-
sclerosis [295]. Isoflavones in soya bean products have been linked to lowered risk 
of diabetes type 2 [296, 297] with a clear potential to manage the disease after diet 
supplementation due to blood glucose, plasma lipids, and antioxidant enzyme activ-
ity in patients [298–300]. Like other legume fibers discussed earlier, soy proteins 
and fiber help in weight control [166, 301–304]. In a randomized controlled trial 
soybean protein supplementation reduced leptin hormone levels [254]. Circulating 
leptin reduces appetite and obese people show resistance to the hormone (high cir-
culating concentration) thus failing to modulate weight. By decreasing leptin levels, 
one improves metabolic function.

Isoflavones were also found to improve menopausal symptoms including hot 
flashes and excessive sweating [305–307]. They also improve bone density and are 
believed to lower the risk of osteoporosis [308], especially in post-menopausal 
women [309–313]. Phylloquinone, the vitamin K form in soya bean, is thought to 
control blood coagulation and boost bone health [314]. Rich soya bean content of 
minerals like magnesium, copper, selenium, and zinc are essential for bone health 
and act as a preventive and treatment measure for osteoporosis in the long term 
[315, 316].

Despite the fact that soybeans are highly nutritious and provide a number of 
health benefits, concerns about their side effects are on the rise. Soybeans’ insoluble 
α-galactoside fibers (oligosaccharides) such as stachyose and raffinose may cause 
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flatulence, abdominal discomfort, and diarrhea in sensitive people [317], and possibly 
aggravate the systemic and gastrointestinal symptoms of irritable bowel syndrome 
[318]. The high content of proteins, mainly glycinin and conglycinin, may cause 
allergic reactions in sensitive people [319–321]. In animal models, intestinal dam-
age was observed through the expression of p38/JNK/NF-κB signaling pathway 
[322]. Hypothetically, phytoestrogens, in the form of isoflavones daidzein and 
genistein, impose some level of risk. However, the concentration is not sufficient 
enough to elicit a physiological response in humans. Due to their potential  estrogenic 
effect, it is advisable to limit soya bean consumption in the cases of women who 
have or have had estrogen receptor positive breast cancers. These substances act as 
goitrogens and have been hypothesized to disturb thyroid hormones production by 
interfering with the iodine uptake by the thyroid gland and its activity [323, 324]. 
Long-term consumption of soybean products containing isoflavones was highly 
suspected in a hypothyroidism case with a susceptible individual [325]. Soya seeds 
contain oxalate, which when excessively consumed might lead to kidney stone for-
mation [202]. Like other beans and seeds, soybeans contain phytic acid which 
impairs the absorption of minerals like manganese, zinc, and iron. This can proba-
bly be reduced by physicochemical processing of soya beans to produce low phytic 
acid protein isolate [326]. Overall moderate consumption of soy products does not 
appear to present any serious health risks.

3.4  Chickpea

Chickpea, also known by other names like chick pea, gram, Bengal gram, garbanzo, 
or garbanzo bean, is a small round seed with a nutty taste and buttery texture. There 
are two main varieties that come in different colors. The most common ones are 
cream or pale-brown, black, green, and red beans. It is an everyday meal in many 
Middle Eastern and Mediterranean countries and a key ingredient in many tradi-
tional dishes. It can be used whole during cooking, in salads, ground into in several 
meals, or roasted as a snack. Chickpeas and chickpea flour are moderate caloric. 
However, they are a very rich source of proteins, dietary fiber, several vitamins and 
minerals, and antioxidants (Table 6).

Chickpeas are packed with nutrients. Their nutritional profile and many health 
associated outcomes have been reviewed recently [327–329]. Several of the cited 
studies support claims of their consumption ameliorating chronic diseases and 
maintaining gastrointestinal health in addition to weight control. In chickpeas, the 
chief bioactive phytochemicals are antioxidants (isoflavones) [330, 331], phytoster-
ols [332], oligosaccharides [333], and unsaturated fatty acids [329].

Chickpeas, as a legume in the category of pulse food (dried seeds like beans, 
peas, and lentil), are high-protein, high-fiber foods which impart tremendous health 
benefits [334–337]. Synergistic action provokes strongest reduction in hunger via 
hormone modulation [338, 339], helps keep appetite under control [340, 341], and 
permits weight management [165, 166, 342, 343]. For instance, intervention studies 
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have revealed that chickpeas proteins and fiber combination affect body mass index 
[344], food choices afterwards [345] as well as calorie intake [346].

The health outcome value of chickpeas and its broad phytonutrients extends to 
chronic diseases as they reduce oxidative stress, counteract the effect of free radicles, 
and prevent a few chronic diseases including diabetes, heart diseases, and cancer 
[347]. Chickpeas were found to control blood glucose levels [215, 346, 348–351] and 
protect individuals against type-2 diabetes and its risk factors [329, 352–355] through 
many of its constituents: fibers, vitamins, magnesium, and zinc [338, 356, 357]. 

Serving size of 100 g of boiled unsalted chickpeas
Per serving % Daily valuea

Calories 164
Total fat 2.6 g 4
  Saturated fat 0.3 g 1
  Polyunsaturated fat 1.2 g
  Monounsaturated fat 0.6 g
  Total omega-3 fatty acids 43.0 mg
  Total omega-6 fatty acids 1113 mg
Cholesterol 0.0 mg
Phytosterols 35.0 mg

0

Carbohydrates 27.4 g 9
  Dietary fiber 7.6 g 30
  Starch
  Sugars 4.8 g
Protein 8.9 g 18
Vitamins

  Vitamin A 1
  Vitamin E 2
  Vitamin K 5
  Vitamin C 2
  Vitamin B-6 7
  Folic acid 43
Minerals

  Sodium 0
  Calcium 5
  Magnesium 12
  Copper 18
  Potassium 8
  Iron 16
  Manganese 52
  Zinc 10

National Nutrient Database
aBased on a 2000 calorie diet

Table 6 Chickpea nutrition 
facts of 100 g, from the 
United States Department of 
Agriculture (USDA SR-21)
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Chickpeas also contribute to hypertension control with their potassium and magne-
sium content [351, 358, 359]. Furthermore, they help lower total cholesterol, 
unhealthy LDL cholesterol, and triglycerides and numerous studies have verified 
these findings [348, 349, 355, 360–362]. In a Mediterranean diet cohort, lifestyle 
food choice plays an important role in the control and management of hypertension, 
lipid profile, and metabolic syndromes [363]. Propionate, a short chain fatty acid 
produced by the gut bacteria secondary to fiber consumption [364], was found to 
inhibit cholesterol synthesis [338]. Alpha-linolenic acid (ALA), an essential fatty 
acid with antioxidant properties is also believed to lower the risk of coronary heart 
disease [365]. Folic acid is known to lower the level of homocysteine amino acid 
which is a major risk factor for atherosclerosis, stroke, and heart attacks [366].

Soluble chickpea fiber alleviates irritable bowel disease symptoms [367] and 
lowers the incidence of colorectal cancer [328, 338], while the insoluble fibers are 
proven to maintain digestive system health, promote bowel movement, and prevent 
constipation [328, 345, 361, 368]. Butyrate, a fatty acid produced when consuming 
chickpeas arising from bacterial fermentation of dietary fiber [364, 369], is reported 
to have anti-cancer and anti-inflammatory properties and has been shown to reduce 
cell proliferation, induce apoptosis [370], and lower the risk of colorectal cancer 
[371]. Furthermore, chickpeas contain saponins which are plant-based natural gly-
cosides. In chemical terms, saponins contain sugar moiety attached to a triterpenoid 
or steroids. They are supposed to be protective and help prevent the development of 
certain types of cancer [372]. Saponins display cytotoxic properties. They inhibit 
tumor growth, impede cell proliferation, induce apoptosis, and decrease cellular 
invasiveness [373, 374]. Chickpeas’ vitamin content, i.e., B-vitamins and essential 
amino acids like methionine, is assumed to lower the risk of breast [375, 376] and 
lung [377] cancers. In short, regular consumption of chickpeas is associated with 
lesser prevalence of cancer development.

In addition to isoflavones, chickpeas contain essential amino acids like lysine, 
leucine, isoleucine, methionine (invariably low in sulfur amino acids), and aromatic 
amino acids and minerals including copper, zinc, and phosphorus that are essential 
for bone health and prevention of osteoporosis [310, 378]. Plant proteins are also 
known for their role in maintaining skeletal muscle strength [379]. Chickpeas are 
rich source of the chemical element molybdenum which helps with the metabolism 
of iron, improving its absorption, and averting anemia [380].

Although chickpeas are gluten free, contamination with other gluten sources is 
common during manufacturing and storage. Overeating chickpeas can lead to 
digestion problems like stomachache, flatulence, and diarrhea. Oligosaccharides, 
the type of sugar present in chickpeas, are not easy for humans to digest and can 
supposedly cause and worsen the symptoms of some gastrointestinal diseases 
including irritable bowel syndrome (IBS), Crohn’s disease, and ulcerative colitis. 
Though uncommon, chickpeas proteins may result in few sensitive people devel-
oping an allergic reaction upon eating. The signs range from a few digestive symp-
toms to skin reactions, eczema, and hives to severe and even life-threatening 
anaphylaxis symptoms.
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4  Pumpkin

 

Family: Cucurbitaceae
Genus: Cucurbita
Common name: Pumpkin seed or pepita.

A pumpkin seed (aka pepita) is the little edible seed of pumpkin or specific types of 
squash. A typical pumpkin seed is fairly flat and has an asymmetrical oval shape. 
The kernel is light green in color with a white outer covering shell. Seeds are com-
monly served roasted, salted, or spiced and even as an ingredient in different dishes 
in some cuisines. The oil of pumpkin seeds is rich in different fatty acids and is used 
as a cooking oil or in salads. The seeds are very nutritious, they have high content 
of protein, dietary fiber and numerous minerals including manganese, magnesium, 
iron, copper, zinc, and potassium, in addition to several vitamins like vitamin K and 
B-vitamins (Table 7). Pumpkin seeds have been used in folklore medicine to treat 
parasitic infections.

Pumpkin seeds are an emerging healthy nutraceutical snack option. Their nutri-
tional and biochemical composition have recently been characterized [381–384]. 
Their herbal medicine potential has been discussed as well [385–389]. They are a 
good source of phytosterols [390, 391], fatty acids (omega-3 and omega-6) [392–
397], and phenolic acid antioxidants such as hydroxybenzoic, caffeic, coumaric, 
ferulic, sinapic, protocatechuic, vanillic, and syringic acids [398–404] along with 
minerals and other micronutrients [382, 405, 406] that all are associated with mul-
tiple health benefits.

Pumpkin seeds/oil demonstrated antioxidant and anti-inflammatory properties in 
in vitro [407] and animal models [408, 409]. For example, they were shown to lower 
the risk of arthritis by diminishing inflammatory reactions [410]. Redox-regulation 
and inflammation control are critical factors to prevent and potentially treat some 
cardiovascular conditions [411] and other oxidative-stress related diseases [412]. 
For the heart, these advantages manifest themselves as being anti-hypertensive, 
reducing blood pressure [413, 414], and increasing HDL cholesterol [415–417]. 
Indeed, these animal model findings were extrapolated into human clinical trials 
[210, 418, 419]. The availability of fiber [420] and presence of phytosterols is 
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another reason for their proficiency to lowering lipid absorption and reduction in 
total cholesterol [408, 409] and LDL cholesterol levels [421]. Equally important is 
pumpkin seeds protein rich content of the semi-essential amino acid, arginine. 
Arginine serves as a precursor substrate for nitric oxide production by vascular 
endothelial and immune cells. The signaling molecule nitric oxide is essential for 
both blood pressure and immune regulation [422]. Further benefit is derived from 
magnesium where it directly lowers the blood pressure [423, 424] and reduces the 
risk of atherosclerosis [425].

Serving size of 100 g of roasted, unsalted, pumpkin seeds 
(pepitas)
Per serving % Daily valuea

Calories 522
Total fat 42.1 g 65
  Saturated fat 8.0 g 40
  Polyunsaturated fat 19.2 g
  Monounsaturated fat 13.1 g
  Total omega-3 fatty acids 166 mg
  Total omega-6 fatty acids 19,020 mg
Cholesterol 0.0 mg
Phytosterols

0

Carbohydrates 13.4 g 4
  Dietary fiber 3.9 g 16
  Starch
  Sugars 1.0 g
Protein 33.0 g 66
Vitamins

  Vitamin A 8
  Vitamin E 0
  Vitamin K 59
  Vitamin C 3
  Vitamin B-6 4
  Folic acid 14
Minerals

  Sodium 1
  Calcium 4
  Magnesium 134
  Copper 69
  Potassium 23
  Iron 83
  Manganese 151
  Zinc 50

National Nutrient Database
aBased on a 2000 calorie diet

Table 7 Pumpkin seeds 
nutrition facts of 100 g, from 
the United States Department 
of Agriculture (USDA 
SR-21)
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Pumpkin seed extract [426] and a diet fortified with pumpkin seeds have been 
shown to lower the risk of several cancers including stomach, lung, colon, and pros-
tate cancers [427]. Pumpkin seeds/oil also contain lignans, a phytoestrogen [270, 
428–430], which as an estrogen-like compound was found to play a major role in 
preventing and treating breast cancer [431–433]. In addition, in vivo and in vitro 
studies using pumpkin seeds phytosterols have supported the claims of promoting 
prostate gland health and reducing the symptoms associated with benign prostate 
hyperplasia (PBH) [426, 434–438]. Intervention studies in men confirmed that 
pumpkin seed oil is clinically safe and efficacious [439, 440]. Pumpkin seeds/oil 
content of zinc was found to maintain prostate function [441]. Pumpkin seed oil has 
also been found to be effective in treating and preventing urinary tract dysfunction 
including overactive bladder in both men and women [442, 443].

A significant body of literature exist on pumpkin seeds anti-diabetic and hypo-
glycemic effect. These studies were conducted in vivo [444–447] and interventional 
on humans [354, 448, 449]. Pumpkin seeds and juice contain high amount of mag-
nesium which inversely correlates with diabetes risk [450, 451]. Pumpkin seeds’ 
dietary fibers coupled with their high protein content stabilize blood sugar levels 
and allow proper management of body weight through a plant-based diet [149, 338, 
452, 453] proven by clinical trials [454]. It has been recommended to be built-in 
into athletes’ regimes as well [455].

Pumpkin seeds are on the list of recommended plant-based diet for its notable 
iron source [147]. Puzzlingly, high fortified dietary mineral intake with iron being 
one of them is associated with mild dementia risk and Alzheimer neuropathology 
[456]. Ironically, the rich content of zinc in pumpkin seeds is not only linked to 
improved immune system functions [457] but also to CNS functions [458–460]. It 
has been suggested that trace element homeostasis including zinc may possibly 
reduce the risk of Alzheimer’s disease [461–463]. Several plant seed extracts offer 
protection against amyloid β-induced neurotoxicity [464] and pumpkin seeds have 
been suggested as a complementary treatment of AD [465]. In addition, zinc sub- 
clinical deficiency, which can be avoided by keeping pumpkin seeds as part of a 
routine of daily administration, might lead to memory and reasoning impairment 
and learning difficulties especially in children [466]. L-tryptophan, an amino acid 
available in pumpkin seeds which is converted into serotonin, has been suggested to 
improve mood disorders, alleviate depression, and is mildly sedative [467, 468]. 
Therefore, eating pumpkin seeds before bedtime could improve the quality of sleep 
as well. The tryptophan will be converted to serotonin with the help of zinc and then 
convert it into melatonin, a hormone that regulates the sleep cycle and commences 
biological rhythms. Magnesium level is also linked to better sleep pattern and effi-
ciency [469, 470]. Magnesium supplementation intervention appears to resolve 
insomnia issues in the elderly [470–472] and elite athletic population [473]. 
Magnesium is also known to play prodigious role in keeping healthy bones, prevent-
ing fractures, and reducing the risk of osteoporosis [474].

In traditional medicine pumpkin seeds are supposed to arouse lactation in 
 mothers, stimulate healthy digestion, relieve stomach pain, and are natural diuretics 
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and anti-parasitics. Though pumpkin seeds are safe in moderate amounts, 
 overconsumption might have unwanted effects on health. As a natural diuretic, it 
may cause improper potassium/sodium levels, increased sugar levels, and headache 
or dizziness in some people. Overconsumption of pumpkin seeds can cause abdomi-
nal pain due to its rich fatty oil and fiber content. As with many other seeds and nuts, 
pumpkin seeds contain phytic acid which can interfere with the bioavailability of 
some nutrients leading to nutritional deficiency [475]. Overcooking or inadequate 
chewing can deprive the body of its benefits as well. It is not common to develop 
allergies, but some people might experience skin irritation and itching when eating 
pumpkin seeds. Others might exhibit worse anaphylactic reaction and develop 
swelling in mucus membrane of the mouth, throat irritation and cough, and diffi-
culty in breathing.

5  Others

Other seeds that are renowned for their impressive health benefits include the 
following:

Chia Seeds They are a rich source of protein as such a suitable substitute for vege-
tarians. They are high in iron and folate, as well as magnesium, omega-3 fatty acids, 
and soluble fiber. They also supply a good amount of manganese, phosphorus, and 
calcium. They are best for weight loss and keeps heart healthy.

Hemp Seeds They are loaded with protein and are a good source of polyunsatu-
rated fats (omega-3 and omega-6 fatty acids). The seeds are rich in vitamin E 
(antioxidant activity), magnesium, manganese, calcium, iron, sulfur, and zinc. 
They also contain phytosterols that help lower cholesterol levels. It offers incredi-
ble other health benefits like helps in weight loss and boosts immunity.

Poppy Seeds They are good source of fiber and protein, plus contain a robust dose 
of iron, manganese, and calcium. They support weight loss and aid in chronic 
diseases prevention.

Sesame Seeds They contain high protein amounts and lots of fiber. They are very 
nutritious as they contain essential minerals such as copper, manganese, and magne-
sium, along with calcium and vitamin B-1. The seeds promote blood cell formation 
and protect against anemia.

Sunflower Seeds They are incredibly nutrient dense food containing high amounts 
of B-vitamins, vitamin E, and antioxidants that combats free radicals and keeps 
inflammation at check. Also, they possess appreciable amounts of the vitamins 
thiamin (B-1) and pyridoxine (B-6), and the minerals manganese and phosphorus. 
They positively impact cholesterol and blood sugar levels.
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The Role of Gluten in Autism

T. Sumathi, T. Manivasagam, and A. Justin Thenmozhi

Abstract Autism spectrum disorder (ASD) is an inherited neurodevelopmental 
disorder of social communication and restricted, repetitive behaviors. Much remains 
unknown about their mechanisms of action and physiological effects. In recent 
years, there has been a growing interest in nutritional diets, which can be used as a 
form of therapeutic intervention for ASD with a recent increase in the research 
being carried out in this field. Selective nutrition therapy for ASD and brain function 
shows improvement in behavioral changes and reduction in malnutrition seemingly 
associated with the allergies or food intolerances to gluten. Therefore, a gluten-free 
diet has yielded positive outcomes giving hope in developing therapy for ASD.

Keywords Autism spectrum disorder · Models of ASD · Gluten-free diet · Diet 
intervention

1  Introduction

1.1  Autism

Autism spectrum disorder is a heterogeneous group of neurobehavioral and devel-
opmental disorders characterized by severe and sustained impairment in social 
interaction, deviance in communication, repetitive patterns of behavior, and sensi-
tivity to sounds or textures [1, 2]. In addition, people with autism often have 
comorbid neurological disorders such as mental retardation and epilepsy [3]. 
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Anxiety and mood disorders are very common features in autism [4]. All features 
of ASD are described as part of mental disorders in the DSM-V Fifth Edition 
(DSM-V). Different types of autism with multifarious levels of severity exist. 
People suffering from Rett syndrome display profound language alteration and 
severe psychomotor defects, whereas Asperger patients show stereotypic behaviors 
and social interaction alteration but no delay in language learning and tend to show 
curiosity toward their environment (DSM-V). Many children and adults with a 
diagnosis of ASD have comorbid features such as intellectual disability (ID) and/
or epilepsy. Altogether, ASD is relatively common with a prevalence of ~1% 
worldwide [5, 6]. The patients can also be stressed easily by a change in habit or 
environment. ASDs constitute a diverse set of symptoms with multiple studies of 
causation indicating genetic susceptibility and interactions between genetic and 
environmental factors. Many studies indicate that genetic factors play an important 
role in the case of ASDs.

1.1.1  Genetics and Autism Spectrum Disorders

According to a recent report, the prevalence of this developmental disorder has risen 
to 1 in 88 children in India, and nearly one in eight have at least developed neurode-
velopmental condition [7]. Familial studies demonstrate that ASD is a heritable disor-
der, with estimated genetic contributions accounting for >50–60% of ASD risk [8, 9]. 
Genetic epidemiologic studies have also shown that ASD is not a single disease but a 
group of symptoms involving multiple gene networks [10].

1.1.2  Pathophysiology of Autism

The pathophysiology of autism is mainly related with the changes in various 
systems of the brain. However, the occurrence of autism has still not been under-
stood clearly. The pathophysiology of autism is associated with neuropsychological 
linkages between brain structures and behaviors [11, 12]. The cellular and nutri-
tional bases of pathological early overgrowth include the following:

• An overabundance of neurons that cause local overconnectivity in key brain 
regions

• Interrupted neuronal migration during early gestation
• Unstable excitatory–inhibitory networks
• Abnormal formation of synapses and dendritic spines
• Modulation of the neurexin–neuroligin cell-adhesion system
• Poorly regulated synthesis of synaptic proteins
• Damaged synaptic development which may also contribute to epilepsy
• Deficiencies of zinc, magnesium, vitamin B, vitamin D, vitamin A, antioxidant 

nutrients, omega-3 fatty acids
• Food sensitivities/intolerances
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• Opiate-like by products from casein and gluten
• Altered intestinal permeability
• Intestinal dysbiosis
• Poor methylation/transsulfuration
• Poor detoxification
• Inflammation in the intestine causing excessive production of pro-inflammatory 

cytokines
• Oxidative stress
• Mitochondrial/metabolic dysfunction
• Immune imbalances/autoimmunity
• Insufficient oxytocin

The immune system plays an important role in autism. ASD causes inflammation 
in both peripheral and central immune systems as indicated by increased levels of 
pro-inflammatory cytokines and significant activation of microglia. The unusual 
immune function has been associated with increased impairments in behaviors that 
are characteristic of the core features of autism such as deficits in social interactions 
and communication. The neurochemicals associated with autism have been investi-
gated, with the most evidence for the role of serotonin and of genetic differences in 
its transport [13]. The metabotropic glutamate receptors (mGluRs) have been impli-
cated in a diverse variety of neuronal functions. The Gp1 mGluRs specifically have 
been implicated in the pathogenesis of fragile X syndrome (FXS), the foremost 
inherited cause of mental retardation and the most common identified genetic cause 
of autism.

1.2  Models for ASD

1.2.1  Chemical Models

Valproic Acid (VPA)

Valproic acid (VPA), or 2-propylpentanoic acid, is a short-chained fatty acid widely 
used as an antiepileptic drug and for the treatment of bipolar disorders, migraine, 
headaches, and neuropathic pain. VPA is well-known for its teratogenic effects, 
including neural tube defects, cardiovascular anomalies, limb anomalies, craniofa-
cial abnormalities, and neurodevelopmental delay [14, 15]. Its main mechanisms of 
action are the inhibition of histone deacetylase, being an epigenetic modulator and 
the ability to increase oxidative stress. Prenatal exposure to VPA, especially during 
the first trimester of pregnancy, has also been associated with reduced cognitive 
function and high risk for ASD among the offsprings [16, 17]. In a research study, 
350 mg/kg of VPA injected into pregnant rats at the embryonic stages resulted in 
neural tube closure and brain stem nuclei formation causing damage to the motor 
cranial nerve nuclei of the fetus.
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Thalidomide

Thalidomide has been shown to cause multiple birth defects such as limb reduction 
defects and ocular and cardiovascular anomalies. Today, thalidomide is an immuno-
modulatory drug still used in the treatment of leprosy and multiple myeloma [18–20]. 
Few animal studies have been reported the use of thalidomide exposure as a model 
of autism [21], and the rats induced with 500 mg/kg of thalidomide in their embry-
onic stage have showed that thalidomide affects the neurochemical serotonin in the 
hippocampus and increased the dopamine content in the frontal cortex causing 
hyperserotonemia.

Misoprostol

Misoprostol is a prostaglandin analogue drug commonly prescribed for the treat-
ment of gastric ulcers. There is evidence that prenatal exposure to high doses of 
misoprostol during the first or second trimesters of pregnancy can lead to the occur-
rence of Möbius syndrome, a disorder characterized by uni- or bilateral eye–face 
palsy due to damage to cranial nerve nuclei, associated with muscle or skeletal 
malformations and a high prevalence of autism-like behavioral symptoms [22].

Propionic Acid (PPA)

Propionic acid (PPA) is a fatty acid, a metabolic end product of enteric bacteria in 
the gut, and a common food preservative. Several studies have indicated that PPA 
can cause autism-like behaviors and a neuroinflammatory response in rats [23] 
depicts that rats treated with PPA displayed restricted behavioral interest and 
impaired social behavior in addition to reactive astrogliosis and activated microglia 
in the brain. These results provide evidence of occurrence of ASD-like behaviors in 
the PPA rodent model. However, the relevance to human beings is still unknown.

1.2.2  Genetic Animal Models of Autism

Various human syndromes owing to a single gene mutation increase the risk for 
ASD. The more common disorders are fragile X syndrome, a mutation in FMR1; 
Rett syndrome, a mutation in MECP2; tuberous sclerosis, mutations in TSC1 or 
TSC2; and Timothy syndrome, a mutation in CACNA1C. The variants that lead to 
inherited maternal 15q11–13 duplication resulting in Prader–Willi syndrome and 
other duplications like the NPHP1 gene are also associated with autistic traits.

The development in strategies for the identification of genetic variants also led to 
the description of new syndromic forms of ASD and enabled the association between 
phenotype and genetic traits. Mice are the predominant animal model for ASD 
owing to their genetic tractability and their ability to demonstrate analogues of 
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behavioral deficits associated with ASD. The following genetic models representing 
known human syndromes derived from a gene mutation exemplify the difficulties in 
establishing a valid genetic trait.

Fragile X (FMR1)

The fragile X syndrome is the most frequently inherited cause for mental retarda-
tion in ASD. The fragile mental retardation 1 locus (FMR1) resides in the X chro-
mosome, and the expansion of triplet repeats in the untranslated region of the FMR1 
gene prevents synthesis of the FMR1 gene product FMRP.  FMRP is an RNA- 
binding protein that modulates mRNA trafficking, dendritic maturation, and synap-
tic plasticity. Rodents, mostly mice knocked out for the FMR1 gene, were shown to 
present autistic traits.

Rett Syndrome and MECP2 Mutations

Rett syndrome, an X-linked disease only affecting girls, is denoted by neurodevel-
opmental delay, ASD, and seizures. It is caused by mutations in gene encoding for 
the methyl-CpG binding protein 2 (MECP2) that binds to methylated-CpG dinucle-
otides and influences gene expression. MECP2 is expressed widely but is most 
abundant in neurons of the mature nervous system. Knockout of the Mecp2 in male 
animals used to study MECP2 duplication syndrome is characterized by autism, 
intellectual disability, motor dysfunction, anxiety, epilepsy, recurrent respiratory 
tract infections, and early death.

Tuberous Sclerosis TSC1 or TSC2

Tuberous sclerosis complex is an autosomal dominant disorder caused by mutations 
in either the TSC1 or TSC2 gene associated with cerebral cortical tubers and may 
be complicated by astrocytomas. Besides intellectual disability and often seizures 
of the type of infantile spasm, there is an increase in the rate of ASD. The Tsc2f/−; 
cre mice exhibit progressive Purkinje cell degeneration. Since loss of Purkinje cells 
was reported in patients with ASD, this model was offered for future studies [24].

Cortical Dysplasia Focal Epilepsy (CNTNAP2)

A recessive nonsense mutation in the Contactin-associated protein-like 2 
(CNTNAP2) gene was shown to cause a syndromic form of ASD, Cortical Dysplasia 
and Focal Epilepsy Syndrome (CDFE). Cortical Dysplasia and Focal Epilepsy 
Syndrome (CDFE) results in epileptic seizures, language regression, intellectual 
disability, hyperactivity, and ASD [25].
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15q11–13 Duplication Maternal/Paternal Gene

The 15q11–13 maternal/paternal gene is associated with either duplication or dele-
tion. The loss of genomic material within the paternal 15q11.2–13 locus and dele-
tions, unbalanced translocations, or uniparental maternal disomy results in 
Prader–Willi syndrome. The misplacement of maternal genomic material at the 
15q11.2–13 locus results in Angelman syndrome and MECP2 duplication syndrome, 
characterized by autism, intellectual disability, motor dysfunction, anxiety, epilepsy, 
recurrent respiratory tract infections, and early death.

Phelan–McDermid Syndrome, SHANK3

Removal of the human SHANK3 gene near the terminus of chromosome 22q is 
associated with Phelan–McDermid syndrome and autism. The mice knock out for 
IB2 gene had reduced AMPA and enhanced NMDA receptor-mediated glutamater-
gic transmission in the cerebellum along with disturbances in the morphology of 
Purkinje cell dendritic arbores and autistic traits. The IB2 gene mutation has been 
shown to play a role in Chr22qter-associated cognitive disorders.

2  Autism and Diet

ASD can be a difficult disorder to live with on many levels, and maintaining proper 
dietary habits becomes essential in this regard. For children with ASD, a nutritious, 
balanced diet makes a lot of difference in their ability to learn, manage their emo-
tions, and process information. Due to their severely disrupted digestion, restoration 
of balance in the gut, blood sugar, checking for brain-polluting heavy metals, 
excluding food additives, identifying food allergies and possible nutrient deficien-
cies, and ensuring an optimal intake of essential fat, children with ASD often have 
restricted diets.

2.1  Gluten-Free Diet Therapy for Autism

Gastrointestinal (GI) problems are commonly seen in children with autism. In a 
related study on GI pathology in children with autism by Valicenti-McDermott et al. 
[26], the authors reported that 70% of children with autism had GI problems com-
pared to 42% of children with other neurodevelopmental problems such as cerebral 
palsy and 28% of children with typical development.

The association of autism with gluten has been implicated by historical observa-
tions, and an understanding of gluten sensitivity has been evolving over the last 
several decades. Celiac disease, also known as gluten-sensitive enteropathy or celiac 
sprue, is a genetically linked autoimmune disorder in which eating certain types of 
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grain-based products (wheat, rye, barley, and malt) can trigger an immune reaction 
that causes damage to the small intestine [27]. Due to carbohydrate intolerance, 
autistic individuals are unable or are sensitive to digestion of a dietary product, 
typically considered to be an immune response allergic reaction leading to poor 
digestion of the product, or alteration of the microbial or immune environment due 
to dietary intake among other proposed mechanisms.

A wider spectrum of neurological syndromes is an extraintestinal manifestation 
of gluten sensitivity with or without intestinal pathology. It includes myelopathy, 
mononeuritis multiplex, encephalopathy, chorea, brain stem dysfunction, migraine, 
Guillain–Barré-like syndrome, and neuropathy with positive antiganglioside anti-
bodies. Many neurological reports used a variety of positive results on serology 
tests for celiac disease without intestinal confirmation of the diagnosis.

The GI symptoms of allergy could include pain, constipation, diarrhea, rash, 
sleep disturbance, inflammation, and increased permeability of food-based or like- 
sized peptides that enter the bloodstream that might then induce allergic sensitiza-
tion. This study attempted to address a theory known as the “opioid-excess” theory. 
The opioid-excess theory hypothesizes that autism is a result of a metabolic disorder 
in which opioid peptides produced through the metabolism of gluten and casein 
pass through an abnormally permeable intestinal membrane and then affect neuro-
transmission through binding with opioid receptors. So, autistic children are unusu-
ally sensitive to gluten, which results in small bowel inflammation in these children 
allowing these opioid peptides to enter the brain.

2.1.1  Immune Reaction to Gluten Proteins

Wheat comprises of about 100 different proteins, the majority of which are alcohol- 
soluble and the remaining being water-soluble. Together, α-gliadins, γ-gliadins, 
ω-gliadins, and low- and high-molecular-weight glutenins are the major alcohol- 
soluble proteins called gluten proteins representing about 75% of the total proteins of 
wheat grains [28]. The remainder of wheat proteins, which are generally soluble in 
water or salt solutions, including serine protease inhibitors (serpins), purinins, fari-
nins, α-amylase/protease inhibitors, and globulins, are called non-gluten proteins. 
Intestinal T cells from celiac disease (CD) patients respond to a heterogeneous array 
of peptides derived from α-, γ-, and ω-gliadins and glutenins and produce a significant 
amount of interferon-γ [29]. The immune system recognized many peptides from 
single or multiple gliadin families and reacted only to one peptide. This means that 
many gluten epitopes may be involved in the development of gluten sensitivity.

2.1.2  Research Analysis of Gluten-Free Diet for Autism

Analysis of the blood samples revealed that a significant number of children 
with autism produced IgG and IgA antibodies against α-gliadin 33-mer peptide 
[30]. The effectiveness of a gluten-free diet was tested on children with autism, and 
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a significant improvement in behavioral symptoms was observed in a subgroup 
[31]. This study on autism was conducted with α-gliadin 33-mer, especially CXCR3-
binding gliadin peptide. CXCR3 is a chemokine receptor that is expressed in mono-
cytes, eosinophils, NK cells, B cells, and T cells, particularly in CD4+ TH1 cells 
[32]. During the inflammatory process, CXCR3 promotes the recruitment of 
immune cells into the inflamed tissues by interacting with its three ligands: CXCL9, 
CXCL10, and CXCL11. This CXCR3 interaction with its ligands becomes overac-
tivated in different chronic inflammatory processes such as inflammatory bowel dis-
eases and rheumatoid arthritis [33].

A research study conducted by McCarthy and Coleman [34] involved eight chil-
dren with autism. The children were given 20 g of gluten powder (added to their 
food) every day for 4 weeks. Each child then had a jejunal biopsy; all eight revealed 
entirely normal intestinal villous structure. Jejunal biopsies comprise the standard 
diagnosis for celiac disease. This comprises the screening of large numbers of chil-
dren with autism and screening for celiac disease by blood testing of IgA and IgG 
antigliadin antibodies (AGA) as well as antiendomysium antibodies (AEMAb). 
These were the techniques used in the present study. Among our patients with 
autism, no cases of celiac disease were detected. In two of these patients, an abnor-
mal increase of AGA IgG and AEMAb was found, but ensuing antibody determina-
tions and jejunal biopsies showed normal results. Thus, our results are in line with 
previous research studies in this area.

Three recently published studies examined various hypotheses related to the 
GFCF diet in autism. Vojdani, Pangborn, Vojdani, and Cooper [30] measured the 
antibodies IgG, IgM, and IgA against CD26, CD69, streptokinase (SK), gliadin, 
casein, and ethyl mercury in 50 children diagnosed with autism. Analysis of blood 
samples revealed that a significant number of the children developed antibodies 
against casein and gliadin. In addition, SK, gliadin, casein, and ethyl mercury were 
shown to bind to the lymphocyte and tissue enzyme (CD26) and have been thought 
to perhaps trigger inflammatory and immune reactions in children with autism.

The study conducted by Arnold et al. [35] evaluated amino acid patterns of 26 
children with autism on a regular diet, 10 on a gluten–casein-free diet, and 26 chil-
dren with developmental delays which served as controls. The children with autism 
had higher deficiencies in essential amino acids compared to the control group. 
These findings suggest that children with autism are at high risk for amino acid 
deficiencies and may benefit from a structured diet.

Knivsberg et al. [36] conducted a randomized single blind study with 20 subjects 
to assess the effect of a gluten-free diet on children with autistic syndrome and uri-
nary peptide abnormalities. The children in the control and experimental groups 
were matched according to severity of autistic symptoms, age, and cognitive level. 
Changes were observed in both the control and experimental group. The  experimental 
group showed more significant changes. There was a statistically significant differ-
ence between the experimental and control group, demonstrating that the experi-
mental group showed improvement in autistic behavior, nonverbal cognitive level, 
and motor problems.
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These recent studies provide interesting information regarding the effects of 
hypothesized gluten-free diets on physiology, behavior, and cognition, though they 
are limited by small sample sizes. A need still exists for rigorous controlled clinical 
trials evaluating both physiological and behavioral effects.

3  Conclusion

With all that has been said, we can begin to conclude that a significant subset of 
individuals with autism are sensitive or intolerant to certain foods. Gluten-free diet 
therapy for autistic children with autoimmune disorder, celiac diseases, bowel inflam-
mation allergy, or food intolerance has showed positive improvisation and changes in 
their behavior, performance, social interaction, and brain functions. By providing the 
body and brain with what they need and by eliminating that which may be causing 
interferences, the possibility to significantly improve overall brain functioning and, 
therefore, the quality of life for individuals with autism exists.
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Food Color and Autism: A Meta-Analysis

Prabasheela Bakthavachalu, S. Meenakshi Kannan, and M. Walid Qoronfleh

Abstract Autism has been increasing dramatically since its description by Leo 
Kanner in 1943. The Centers for Disease Control and Prevention (CDC) in 2018 has 
identified 1 in 59 children (1 in 37 boys and 1 in 151 girls) has autism spectrum 
disorder (ASD). Autistic spectrum disorders and ADHD are complex conditions in 
which nutritional and environmental factors play major roles. It is important to 
understand how food can have an impact on their current and future health. 
Appealing food colors stimulate the consumption of different food products. Since 
2011, it is evident that dyes are linked to harmful effects in children. Artificial dyes 
have neurotoxic chemicals that aggravate mental health problems. Many families 
with autistic children avoid food dyes in their diet in order to avoid behavioral 
issues. A study reported that there is a correlation between yellow dye and sleep 
disturbance. Food colors Blue 1 and 2, Green 3, Red 3, Yellow 5 and 6, Citrus Red 
2, and Red 40 can trigger many behaviors in most kids. Artificial food color usually 
contains petroleum and is manufactured in a chemical process that includes formal-
dehyde, aniline, hydroxides, and sulfuric acids. Most impurities in the food color 
are in the form of salts or acids. Sometimes lead, arsenic, and mercury may be pres-
ent as impurities. The U.S. FDA is yet to study the effects of synthetic dyes on 
behavior in children. A study conducted at Southampton University in England 
found a link between food dyes and hyperactive behavior in children. The research 
does not prove that food coloring actually causes autism spectrum disorder, but 
there seems to be a link. This chapter attempts to provide a broad review of the 
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available literature on food color and the epidemiology, etiology, prevention, and 
treatment of autistic spectrum disorder.

Keywords ASD · ADHD · Artificial coloring · Natural coloring · Color additives · 
Autism · Food colors · Food refusal · Hyperactive · Zinc deficiency · Mercury

1  Introduction

Autism is a pervasive developmental disorders (PDDs) that appears in the first 
3 years of life and affects brain development impacting social and communication 
skills [1]. Some investigators expand the nature of autism to that of a multisystem 
metabolic disease, not just a brain disorder [2]. Neuronal plasticity is crucial for the 
creation and storage of long-term memory. Abnormal neuronal plasticity has been 
implicated in mental retardation and autism [3, 4]. Recent estimates suggest that 
31% of children with autism spectrum disorder (ASD) also meet diagnostic criteria 
for attention deficit/hyperactivity disorder (ADHD) and another 24% of children 
with ASD exhibit subthreshold clinical symptoms for ADHD [5]. Autistic children 
have a ten times the number of hyperactive mast cells in most tissues. Eating and 
feeding is a common concern for the parents of young children. Parents of children 
with ASDs report many challenges with children’s daily activities, behavior, and 
communication. This may be due to the limited number of specialists dealing with 
eating and feeding disorders.

2  Association Between Food Color and Autism

Food coloring, or color additive, is a dye, pigment, or substance that imparts color 
when added to food or drink. They are available in different forms like powders, 
liquids, gels, or pastes. There are two types of approved color additives—dyes and 
lakes. Dyes are water-soluble and usually come in the form of powders, granules, or 
liquids. Lakes are not water-soluble. They are found in products containing fats and 
oil. Some food colors are synthetically produced. Examples of these color additives 
include FD&C Blue Nos. 1 and 2, FD&C Green No. 3, and FD&C Red No. 40. 
Other food colorings come from pigments of vegetables, minerals, or animals. 
Examples of these natural additives include beta-carotene, grape skin extract, cara-
mel color, and saffron. Many color additives had never been tested for toxicity or 
other diverse effects. Many synthesized dyes were easier and less costly to produce 
and were superior in coloring properties when compared to naturally derived alter-
natives. Some synthetic food colorants are diazo dyes, while naturally derived col-
ors are not required to be certified by the number of regulatory bodies (including the 
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U.S. FDA); they still need to be approved for use in that country. For some popular 
natural food coloring additives and further details, see Table 1.

One of the more current controversies in the field of artificial food colors (AFCs) 
is concerned with their effect on children’s behavior. The UK has had a voluntary 
ban on six food colors since 2008 as research funded by the UK Food Standard 
Agency (FSA) suggested that consuming mixes of the food colors and preservative 
sodium benzoate could increase hyperactivity in some children. The artificial colors 
were tartrazine (102), quinoline yellow (104), sunset yellow FCF (110), azorubine 
or carmoisine (122), ponceau 4R (124), and allura red AC (129) [6]. For some popu-
lar artificial food coloring additives and further details, see Table 2. These colors are 
used in a wide range of foods that tend to be brightly colored, including soft drinks, 
sweets, cakes, and ice cream. There is some evidence [7] that hyperactive children 
have more signs of allergy to a wide range of food than normal children, and remov-
ing allergens leads to small but significant improvements in behavior. But this kind 
of an individualized approach warrants further trials. Although the idea that food 
allergies or hypersensitivities lead to behavior and learning problems dates back to 
the 1920s [8], until the1970s, a specific hypothesis regarding this relationship had 
not been developed.

A 2012 meta-analysis [9] reported that color additives had an effect on hyperac-
tive behavior in children, with a small subset showing more extreme behavior than 
others. The study concluded that the companies typically add artificial colors to 
make their products look more appetizing. The chemicals Yellow Nos. 5 and 6 have 
been in use since the early 1900s, and the FDA approved them for use in 1969 and 
1986, respectively. According to the FDA, Yellow No. 5 could cause an allergic 
reaction for 1 out of every 10,000 people. The amount of dye the FDA has deemed 
acceptable for daily intake, or ADI, is 5 mg/kg of body weight per day (mg/kg bw/
day) for Yellow No. 5 and 3.75 mg/kg bw/day for Yellow No. 6. In 2015 Stevens 
et al. [10] worked on a recommended amount of dye in servings of processed foods 
and found that Kraft Macaroni & Cheese contained 17.6 mg of Yellow Nos. 5 or 6 
per one-cup serving. Because the chemicals are so similar in color, and thus difficult 
to tell apart in measurements, the researchers chose the dye that allowed the highest 
concentration. For a child weighing 30  kg (about 65 pounds), this translates to 
0.59 mg/kg bw per serving.

Dr. Benjamin Feingold [11] proposed that pediatric hyperactivity and learning 
problems were due to certain foods and food additives. A study was conducted on 
153 3-year-olds and 144 8/9-year-old children. For these children, the challenge 
drink contained sodium benzoate and a placebo mix was given. The main outcome 
was determined by using aggregated z-scores measured by observed behaviors and 
ratings by teachers and parents and a computerized test of attention for 8/9-year-old 
children in the form of global hyperactivity aggregate (GHA). According to the 
results, there was increased hyperactivity in 3-year-old and 8/9-year-old typical 
children due to diet containing artificial colors or a sodium benzoate preservative (or 
both) [12].
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3  Effect of Food Color on Zinc Metabolism in Autism 
Spectrum Disorder

Zinc is an essential trace element that plays an important role in nucleic acid/protein 
synthesis, cell replication, and tissue growth and repair, especially in pregnant 
women and infants. In fact, zinc ions function as the active centers in more than 300 
kinds of enzymes, and about 10% in the total gene-coded proteins [13–16]. Within 
the brain, especially in the hippocampus, zinc is co-stored with glutamate in presyn-
aptic vesicles in the excitatory neuron terminal, is released from them, and controls 
the activity of excitatory glutamate receptors on the postsynaptic excitable mem-
brane [17, 18]. Thus, zinc deficiency is known to be associated not only with various 
pathological conditions, including dyspepsia, delayed wound healing, impaired 
immunity, and retarded growth, but also neurodegenerative diseases and neurode-
velopment disorders [19–23]. Recent investigation has reported that many infants 
with autistic disorder suffer from marginal to severe zinc deficiency, suggesting 
considerable relationship between infantile zinc deficiencies with autism [24].

Nutritional deficiencies and mercury exposure have been shown to alter neuronal 
functions and increase oxidative stress among children with autism. Consumption 
of certain artificial food color additives has also been shown to lead to zinc elimina-
tion. Dietary zinc is essential for maintaining the metabolic process required for 
mercury elimination. Dietary transcription factors such as zinc insufficiency or defi-
ciency or through exposure to toxic substances found in our environment such as the 
heavy metals mercury and copper alter gene expression leading to adverse effects 
on human neurodevelopment [25]. Elimination of heavy metals requires the expres-
sion of the metallothionein (MT) gene which synthesizes the Zn-dependent metal- 
binding protein metallothionein [26]. With dietary zinc (Zn) loss, the metabolic 
processes required to eliminate heavy metals are impaired in children with autism 
[25]. Mercury (Hg) and other specific heavy metals, including lead (Pb), copper 
(Cu), cadmium (Cd), silver (Ag), and bismuth (Bi), are capable of displacing the Zn 
atom in the MT protein molecule [26]. If diet is deficient in Zn or the absorption of 
Zn is impaired, then the body may not produce enough MT protein to carry and 
excrete the heavy metal load [27, 28]. Children with autism may be Zn deficient and 
often have MT dysfunction [29–31]. Because of their diminished capacity to excrete 
toxic heavy metals, the severity of their condition is associated with toxic 
metal burden.

One study conducted on 1967 children with autistic disorders (1553 males and 
414 females) analyzed hair zinc concentrations which showed considerable associa-
tion between autism and zinc deficiency. A histogram of hair zinc concentration was 
nonsymmetric with tailing in the lower range, and 584 subjects were found to have 
zinc concentrations lower than two standard deviations of its reference range 
(86.3–193  ppm). The incidence rate of zinc deficiency in the infant group aged 
0–3-year-old was estimated at 43.5% in male and 52.5% in female. The lowest zinc 
concentration of 10.7 ppm was detected in a 2-year-old boy, corresponding to about 
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1/12th of the control mean level. These findings suggest that infantile zinc defi-
ciency may epigenetically contribute to the pathogenesis of ASD, and the nutri-
tional approach may yield a novel hope for treatment and prevention [31].

4  Preventive Measures for Autism Spectral Disorder

It is clear that some food can trigger behavior problems, but certain foods can in fact 
improve these issues. The best food for people with autism is a diet including meat, 
nuts, and beans for protein. Complex carbohydrates, found in fresh fruits and veg-
etables, are also recommended. Omega-3 fatty acids can help with behavior prob-
lems, and these can be sourced from salmon, tuna, walnuts, and olive oil. Including 
these foods in the diet while avoiding the additives that commonly cause problem 
behaviors can make a significant difference for many children with autism. In addi-
tion, dietary micronutrients are also required to enhance neurological development 
and its function.

5  Conclusion

Popular concern regarding adverse neurobehavioral effects of food additives has 
recently implicated artificial colors as etiologic factors in childhood hyperactivity. 
AFCs are purely cosmetic, so its removal would not come at an economic or public 
health cost. Thus, it would be important to distinguish AFC effects from preserva-
tive effects. ASD remains poorly understood due to an unknown etiology, and there 
is also no particular treatment for this disorder. The prevalence of ASD is continu-
ously increasing and has subsequently made medical management a challenging 
task. Food additives given in very large doses may act as a pharmacological trigger 
among a small percentage of children with autism. So, the FDA should insist that 
manufacturers include a label saying “artificial colors could cause hyperactivity in 
some children” to keep the public informed. Future research in this area needs to 
investigate these children further and also describe the mode of action of food color 
additives.
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Food Selection and Preferences of Omani 
Autistic Children
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Abstract Background: Autism spectrum disorder (ASD) is a neurodevelopmental 
disorder characterized by core deficits in social interactions, verbal/nonverbal com-
munication, and restricted, repetitive, and stereotyped behaviors. Children with 
ASD are known to have several feeding problems that are believed to affect their 
nutritional and health status.

Aim: The present study was designed to assess the food preferences in Omani 
children diagnosed with ASD compared with controls.

Methods: A case-control study was conducted in which 375 children (males and 
females) aged between 4 and 13 years were recruited. The sample consisted of 163 
children with ASD and a control group of 212 typically developing (TD) children. 
For each participant, demographic, anthropometric, and medical information and 
information regarding dietary intakes were gathered using the food frequency ques-
tionnaire (FFQ) to assess their food preferences.

Results: The sociodemographic characteristics of caregivers were similar in the 
two groups, while their perceptions based on several nutritional parameters were 
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different. Children’s age and body mass index (BMI) were similar in both groups, 
while the number of male children was higher in ASD group (P < 0.001). Problematic 
behaviors including food refusal and selectivity were significantly higher in ASD 
children than in TD children. Despite that, the children with ASD were found to 
consume mostly traditional Omani dishes.

Conclusion: This is the first study that provides information on the eating habits 
and nutritional intake of Omani children diagnosed with ASD. The overall findings 
are promising and may contribute to further understanding of food preferences in 
children with ASD in Oman. Such information is highly valuable for the prevention 
and management of nutritional deficiencies among Omani children with autism by 
improving their diet quality.

Keywords ASD · Food preferences · FFQ · Oman · Feeding problems

1  Introduction

1.1  Feeding Behavior in Children with Autism Spectrum 
Disorder

Autism spectrum disorder (ASD) refers to a group of complex neurodevelop-
mental disorders characterized by repetitive and impaired social communication 
and interaction. ASD occurs across all socioeconomic levels, in all cultures, and 
across all racial and ethnic groups. However, ASD occurs more commonly in 
boys than in girls [1]. The severity of symptoms vary from person to person. The 
term ASD comprises of five different categorizations which include autistic dis-
order, Rett’s disorder, childhood disintegrative disorder, Asperger’s disorder, and 
pervasive developmental disorders not otherwise specified (PDD-NOS). For 
diagnosis of any of these, a child must exhibit a “triad of impairments” in the 
three areas of social communication, social interaction, and imaginative under-
standing [2].

Early childhood is a critical nutritional stage that involves a shift from milk- 
based diet to other foods [3]. It is believed that dietary exposure during this interme-
diate stage could contribute to future food and taste preferences [3–5]. Along with 
this, sensory sensitivity might also play a big role in food selection [6]. From a very 
early age, typically developing (TD) children can express their likes and dislikes for 
foods through behavior and/or speech [7]. As children grow older, individual vari-
ances appear in food-related behaviors as some children are easier to feed than oth-
ers. Parental feeding practices play a major role in the development of children’s 
eating behaviors [7–11]. Selective eating disorder (SED), more commonly known 
as being a “fussy” or “picky eater,” can be defined as eating a narrow variety of 
foods and a refusal to eat or taste new foods [12].
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Parents of children with ASD have reported many feeding problems including 
food refusal, limited dietary intake, and behavior problems at meal times, with 
numerous case studies over the years supporting parental concerns [2, 13–17]. 
Repetitive and restricted behaviors are the basic feature of autism spectrum disor-
der, which may play a role in food selectivity. Children with ASD often resist novel 
experiences, which may include tasting new foods due to their hypersensitivities 
toward sensory properties of foods including texture and temperature [18, 19], food 
presentation [20, 21], or other characteristics of foods. Understanding the content 
and quality of food that form part of the diet of these children could aid in remedia-
tion of food selectivity and avoid few complications related to food refusal behavior. 
Parents often struggle with adding new foods to their child’s diet, and food selectiv-
ity along with disruptive food avoidance behavior makes mealtime stressful for the 
entire family. If eating difficulties are not resolved at an early age, they may lead to 
developing age-inappropriate eating disabilities, failure to thrive, nutrient deficien-
cies, problematic behavioral issues, weak parent-child interactions, and many other 
problems [22–24] at a later stage. The studies conducted in this area however reflect 
inconsistency in results which could be due to conflicting terminology, an absence 
of clinical instruments, and limited availability of literature on management and 
assessment [25, 26].

Previous studies on autism from Oman mainly focused on the association of 
autism with malnutrition [27], heavy metals and essential minerals in hair samples 
of ASD children [28] as well as on the effects of suboptimal breast-feeding [27, 
29]. Information regarding mealtime behavior, food preferences, and actual intake 
of macro- and micronutrient levels in Omani children with ASD children is scant. 
In order to fill existing gaps in available literature, this case-control study was con-
ducted with the aim of assessing the food selection criteria and preferences in 
children diagnosed with ASD in Oman.

2  Methodology

2.1  Participants

This cross-sectional study was conducted at various locations in the Sultanate of 
Oman from June 2014 to June 2015. The locations included were Sultan Qaboos 
University Hospital (SQUH), Developmental Medicine Clinic, Muscat Autism 
Center, Early Intervention Center for Children with Disability, and Al Wafa 
Rehabilitation Centers located in different governorates/regions of Oman. A total 
of 750 subjects, including both caregivers (375) and children (375), were recruited. 
The children aged between 4 and 13 years and comprised of both males and 
females. Participants were approached randomly in four governorates, Muscat, 
Dhofar, Musandam, and Buraymi, and from four regions, Al-Batinah, Al-Sharqiyah, 
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Al-Dakhiliyah, and Al-Dhahirah. Age-range matched, typically developing chil-
dren were also recruited with similar backgrounds and from the same governor-
ates/regions. Subjects were proportionally allocated based on the number of ASD 
children in each governorate. Proportionate number of ASD children in a particular 
governorate = total number of ASD children in that governorate/total of ASD chil-
dren of all governorates∗ sample size (250). The recruitment of participants was 
designed to produce a representative sample of children with ASD with matched 
ages and within the same province (Table 1).

2.1.1  Ascertainment and Selection of Cases

Selection criteria for the ASD group included all mothers with their ASD child 
diagnosed at SQUH according to the criteria of the Diagnostic and Statistical 
Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR), whose 
age ranged between 4 and 13 years, with the status for each child confirmed by a 
specialist at SQUH. All subjects diagnosed with ASD exhibited symptoms within 
the typical triad of autistic traits: communication impairment, social deficits, and 
ritualistic interests.

Table 1 Distribution of total and recruited ASD children from different governorates of Sultanate 
of Oman

Governorate
Approximate number 
of ASD/governorate

Proportional number 
of ASD/governorate

Actual number of ASD 
recruited cases for the study/
governoratea

Muscat 159 72.1 28
Dhofar 68 30.9 19
Musandam 6 2.7 3
Buraymi 8 3.6 3
Dakhiliyah 45 20.4 33
North 
Batinah

119 54.0 40

South 
Batinah

34 15.4 15

North 
Sharqiyah

47 21.3 10

South 
Sharqiyah

41 18.6 6

Dhahirah 24 10.9 6
Total 551 250 163

a500 subjects (children) were approached (250 ASD and 250 TD). Responses were secured from 
163 ASD and 212 TD children and an equivalent number of caregivers. Therefore, the response 
rate among ASD children was 65% and 85% among TD children
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2.1.2  Ascertainment and Selection of Controls

Both male and female children aged between 4 and 13 years, with no signs of ASD, 
developmental delay, or chronic diseases (celiac disease, epilepsy, diabetes,  cerebral 
palsy, etc.) and residing in their parents’ home, were selected for the study. A writ-
ten consent form in both Arabic and English was obtained from all parents. A total 
of 324 children and caregivers were enrolled (127 ASD and 197 TD), resulting in a 
total sample size of 648 participants.

2.2  Sociodemographic Factors of the Study Groups

The demographics characteristics of caregivers included age range, their relation to 
the child, marital status, level of education, and monthly income (in local currency 
that is Omani Riyals or OMR). For children, the variables related to demographics 
were birth weight, gender, number of siblings, and anthropometric measurements. At 
the time of visit, anthropometric measurements that considered weight, height, and 
body mass index (BMI) were carried out for every subject (both ASD and TD) and 
were recorded by the principle investigator herself together with six registered dieti-
tians, according to the procedures described by the World Health Organization [30].

2.3  Evaluation of Food Intake and Preference

The semiquantitative food frequency questionnaire (FFQ) used in this study is a 
comprehensive list of 119 food items. It was designed to collect dietary information 
about the amount and frequency of consumption of various food items commonly 
consumed in Oman. The FFQ was developed based on the validated food FFQs 
according to Block et al. [31] and modified by Ali et al. [32] according to local food 
consumption patterns. The only modification made was the addition of a single 
column (“occasionally”) in food consumption. This column was added to record the 
food item that was only consumed occasionally or during certain events. The infor-
mation from the FFQ was used to evaluate food preferences in the study group. 
Each subject was personally interviewed to complete the questionnaire. They were 
asked to characterize their usual dietary intake stating how often they consumed a 
specific amount of each food during a period of one year, on an average. The items 
were rated on a five-point scale: “never” if there is no intake of the food item, “occa-
sionally” if the food is eaten only on occasions, “daily” if the food item is taken on 
daily basis, “weekly” if the food is taken once a week, and “many times” if the food 
is eaten more than once a day. The caregivers also reported whether food items are 
typically served to the entire family at meal times (“yes/no”). Data indicating the 
frequency of consumption for 119 food items in one year was collected. The differ-
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ent food groups included in the questionnaire were vegetables, fruits, meat and meat 
substitutes, milk and dairy products, traditional Omani foods and miscellaneous 
dishes, breads, desserts, beverages, sandwiches, and fast food. These food items 
were included based on their contribution to the total intake of energy by population 
groups and accounted for over 90% of the total Omani population’s intake [32]. 
Each question had several choices and the interviewing researcher marked the best 
appropriate choice according to the reply of the subject. Participants were asked to 
indicate their average consumption of each food. Dietary items included in the pref-
erence questionnaire were classified into nine groups (vegetable group, fruit group, 
traditional and miscellaneous dishes, bread group, meat and meat substitute group, 
beverage group, sandwich group, desserts group, and fast food group).

The caregivers of children with unrestricted diet checked for food items, if their 
child had consumed an age-appropriate portion of the served food. The food items 
that were not eaten remained unendorsed (not comparable). The caregivers also 
reported whether food items were typically served to the entire family at meal times. 
Scores for the nine food groups were obtained by summing food items accepted by 
children within each food group (e.g., the total number of vegetables typically 
accepted). Scores were also summed to obtain types of food items typically eaten 
by other family members (e.g., the total number of vegetables typically eaten). 
The internal consistency was found for this sample; Cronbach’s α was 0.96.

2.4  Ethical Approval and Confidentiality

Written informed consent was obtained in Arabic from all parents who were willing 
to contribute to the study before receiving any information. A clear, detailed expla-
nation of the study was given to all parents, and they were informed that they were 
free to refuse to participate or withdraw at any time during the study without any 
disadvantage or prejudice. Details of the tools used and the types of measurements 
being obtained were explained. Confidentiality and privacy of collected information 
was strictly ensured by giving a code number for each subject, and parents were also 
assured that the collected data was going to be used for scientific purposes only. 
This study was approved by the Medical Research Committee in the College of 
Medicine and Health Sciences, Sultan Qaboos University, (MREC#899).

3  Data Analysis

The collected data was reviewed for its completeness and accuracy and was statisti-
cally analyzed. The following statistical tests were used: the Student’s t-test to com-
pare sociodemographic data and the chi-squared (x2) test to assess the statistical 
significance of differences among categorical data. The nonparametric Fishers exact 
test (two tailed) was used instead of the chi-squared test in cases of very small 
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sample size. The odds ratios (OR) and 95% confidence intervals (CI) were calcu-
lated in comparison between ASD and TD.  Analysis of variance (ANOVA) was 
used to evaluate the statistical significance of mean differences among continuous 
data, followed by post hoc multiple comparisons. All statistical analyses were 
performed using the Statistical Package for Social Sciences (SPSS) software 
(Version 20.0). A significant association is considered if the 95% CI does not include 
the value 1.0, and a cutoff p-value of less than 0.05 is used for all tests of statistical 
significance in this study.

4  Results

4.1  Sociodemographic Factors of Study Group

Table 2 shows the sociodemographic characteristics of the study groups. Age, 
monthly income, and education levels of caregivers were not significantly different. 
However, there was a significant difference in terms of marital status (P =0.005). 

Table 2 Sociodemographic characteristics of caregivers

Characteristic∗
ASD (N = 163) TD (N = 212)

P-valueN (%) N (%)

Caregivers
Age

≥20–30 36 (22.1) 52 (24.5) 0.261
31–40 102 (62.6) 116 (54.7)
41–50 25 (15.3) 44 (20.8)
Marital status

Single 1 (0.6) 9 (4.2) 0.005
Married 159 (97.5) 197 (92.9)
Divorced 3 (1.8) 1 (0.5)
Widow 0 (0.0) 5 (2.4)
Education level

Read and write 24 (14.7%) 32 (15.1%) 0.551
School education 67 (41.1%) 96 (45.3%)
College education 51 (31.3%) 66 (31.1%)
Above college 21 (12.9%) 18 (8.5%)
Monthly income level (OMR)

<500 42 (25.8) 63 (29.7) 0.078
500–1000 78 (47.9) 107 (50.5)
1000–1500 19 (11.7) 28 (13.2)
>1500 24 (14.7) 14 (6.6)

* different at α =0.05, a and b are presented by Mean (SD)
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Sociodemographic characteristics of ASD and TD children are shown in Table 2. 
The gender distribution was significantly different between the two groups 
(P <0.001). The ASD group included 129 males and 34 females, whereas the TD 
group included 104 males and 108 females, making a proportion of 79% and 49% 
for the ASD and TD groups, respectively. Age and BMI were nonsignificant. 
However, 32% of TD children were underweight (˂5th percentile) as compared to 
29% of ASD children. More ASD children were overweight as compared to TD 
children (14% versus 8%) (Table 3).

4.2  Diversity of Food Selectivity Between the Two Study 
Groups

4.2.1  A Comparison on Food Intake Preference Between ASD  
and TD Children

Table 4 provides a summary of the results comparing the average number of food 
items within each food group preferred by the two study groups. An independent 
t-test showed that the average number of items within every food group was sig-
nificantly higher for TD children as compared to ASD children (P < 0.001). The 
results also show the percentages of the number of items consumed by the two 
study groups within each food group. Of the nine food groups (vegetables, fruits, 
miscellaneous dishes, bread, protein foods, beverages, sandwiches, fast foods, and 
dessert), the intake was significantly different in ASD children as compared to TD 
children. Less than 50% of the vegetable (47%) and fast food (36%) items were 
eaten by ASD children, while the TD children consumed more than 50% from 
every food group (63–86%).

Table 3 Sociodemographic characteristics of children

Characteristic∗
ASD (N = 163) TD (N = 212)

P-valueN (%) N (%)

Children
Gender

Male sex 129 (79.1) 104 (49.1) <0.001
Female sex 34 (20.9) 108 (50.9)
Mean age (years)a 7.23 (2.51) 7.71 (2.63) 0.075
Mean BMIb 15.44 (2.48) 15.37 (2.57) 0.816
BMI percentile

Underweight 47 (28.8) 67 (31.6) 0.301
Healthy weight 91 (55.8) 126 (59.4)
Overweight 22 (13.5) 17 (8.0)
Obese 3 (1.8) 2 (0.9)

∗diagnostic groups significantly different at α =0.05, a and b are presented by Mean (SD)
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Table 4 Percentages of food items eaten by ASD and TD children from each food group

Food group (n) Food group intake (%) Children (ASD/TD) Mean (SE) P-value∗
Vegetables (19) 47

63
ASD
TD

8.6 (0.5)
12.1 (0.3)

<0.001

Fruits (14) 57
86

ASD
TD

7.9 (0.49)
12.3 (0.2)

<0.001

Miscellaneous dishes (28) 71
86

ASD
TD

19.8 (0.7)
23.7 (0.3)

<0.001

Bread (11) 55
73

ASD
TD

6.0 (0.3)
8.0 (0.1)

<0.001

Protein foods (17) 65
82

ASD
TD

10.7 (0.4)
14.1 (0.2)

<0.001

Beverages (6) 50
67

ASD
TD

2.9 (0.2)
3.6 (0.1)

<0.001

Sandwiches (7) 57
71

ASD
TD

3.7 (0.2)
5.1 (0.1)

<0.001

Desserts (14) 57
79

ASD
TD

8.4 (0.4)
10.8 (0.2)

<0.001

Fast foods (3) 36
64

ASD
TD

1.1 (0.1)
1.9 (0.1)

<0.001

∗Significantdifferences at p-value < 0.05, ASD (127) and TD (197) children

Table 5 Intake preferences of food groups by ASD children and their families

Food group

Children Family

P-value∗Mean (SE) <50% of food group Mean (SE)
<50% of food 
group

Vegetables 8.6 (0.5) 59.8 16.87 (0.2) 3.1 <0.001
Fruits 7.9 (0.5) 44.9 13.6 (0.2) 2.4 <0.001
Miscellaneous 19.8 (0.7) 22.0 26.8 (0.3) 0.8 <0.001
Bread 6.0 (0.3) 42.5 9.0 (0.2) 9.4 <0.001
Protein foods 10.7 (0.4) 31.5 16.3 (0.2) 1.6 <0.001
Beverage 2.9 (0.2) 41.7 5.7 (0.1) 1.6 <0.001
Sandwich 3.7 (0.2) 42.5 6.1 (0.1) 6.3 <0.001
Desserts 8.4 (0.4) 29.9 12.4 (0.2) 1.6 <0.001
Fast food 1.1 (0.1) 64.6 1.9 (0.1) 37.0 <0.001

∗Paired t-test between ASD children and their families (N = 127). Excluded the restricted diet 
(163 − 36 = 127)

4.2.2  A Comparison on Food Intake Preference of ASD Children 
and Their Families

Results of paired t-tests on food preferences between children with ASD and their 
families showed that there were highly significant differences for all of the nine 
food groups (P < 0.001) in Table 5. From all the food groups, the ASD children not 
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only ate fewer of the listed food items but also ate lesser than their respective fami-
lies. As stated in the previous section, the ASD children ate fewer than 50% of the 
vegetables (8.6 ± 0.5) and fast foods (1.1 ± 0.1). In contrast, the families ate more 
than 50% of the varieties from all food groups.

4.2.3  A Comparison of Food Intake Preference of TD Children  
and Their Families

The results in Table 6 show that the TD children’s intake of food items from the nine 
food groups was significantly (P < 0.001) different from their families. For all food 
groups, the children consumed fewer listed food items than their family.

4.2.4  Food Intake Preferences of ASD Children and Their Families

Table 7 provides a list of those food items within each food group that the ASD 
children preferred in contrast to their families’ preferences. As mentioned earlier, 
ASD children ate fewer varieties of vegetables compared to their families, who ate 
most of the 19 varieties of vegetables. More than half the ASD children ate various 
portions of the following vegetables: onions, mixed vegetables, cucumbers, toma-
toes, carrots, and mostly potatoes. Similarly, the children with ASD had a lower 
intake of fruits as compared to their families. Among the 14 different types of fruits, 
the following were consumed by more than half the children: bananas, apples, 
watermelons, oranges, and mangoes. Other fruits included grapes, melons, dates, 
and pomegranates. On the one hand, more than 90% of the families ate all 14 
listed fruits.

As expected, most of the subjects in both groups (the children and their families) 
ate all the food varieties listed in the traditional Omani food group. Children with 

Table 6 Intake preferences of food groups by TD children and their families

Food group

Children Family

P-value
Mean 
(SE)

<50% of food 
group

Mean 
(SE)

<50% of food 
group

Vegetables 12.1 (0.3) 29.4 16.7 (0.2) 2.0 <0.001
Fruits 12.3 (0.2) 5.1 13.7 (0.1) 0.5 <0.001
Miscellaneous food 
items

23.7 (0.3) 4.6 26.6 (0.2) 0.0 <0.001

Breads 8.0 (0.1) 11.2 9.4 (0.1) 3.6 <0.001
Protein foods 14.1 (0.2) 5.1 16.1 (0.2) 1.5 <0.001
Beverages 3.6 (0.1) 22.3 5.5 (0.1) 4.1 <0.001
Sandwiches 5.1 (0.1) 15.7 6.2 (0.1) 3.0 <0.001
Desserts 10.8 (0.2) 3.0 12.2 (0.2) 2.0 <0.001
Fast foods 1.9 (0.1) 38.6 2.2 (0.1) 29.4 <0.001

N. M. Al-Kindi et al.



515

ASD preferred eating fewer types of bread as compared to their families. Of the 11 
types of bread listed, only 6 appeared to be the most popular among children. It 
included white toast bread, Lebanese bread-white, chapatti bread, burger bread, 
paratha, and rekhal (local thin bread). On the other hand, more than 50% of the 
families consumed all the listed food varieties, except Salalah bread, which is 
widely popular in the Dhofar region (Southern Oman). Of the 17 food items listed 
in the protein food group, 11 were eaten by more than 50% of ASD children. These 
include plain yoghurt, chicken, egg, meat, fish, cream cheese, sliced cheese, ched-
dar cheese, milk (whole), canned tuna, and pistachio. Most families’ intake of pro-
tein foods included all the items in the food list.

Most of the families consumed all 6 of the listed beverages, whereas majority of 
the children consumed only two types of beverages: tea with milk and soft drinks. 
Similarly, most families’ intake of sandwiches included all of the seven kinds listed 
in the food group. The majority of ASD children, however, only ate cheese sand-

Table 7 Percentage of vegetables, fruits, and miscellaneous food items eaten by more than 50% 
of either ASD children or their families

Food item (%)
Food group Children with ASD (N = 163) Family (N = 212)

Vegetables Potato (80), carrot (63), tomatoes 
(61), cucumber (60), mixed 
vegetables (57), onion (51)

Tomato (97), onion (97), lettuce (96), 
carrot (95), cucumber) 95), garlic (95), 
olive (95), green pepper (95), potato 
(95), green onion (93), eggplant (93), 
M. vegetables (93), chili (91), 
S. potatoes (90), lady finger (88), 
cabbage (86), cauliflower (79), spinach 
(70)

Fruits Banana (71), apple (67), watermelon 
(67), orange (65), grapes (56), dates 
(55), mango (58), melon (56), 
pomegranate (52)

Apple (99), orange (98), watermelon 
(98), banana 98)), dates (98), 
pomegranate (98), grapes (98), mango 
(97), guava (96), melon (96), pears 
(96), peach (95), kiwi (95), papaya 
(91)

Omani and 
miscellaneous 
dishes

Saloona chicken (85), saloona meat 
(85), biryani chicken (84), saloona 
fish (83), biryani fish (83), white rice 
(82), biryani meat (80), makboos 
chicken (77), qabooli meat (75), 
qabooli chicken (76), qabooli fish 
(72), makboos meat (72), makboos 
fish (71), macaroni (70), arsiya 
chicken (69), arsiya meat (69), 
chicken soup (66), samosa (64), meat 
soup (63), harees chicken (61), lentils 
(59), kidney beans (60), pizza (59), 
harees meat (58), thareed meat (52), 
beans (51), thareed chicken (50), 
chickpeas (50)

Makboos chicken (99), biryani meat 
(99), biryani fish (99), macaroni (99), 
biryani chicken (98), makboos fish 
(98), qabooli chicken (97), saloona fish 
(97), saloona meat (97), harees chicken 
(97), qabooli fish (97), arsiya chicken 
(96), lentils (96), chicken soup (96), 
harees meat (96), makboos meat (96), 
pizza (96), qabooli meat (96), saloona 
chicken (96), samosa (96), kidney 
beans (95), beans (95), chickpeas (95), 
white rice (94), meat soup (93), 
thareed chicken (87), thareed meat 
(85), arsiya meat (69)

Food Selection and Preferences of Omani Autistic Children



516

wich, chicken sandwich, egg sandwich, and cheeseburger. The desserts appeared to 
be the most popular in the food groups, with 9 out of the 14 listed items being con-
sumed by more than 50% of the children with ASD. These included biscuits, sweets/
candy, sponge cake, luqaimat (Omani sweet dish), custard, doughnuts, Omani 
halwa, croissant, and pancake. Majority of the families ate 13 of the 14 items listed 
in the food group (Table 8).

5  Discussion

The current study attempted to identify the relationship between food preferences of 
children with ASD and their families and other classified groups of children along 
with providing a categorized illustration of the food preferences as per classified 
grouping.

Table 8 Percentages of varieties of foods eaten by more than 50% of either ASD children or their 
families

Food item (%)
Food group Children with ASD (N = 163) Family (N = 212)

Breads White toast bread (74), Lebanese 
bread-white (71), chapatti bread 
(59), burger bread (58), paratha 
(57), rekhal (55)

Lebanese bread-white (95), white bread (93), 
brown toast bread (78), burger bread (91), 
chapatti bread (91), paratha (90), rekhal (85), 
Lebanese bread-brown (84), unspecified bread 
(79), tandoor bread (71)

Proteins Yoghurt plain (93), chicken 
(83%), egg (78), meat (75), fish 
(72), cream cheese (64), slice 
cheese (63), cheddar cheese (63), 
milk (whole) (56), tuna (canned) 
(55), pistachio (51)

Egg (99), pistachio (97), almonds (96), fish 
(96), meat (96), chicken (96), peanuts (95), 
cream cheese (96), cashews (95) cheddar 
cheese (95), milk (whole) (95), milk with 
chocolate (95), yoghurt with fruit (93), tuna 
(canned) (93), milk with fruits (91), yoghurt 
(plain) (78)

Beverages Bottled fruit juice (83), tea with 
milk (57), soft drinks (56)

Tea with milk (98), bottled fruit juice (97), tea 
w/o milk (95), Omani coffee (94), soft drinks 
(93), instant coffee (87)

Sandwiches Cheese sandwich (60), chicken 
sandwich (56), egg sandwich (51), 
cheeseburger (50)

Cheese sandwich (97), egg sandwich (95), 
chicken sandwich (94), falafel sandwich (90), 
cheeseburger (92), chicken fillet (81), fish fillet 
(55)

Desserts Biscuit (80), candy (76), cake 
(70), luqaimat (66), custard (62), 
doughnuts (62), Omani halwa 
(60), croissant (54), pancake (51)

Omani halwa (97), biscuit (96), luqaimat (96), 
candy (96), doughnuts (95), custard (95), cake 
(93), pancake (93), croissant (92), pudding 
(81), cheese cake (80), date pie (79), apple pie 
(53)

Fast food None Pizza Hut (69), KFC (67), McDonald’s (66)

∗ Significant differences at p-value < 0.05
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5.1  Food Preferences

Although clinicians and parents widely accept that children with ASD exhibit more 
feeding problems than their typically developing peers, only little information is 
available concerning the characteristics and preferences for food items accepted by 
these children [20]. Generally, the children with ASD have a rigid pattern of inter-
ests and activities and show an obsessive desire to stick to their routines and order, 
all of which are reflected in their food behavior [33]. Severe food selectivity in ASD 
children can lead to limited choices of food variety in their diet that may lead to 
long-term nutritional challenges [34].

There are few studies on selective eating behavior in ASD children, such as 
selectivity based on food presentation and food types [20, 35, 36]. These studies 
suggest that children with ASD generally prefer a more limited variety of foods as 
compared to TD children, which in turn may impact the overall quality of their diet 
[37]. These studies have provided only preliminary information concerning the food 
selectivity of children with autism. However, little is known about the types of food 
items typically preferred by them.

The results of this study showed that as compared to their typically developing 
peers, the Omani children with ASD, on an average, consumed a significantly 
smaller variety of food items within different food groups, including vegetables  
(9 versus 12), fruits (8 vs. 12), traditional foods (20 vs. 24), bread types (6 vs. 8), 
protein foods (11 vs. 14), beverages (3 vs. 4), sandwiches (4 vs. 5), sweets and des-
serts (8 vs. 11), and fast foods (1 vs. 2). This indicates that Omani children with 
ASD consumed significantly smaller varieties of food items from each food group 
per year as compared to the TD children. These findings corroborated findings from 
previous studies [2, 20, 38].

A recent survey by Williams et al. [21] investigated 100 parents of ASD children 
at the age range of22 months to 10 years. They found that 67% of the children’s 
parents recognized that their child was a “picky eater.” Regardless of this, nearly 
73% of the parents also reported that their child had good appetite for foods that 
they liked and only 6% showed poor appetite. Parents stated that the following fac-
tors influenced what their child would eat: texture (69%), appearance (58%), taste 
(%45) smell (36%), and temperature (22%). The most frequently reported eating 
problem was reluctance to try new foods (69%). Similarly, Schreck and Williams 
[20] stated that 72% of parents reported their children had a limited range of foods 
to select and 57% reported food refusal. Refusals were primarily related to food 
presentation (48.6%), such as use of particular utensil or different food items touch-
ing on the plate. Other factors related to food refusal and acceptance included (a) 
specific utensil requirements (13.8%), (b) food texture (6.5%), and (c) oral motor 
problems (23.2%).

In a more recent and larger-scale study [36], food selectivity in 138 children with 
ASD was compared to that of 298 typically developing children. Parents of the chil-
dren with ASD reported that their children refused significantly more food items and 
had a less-varied diet than children without ASD. Children with ASD were reported 
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to eat about half the number of food items in each food group, except for starches, 
where they ate about two-thirds of the number of food items as compared to typi-
cally developing children. In addition, children with ASD were significantly more 
likely to accept only low-texture foods such as those that had been pureed. Thus, the 
children with ASD had a significantly greater degree of food selectivity than typi-
cally developing children. Using the same data set in a subsequent analysis, 
Kimberly et al. [20] reported that the major reason for restricted food intake in chil-
dren with ASD could be attributed to food presentation, i.e., different food items 
touching on a plate or specific utensil requirements. Across all food groups, children 
with ASD ate fewer types of foods than did other members of their family. However, 
food preference (as defined by the number of different foods eaten) was also found 
to be related to the family’s food preferences. It is possible that the preference of 
many individuals with autism to eat a narrow range of food items from various food 
groups is due to their preference for routine and sameness. This may therefore cause 
learned habituation to familiar foods and rejection of any other food that is novel [20].

In line with this, our results on the BAMBI (Brief Autism Mealtime Behavior 
Inventory) related to selectivity, limited varieties, and food preferences showed that 
children with ASD displayed strong preferences for limited food varieties as com-
pared to TD children [39].

Overall, the children consumed fewer varieties of foods than their parents in all 
food groups. Omani children with ASD also tended to have very low preference for 
vegetables and their top three most preferred vegetables were potatoes, carrots, and 
tomatoes. The top three Omani traditional foods were chicken saloona [stew], 
chicken biryani [spiced rice], and fish biryani. There was high intake of beverages 
(bottled fruit juice, tea with milk, and soft drinks), desserts (including biscuit, candy, 
and sponge cake), protein foods such as chicken, egg, and yoghurt. However, fast 
foods were not among the preferences, since none of the three food items was pre-
ferred by more than 50% of the children. This study also found that Omani children 
with ASD were indeed idiosyncratically selective in the type of food items they 
preferred.

Food items preferred by 50% or more of the children with autism were less, 
compared to that of their caregivers. The food items preferred by autistic children 
were foods that are high in sugar content such as bananas, mangoes, sponge cakes, 
biscuits, candy, doughnuts, luqaimat [sweet dumplings], custard, Omani halwa (a 
sugary, buttery dessert), etc. The strong preference for sweet-tasting food items of 
children with autism can be explained by the theory that children have a predisposi-
tion for sweet and salty foods, while rejecting the bitter or sour foods [40]. 
Furthermore, children tend to learn preferences for familiar foods, which is clearly 
illustrated in our results from the overwhelming acceptance of most varieties of 
traditional foods by ASD children that are presented on a daily basis at lunch and 
dinner, indicating food preferences.

In general, there are many dimensions of food refusal behavior in children. These 
include food refusal based on sensory food aversion, where children refuse to eat 
foods with a specific taste, such as the following: (1) meal characteristics (i.e., the 
selection and provision of appropriate menus and repeated exposure to different 
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kind of foods and food textures), (2) schedule of intake (i.e., meal frequency and 
duration), (3) setting characteristics (i.e., altering the physical surrounding, feeding 
position and body support of the child, and activities before and after eating), and 
(4) interactions, i.e., reciprocity between child and feeder, the appliance of social 
contingencies by the use of behavior management procedures [41]. There is fear- 
based food refusal behavior, which appears or emerges after episodes of choking or 
severe gagging and the child’s aversive reactions can range from grimacing to gag-
ging, vomiting, or spitting out food. Some children extend their reluctance to eat 
one food to others that look or smell alike. For example, an aversion to green beans 
may extend to all green vegetables. Parents frequently report that their children are 
reluctant to eat new foods. Some children may even refuse to eat any food that has 
touched another food on the same plate, while others will only eat food prepared in 
a specific way [23].

ASD children, because of their food selectivity, may not reach the recommended 
dietary allowance (RDA) due to their refusal and limited food choices from all types 
of food groups. The findings of this study also indicated that ASD children ate less 
fruits and vegetables, which is consistent with other studies [42]. This could account 
for some micronutrient deficiencies and contribute to harmful health effects. 
Numerous studies have suggested a higher prevalence of obesity in children with 
ASD [43–45], and it is possible that this is related to refusal to eat healthy foods like 
vegetables and fruits [42, 46]. In addition, having a smaller proportion of healthy 
meals may cause high intake of empty calorie food. Empty calories are calories 
from solid fats and/or added sugars [47], and high intake is associated with 
 obesity [48].

5.1.1  Children’s Food Preferences in Relation to That of Their Family

Studies have shown that food preferences and eating patterns develop in early child-
hood and remain relatively stable through adolescence [49]. Therefore, early child-
hood may represent a sensitive window of development for establishing good eating 
habits and healthy food preferences that could potentially impact an individual’s 
lifelong health [50]. Parents influence children’s food preferences and intake pat-
terns through the foods they make available to their children, the types of child 
feeding practices they use, and their own eating behavior [51]. Mothers have been 
shown to influence their daughters’ fruit and vegetable intake via their own patterns 
of fruit and vegetable intake and by influencing their daughters’ tendencies to be 
picky eaters [52].

Our results have shown that children with ASD in Oman preferred fewer variet-
ies from all food groups as compared to their parents. The restrictive eating habits 
of children with autism spectrum disorders also tend to cause their families to 
restrict their own eating behavior as well (e.g., not wanting to prepare a wide variety 
of food items for different family members). Hence, the family’s initial restricted 
food choices may result in the children modeling their food selectivity and  restricting 
their exposure to new food items. Eventually, the parents adapt the family menu to 
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better fit their child’s preferences and avoid unfamiliar foods or ones they know will 
trigger aversive reactions. In contrast to these findings, those families that eat a 
wider range of foods influence their children to eat a broader range of foods as well. 
Parental behavior can, either positively or negatively, affect the eating patterns of 
children with ASD markedly [53]. Food selectivity appears to be a significant issue 
for many children with ASD. However, the concept of food selectivity has not been 
operationally defined and there are no “gold standard” measures. Food selectivity in 
children with ASD may occur for many reasons. Sensory sensitivity has been sug-
gested as one of the possible mechanisms to explain, in part, food selectivity of 
children with ASD [15].

6  Summary and Conclusion

This case-control study was conducted in various governorates/regions of the 
Sultanate of Oman to compare the food preferences of 4–13-year-old children with 
ASD and TD children. The mean BMI and BMI percentiles were not significantly 
different between the two groups. A comparison of food preferences between ASD 
and TD children was examined using FFQ with nine food groups, such as vegeta-
bles, fruits, traditional Omani food, bread, protein, beverage, sandwiches, deserts, 
and fast food. In general, the mean of the total score was significantly lower in 
children with ASD compared to TD children in majority of food groups. The aver-
age number of items within every food group was significantly higher for TD chil-
dren compared to ASD children (P < 0.001). Above 50% of the food consumed by 
ASD children were as follows: in miscellaneous dishes, saloona (chicken, meat, and 
fish) and biryani (chicken, meat, fish), and white rice. Likewise, yogurt and biscuits 
were also chosen by the same children. Whereas in the beverage section, bottled 
fruit juice was the top choice of ASD children. The list of most common dessert 
intake was biscuit, sweets, and cake. Additionally, children tended to have prefer-
ences for familiar foods which can be explained by their repetitive behaviors. This 
leads to the high acceptance of most varieties of traditional foods that are presented 
on a daily basis at lunch and dinner indicating food preferences of the ASD children. 
They also tend to prefer high sugar-content food, such as bananas, mangoes, sponge 
cakes, biscuits, candy, doughnuts, luqaimat [sweet dumplings], custard, and Omani 
halwa (a sugary, buttery dessert). However, less vegetable and fruit intake was 
observed in ASD children compared to TD children.

There are two main limitations of the FFQ used in this study. Firstly, the side 
effects of medication and gastrointestinal (GI) condition on the mealtime behavior 
of ASD children were not evaluated. Many children with autism are under medica-
tion with side effects that could adversely affect behavior and appetite. Secondly, 
the assessment of mealtime behavior of two groups of children (ASD and TD) was 
based on parental reports rather than direct observation. Despite these limitations, 
the food preference questionnaire is useful in that it is based on foods commonly 
eaten in Oman. Moreover, children on a restricted diet were excluded in order to 
obtain more accurate results.
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Based on our results, low fruit and vegetables intake may lead to inadequate 
intake of vitamins and minerals which may contribute to some autistic behavior. 
Therefore, it is important to monitor nutritional status and dietary intake of children 
with ASD regularly. Furthermore, improvement in nutritional awareness status 
among parents and caregivers of children with ASD is of great importance. Future 
studies to find the link between food preferences and their role on ASD pathology 
are warranted.
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“Tell me what you eat, and I will tell you what you are.”

– Anthelme Brillat-Savarin, 1826

“From the bitterness of disease man learns the sweetness of 
health.”

– Catalan Proverb

1.1  Overview and Reflection

Once ASD diagnosis has been established, deficits are treated with a multifaceted 
team approach. Approach to treatment regularly includes occupational, behavioral, 
speech, and play therapies. There are no pharmacological treatments for ASD, 
though many individuals receive medications to address comorbidities, such as sei-
zures and attention deficit hyperactivity disorder (ADHD). In some areas, children 
may receive support services in schools, including special education programs that 
target common comorbidities including learning disorders and intellectual disabili-
ties. For those individuals with a severe diagnosis, prognosis is far less positive. 
Severe cases may never learn to communicate, and they remain in a world that is 
withdrawn from peers and family. The focus of treatment for ASD is personalized 
to the needs of the individual, with a goal to improve quality life of the patient and 
those around them. Family and caregivers often struggle to relate due to barriers in 
communicating with those suffering with ASD, and are encouraged frequently as 
part of therapy to find shared enjoyment in activities that promote bonding.

The saying of Dr. John Christopher “Every home should have an herbalist” 
undoubtedly resonates with families having an ASD individual. Modern medicine 
and traditional medicine make unique contributions to health management. In some 
systems of traditional medicine, such as traditional Chinese medicine and the 
Ayurveda system historically rooted in India, traditional practices are supported by 
wisdom and experience acquired over centuries. Evidence is mounting that diet, 
exercise, and stress reduction can do a better job in disease/condition health man-
agement. In several North American and European countries, the production and 
sale of herbal medicines, dietary supplements, and the other so-called natural 
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products have become a huge and profitable industry. In the USA alone, this industry 
is a $32 billion a year business.

The critical question is Do Alternative Therapies Have a Role in Autism? The effi-
cacy of herbal medicines for the management of ASD appears to be encouraging 
though was inconclusive owing to low methodological quality, herbal medicine diver-
sity, and small sample size of the examined studies. It is imperative that data supporting 
new personalized intervention and therapy for autism management should be scruti-
nized for scientific study design, clinical safety, and scientific validity, before embark-
ing on them as modes of therapy. The most commonly used CAM treatments for ASD 
fall into categories of biologically based practice and manipulative and body based 
practices. Many parents of autistic children are turning to alternative therapies in an 
effort to stimulate developmental progression in language skills and social interactions.

Selected examples of intervention and therapy based practices

Body and behavioral therapy Biological therapy

Behavioral therapy
Occupational therapy
Speech therapy
Auditory integration training (AIT)
Music therapy
Vision therapy (VT)
Massage therapy
Physical activity
Yoga therapy

Nutrition and diet therapies
Ayurveda/Chinese herbal medicines
Homeopathy medicines
Anti-fungal/probiotic therapy
Chelation therapy
Hyperbaric oxygen therapy

According to the Autism Society of America, “as there is no one symptom or 
behavior that identifies individuals with ASD, there is no single treatment that will 
be effective for all people on the spectrum.” There is increasing evidence that spe-
cific CAM therapies for treating ASD symptoms like vitamins, amino acids, essen-
tial fatty acids, oligoantigenic diet, and herbal medications are helpful to many ASD 
patients. Equally important, the capacity to manage comorbidities.

ASD is no longer the domain of psychiatrists and special educators alone. ASD 
therapy/management should be viewed holistically with nutritional dysfunctions 
being addressed. Autism remains a challenging condition for individuals and their 
families. Certainly, the outlook nowadays is much better than it was a generation 
ago. Today, with appropriate intervention and therapy, clinicians can help reduce 
many of the autism symptoms. Still, we believe a significant level of engagement by 
primary care physicians is required and should be mandated. Just as important, it is 
necessary that physicians increase their comprehension and knowledge base around 
CAM.  In this section, we discuss not only phytochemicals/nutraceuticals natural 
products approaches but also novel technology intervention.

Lastly, taking into account the diversity of herbal medicines and varieties of inte-
grative therapy combined with herbal medicines, we believe future research should 
standardize the optimal composition of herbal medicines and types of integrative 
therapy combination. This standardization will improve the applicability and gener-
alization of phytochemicals/nutraceuticals utilization for healthcare management of 
children with ASD.
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Overview of Nutritional Therapy 
for Autism Spectrum Disorder

Carla Vartanian

Abstract The objective of this chapter is to evaluate the latest research pertinent to 
nutritional management in the treatment of autism spectrum disorder (ASD) and 
discuss the effectiveness of dietary interventions, nutritional approaches, and sup-
plementation in ASD.  To date, the best conventional treatments for autism have 
been based on a combination of pharmacotherapy, behavioral treatments, and nutri-
tional/dietary therapy, leading many parents and caregivers to opt for specific dietary 
interventions in the hope of alleviating the symptoms of their children and helping 
them cope with this disorder. Thus, the role of a registered dietitian and a nutrition 
specialist is crucial in planning specific nutritional and dietary interventions tailored 
to individual needs, to make sure the child’s nutritional needs for growth and devel-
opment are being met. In addition, a careful monitoring of the nutritional status and 
the positive or negative outcomes pertinent to the planned intervention is a must. 
Furthermore, numerous studies have also discussed how the maternal diet and spe-
cific dietary supplements might affect the behavioral development of children in the 
first few years of life. A review of the abovementioned nutrition-related key points 
is discussed in this chapter.

Keywords ASD · Autism · Diet · Nutritional deficiency · Nutritional therapy · 
Nutrition management · Dietary intervention

1  Introduction

The number of children diagnosed with autism has been significantly increasing 
worldwide over the last decades. Autism is considered a complex neurobehavioral 
condition that includes impairments in social interaction, developmental language, 
and communication skills combined with rigid, repetitive behaviors (Fig. 1). With 
both communication and behavior being greatly affected, children with autism often 
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require special care since self-expression and communication in everyday life 
 matters becomes very difficult. Furthermore, the Diagnostic and Statistical Manual 
of Mental Disorders, created by the American Psychiatric Association to diagnose 
mental disorders, classifies people with autism spectrum disorder to have limited 
interests and repetitive behaviors in addition to other symptoms such as the inability 
to function properly in all areas of life [1]. Autism can be diagnosed at any age; 
however, symptoms usually appear in the first few years of life. ASD is reported to 
be more common in boys than girls, with an estimated ratio of 4:1, respectively [2]. 
The reason for this dominance in males is still unknown; however, many therapies 
have been proposed, including the fact that it might be related to the direct effect of 
sex chromosomes [3].

2  Causes of Autism Spectrum Disorder

To date, specific underlying causes of autism spectrum disorder cannot be identified 
[4] and research has shown that only less than 12% of autism cases have specific 
identified causes [5]. Many risk factors have been investigated throughout the years, 
among which are genetic, infectious, nutritional, environmental/chemical, and 
maternal metabolic conditions such as diabetes, obesity, and the use of anti-seizure 
medications during pregnancy.

Most researchers think that certain combinations of genes may predispose a 
child to autism and genetics and environmental factors play a big role in developing 
autism in addition to the neurologic, metabolic, and immunologic factors [6, 7]. As 
a matter of fact, hereditary factors have shown to play a role in this developmental 
disorder with an estimated 2–8% chance [8]; raising to 12–20% in specific cases in 
which one of the siblings also shows other impairments associated with autism [9].

Environmental factors and the positive effect of different protective factors 
related to autism spectrum disorder have also been studied. Among these is the role 
of unsaturated fatty acids such as linoleic acid, omega-3, and omega-6, on the reti-
nal and brain development in the first 2 months of pregnancy, which is considered 
the most critical period of embryonic physical development [10]. For instance, it 
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was reported that that high maternal intake of omega-6 and linoleic acid is inversely 
associated with ASD risk in offspring, corresponding to a 34% reduction in autism 
risk, thus confirming that fatty acid consumption of different diets has an inverse 
effect on risk of autism [11]. In addition to the unsaturated fatty acids, maternal folic 
acid supplementation during early pregnancy was also shown to be associated with 
less behavioral and language development problems in offsprings during their first 
years of life, in addition to a lower incidence of autism [12].

3  Nutritional Management of Autism Spectrum Disorder

3.1  Special Diets

Children with autism spectrum disorder are often at risk of significant nutritional 
deficiencies, metabolic imbalances, and digestive problems due to feeding problems 
and unusual eating patterns. Furthermore, there is a lot of speculation related to the 
potential role of nutrition and metabolism in affecting the behavior of these chil-
dren. In addition, it has been suggested that autistic children might benefit from 
special diets in hopes of reducing their symptoms. The most popular of these diets 
is the gluten-free and casein-free diet (GFCF).

3.1.1  The Gluten-Free and Casein-Free Diet

This diet basically consists of removing both gluten and casein types of proteins 
(found in wheat, rye, barley, and milk products, respectively) from the diet of chil-
dren suffering from autism. This is due to the theory that changes in the metabolism 
of these specific proteins may result in high opioid peptide levels which in turn may 
affect the central nervous system and the brain and have a negative impact on behav-
ior. Studies related to the effects of GFCF diets are limited because of the difficulty 
in monitoring the adherence of autistic children to these GFCF diets. However, 
available research data, to support the use of a casein-free diet, a gluten-free diet, or 
a combined gluten-free, casein-free diet as a primary treatment for individuals with 
ASD, suggests that evidence is lacking [13]. Additionally, the literature currently 
available suggests the need for further studies before implementing this specific diet 
and removing both gluten and casein.

3.1.2  Other Nutritional Interventions

Many other nutritional approaches and dietary therapies have also been proposed 
such as the ketogenic diet and yeast-free diet, in addition to the restriction of food 
allergens (Fig. 2). Other experimental therapies have included the use of dairy-free 
diets and the use of camel’s milk [14].
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3.1.3  The Role of Dietary Supplements

Probiotics, digestive enzymes, and dietary supplementation with micronutrients 
such as such as vitamins A, C, B6, folic acid, B12, and D and minerals like magne-
sium, zinc, and selenium have also been studied in autism spectrum disorder; one 
of the most researched supplements being, the unsaturated fatty acids. For instance, 
two studies have reported low levels of omega-3 fatty acid observed in the blood of 
autistic children [15, 16]. Many studies suggest that customized vitamin/mineral 
supplementation is beneficial for children with autism spectrum disorder, and three 
studies have demonstrated that children with this disorder have impaired methyla-
tion, decreased glutathione, and increased oxidative stress [17–19]. Other studies 
have also reported the effectiveness of digestive enzyme supplementation in autism. 
One randomized, double-blind study did find that digestive enzymes were helpful 
for autism [20], but another similar study did not find significant benefits [21]. A 
recent randomized, controlled, single-blind 12-month treatment study of a compre-
hensive nutritional and dietary intervention had been conducted. It involved 67 
children and adults with autism spectrum disorder between the ages of 3 and 58 
from Arizona and 50 non-sibling neurotypical controls of similar age and gender. 
The test aimed at studying carnitine and homocysteine levels in the treatment group 
in addition to other micronutrients. Compared to the nontreatment group, the treat-
ment group had a significant decrease in homocysteine, and a modest increase 
(plasma carnitine was only approximately 25%), which was less compared to 
 previous studies. The authors hypothesized that intracellular levels may be better 
predictors [22].

To date, there is no cure for autism. The Food and Drug Administration (FDA) 
plays an important role in warning companies and taking action against those mak-
ing improper claims about their products’ intended use as a treatment or cure for 
autism or autism-related symptoms. They are also involved in informing consumers 
about the health consequences of potential products or treatments claiming to “cure” 
autism [23]. In addition, a recent review of the nutritional and dietary interventions 
for autism spectrum disorder showed that there is little evidence to support the use 
of nutritional supplements or dietary therapies for children with ASD [24].
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3.2  Nutritional Concerns in Autism Spectrum Disorder

Children with ASD may have limited food intake leading to decreased consumption 
of nutritious meals. Many children with autism do not always get the adequate nutri-
tion necessary for their growth and development due to many reasons [25–27]. For 
instance, some children may limit their food intake or only eat certain foods because 
of how the foods feel in their mouths. Others might try to avoid specific foods 
because they associate them with stomach pain or discomfort. The most common 
GI symptoms include chronic diarrhea, constipation, abdominal discomfort and 
bloating, gastroesophageal reflux disease, and a leaky gut syndrome. According to 
the American Academy of Nutrition and Dietetics, children with autism may have 
limited food selection or strong food dislikes because of their sensitivity to taste, 
smell, color, and texture of foods; additionally, the habit of eating small quantities 
since it may be hard for them to focus on eating the meal for an extended period. 
They may also be more prone to suffer from constipation because of their limited 
food choices. However, this can be resolved through a high-fiber diet with plenty of 
fluids, fruits and vegetables (if possible), and regular physical activity. Medication 
interaction is another health concern that children with autism may suffer from as 
some stimulant medications used with autism may lower the appetite while others 
may increase appetite or affect the absorption of certain vitamins and minerals [28]. 
In addition, it was reported that people with autism suffer more from digestive prob-
lems (such as abdominal pain or vomiting) than people without autism. However, 
further research is needed to confirm these findings [29, 30].

3.3  Nutrition Strategies for Children with Autism

Caring for a child with autism can be challenging on many levels, as every child is 
unique. The treatment of autism spectrum disorder usually consists of a comprehen-
sive program of educational intervention, behavioral treatment, and developmental 
therapies in addition to dietary intervention, when recommended (Fig. 2). The char-
acteristics of the disorder can greatly impact feeding and nutrition. Feeding prob-
lems such as unusual eating patterns and food selectivity are very common in 
children with ASD [31]. As a consequence, this may lead to the consumption of 
unbalanced meals and result in nutritional deficiencies [32].

Parents and caregivers should always work with a registered dietitian nutritionist 
when planning nutritional and dietary interventions to make sure the child’s nutri-
tional needs for growth and development are being met, even while on a special diet 
or a nutrient restriction intervention. Children who are autistic may sometimes need 
strategies such as positive reinforcement to increase acceptance of new foods. In addi-
tion, parents need to establish appropriate structure and rules for mealtimes to make it 
more fun and appealing to the child and, most importantly, decrease all potential 
stressors. Specialists also emphasize that continual monitoring of the diet and nutri-
tional status of children with ASD is required [33].
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4  Conclusions

While research has been growing in all aspects related to autism spectrum disorder, 
to date, available data has only supported the use of pharmacologic treatments and 
behavioral or educational interventions. In addition, most randomized control trials 
are limited. This is due to small sample sizes or being conducted with various popu-
lations and study groups owing to many limitations (including the long-term effects 
of the therapies and the potential for nutritional deficiencies as a result of long-term 
dietary exclusion) and the lack of long-term data and life-span data on health risk 
associated with specific and nutrient limiting diets. Thus, appropriate clinical and 
dietetic support should be considered during any attempt to make such dietary 
changes. More prospective controlled trials are also needed before recommenda-
tions about specific nutritional plans and supplementation can be made regarding 
ASD. Future research should be designed to identify medical nutrition therapies 
targeting this population, aim to better understand the link between ASD and nutri-
tion, and determine the efficacy of dietary therapy approaches. In addition to this, if 
any supplementation is to be recommended in the future, many discrepancies and 
conflicting information in patients must be resolved as a safe and effective alterna-
tive approach for the treatment of ASD.
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Importance of Nutrition Intervention 
in Autistic Patients
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Abstract Along with the issues of inflated social and financial burden associated 
with autism spectrum disorder (ASD), specific treatment for this disorder has also 
not been developed. Having a thorough look at previous trials done to treat autism, 
we find that nutrition intervention had been used frequently as a complementary 
form of therapy. Indeed, an early diagnosis of nutrition deficiency and metabolic 
disorders done concomitantly with accurate therapeutic interventions can be a cor-
nerstone for improving cognitive and behavioral aptitudes of people with autism. 
Several studies have showed that increasing the intake of specific nutrients can 
reduce the symptoms and comorbidities associated with autism. Consequently, 
nutrition intervention and appropriate supplementation can be crucial in managing 
and treating autism. This paper will discuss recent literature on the significance of 
metabolic aspects in autistic disorder and highlight the influence of nutrition inter-
vention on the symptoms of autism.

Keywords ASD · Autism · Diet · Nutrition deficiency · Nutrition intervention · 
Nutrition therapy · Metabolic disorders

1  Introduction

According to the World Health Organization (WHO), “there is no health without 
mental health” [1]. Indeed, psychological well-being is a fundamental aspect of 
total well-being, regardless of age, sex, religion, society, and race. Data collected on 
diets, energy consumption and their influence on emotional wellness essentially 
focus on three themes: psychological wellness, proposed mediations (nutritional 
screening and appraisal for psychological well-being), and the link between diet and 
psychological wellness. Miscellaneous studies have emphasized the important role 
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of nutrition intervention and the influence of individualized diets on mental disor-
ders. Many data analyses have reported a significant interface between nutrition and 
many disorders like those on the schizophrenia spectrum, depressive disorders, 
anxiety disorders, eating disorders, neurocognitive disorders, and neurodevelop-
mental disorders including autism [2].

The Diagnostic and Statistical Manual of Mental Disorders-fifth edition (DSM 
5) reports that autism spectrum disorder manifests as abnormalities in social com-
munication and interaction and the occurrence of repetitive, restricted patterns of 
behavior or activities. According to the American Psychiatric Association, ASD 
represents a single continuum of impairments with a varying degree of severity [3]. 
A closer look at existing literature helps us find that many studies have tried to 
describe the root cause of ASD. However, there is no significant information on the 
etiology and pathogenesis of autism. Some hypotheses state that ASD is caused by 
genetic origins [4, 5]. Many studies have reported that environmental agents, mito-
chondrial disorders, parental age, infections during pregnancy, and testosterone lev-
els can be risk factors for developing ASD [6]. On the other hand, some research 
has stated that ASD can result from an interaction between genetic and environ-
mental factors with oxidative stress [7]. Other studies have showed that ASD may 
develop due to exposure to environmental toxins during the fetal and immediate 
neonatal period [8]. Furthermore, nutritional deficiencies may be a risk factor for 
development of ASD as well. Studies have revealed that many children with ASD 
are picky eaters, due either to sensitivities to certain types of food or selective eat-
ing behaviors. This can easily lead to inadequate nutrient intake [9]. In this regard, 
many findings reveal that nutrition intervention can significantly help some ASD 
patients [10–12]. Recent evidence has also suggested that probiotics, digestive 
enzymes, vitamins, minerals, amino acids, and specialty supplements are key com-
ponents of each: the biomedical approach, primary intervention, and adjunctive 
measures of ASD. Of special interest to current authors is the exploration of meta-
bolic abnormalities associated with ASD and a review of the literature that high-
lights the influence and relationship between nutrition, dietary intervention, 
and ASD.

2  Diet, Metabolic Disorders, and Autism

Metabolic disorders are the result of a defective flow of metabolic reactions in the 
body. Such errors may be a result of miscellaneous factors such as genetic mutation, 
poor diet, and unhealthy lifestyle. Metabolic disorders may affect many systems in 
the body and can also be fatal. It can reduce the psychomotor performance of an 
individual and hence requires certain dietary restrictions [13].

Although most ASD cases are not related to identifiable metabolic disorders, 
numerous neurometabolic disorders associated with ASD such as phenylketonuria 
(PKU), profound biotinidase deficiency (PBD), disorders of purine metabolism, and 
Smith-Lemli-Opitz syndrome (SLOS) have been recognized [14, 15].
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Phenylketonuria affects approximately 1 out of 10,000 newborns in European, 
Chinese, and Korean populations [16]. PKU is an inborn error of metabolism that 
results in decreased function of phenylalanine hydroxylase, which is responsible for 
the transformation of phenylalanine into tyrosine [15]. If left untreated, excess phe-
nylalanine amino acid builds up in the blood leading to brain damage and other 
neurological problems, such as ASD [17]. However, an early detection of PKU 
through newborn metabolic screening can contribute to successful treatment. 
Indeed, PKU cannot be treated. However, associated complications can be eradi-
cated by following a controlled diet that limits the intake of protein products rich in 
phenylalanine. Nutrition intervention is crucial for prevention of brain damage and 
subsequent developmental and intellectual problems, thereby facilitating normal 
development of a child with PKU [16, 18].

The two disorders of purine metabolism related to ASD may be distinguished: 
adenylosuccinase deficiency and adenosine deaminase deficiency. The first is char-
acterized by the accumulation of succinyl aminoimidazole carboxamide riboside 
and succinyl adenosine in body fluids, while the latter is associated with improper 
conversion of deoxyadenosine to the nontoxic deoxyinosine resulting in accumula-
tion of deoxyadenosine that impairs normal immune function. Adenylosuccinase 
deficiency manifests as developmental delay, agitation, seizures, and autistic fea-
tures (e.g., poor eye contact). Unfortunately, no effective treatment is available yet 
[15, 16].

Another associated disorder is profound biotinidase deficiency (PBD) which is 
an autosomal recessively inherited disorder related to biotin metabolism. It mani-
fests as neurological symptoms like hypotonia, breathing problems, ataxia, sucking 
disorders, intractable seizures, and global developmental delay [19]. Research 
 findings have reported that early treatment with the co-factor biotin may protect 
from neurologic complications.

Yet another metabolic disorder related to ASD is Smith-Lemli-Opitz syndrome 
(SLOS), which is an autosomal recessive disorder caused by the deficiency of 
7-dehydrocholesterol reductase, a final enzyme in the cholesterol synthetic path-
way. These abnormalities result in impaired embryonic and fetal somatic develop-
ment, causing postnatal abnormalities of learning, growth, behavior, and language 
[20]. Although an elevated level of cholesterol in the blood of ASD patients is not 
associated with the severity of ASD symptoms, findings have showed that choles-
terol supplementation may have a positive influence on autistic behaviors among 
children with SLOS [21].

Additionally, some studies have revealed that gastrointestinal disturbances, 
which may lead to behavioral impairments, are common among children with 
ASD. One of these metabolic abnormalities, first reported in ASD patients 30 years 
ago, is associated with elevated levels of peptides [22], especially gluten, casein, 
and gliadin.

There are also other disorders resulting from abnormalities in organic acid 
metabolism that are reported in ASD [23, 24]. For instance, the accumulation of 
organic acids in urine may indicate a disorder in metabolism, nutritional deficiencies, 
and bacterial overgrowth in the body [25]. Metabolic fingerprinting has indicated a 
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correlation between the levels of succinic acid and the presence of bacterial infec-
tion [23, 26]. Urine analyses have demonstrated elevated levels of butyric acid in the 
urine samples of ASD patients [27].

The aforementioned issues will be described further in this paper.

3  Nutritional Disorders in Autistic Children

When the gastrointestinal tract (GIT) functions properly, enzymes break down pro-
teins into peptides and then into amino acids. The latter is absorbed into the blood-
stream and transported to the body. Some disruptions in this process are considered 
to be associated with ASD and are called opioid-excess theory. Opioids are a group 
of chemical compounds that affect the function of the brain and nervous system. 
These compounds influence the perception of emotion and behavior. The main 
assumption of this theory is that some children with ASD suffer from increased gut 
permeability and improper production of digestive enzymes related to gluten and 
casein. Inadequate levels of these enzymes result in failures to transform gluten and 
casein into amino acids. Consequently, increased gut permeability enables leaking 
into the bloodstream, where metabolites can pass through the brain–blood barrier 
[28] causing disruption to the normal functioning of the nervous system by regulat-
ing signal transduction in the brain. Findings have reported that elimination of glu-
ten- and casein-containing food from the diet of such children resulted in the 
disappearance of the symptoms associated with ASD [29]. Gluten is found in wheat, 
oats, barley, and rye, and casein is a protein of animal origin found in milk and other 
dairy products. Inconsistently, some studies have stated that a gluten- and casein- 
free diet (GFGF) can lead to other nutritional deficiencies and low plasma levels of 
essential amino acids.

4  Candida and Nutrient Disorders

Children with ASD commonly have gastrointestinal (GI) problems [30]. 
Researchers have found that such GI problems can contribute to the severity of the 
ASD and the associated symptoms. Although the mechanism of this relation is not 
clear, abnormal gut flora and the abuse of oral antibiotics could be the culprit [31]. 
Findings have revealed that some ASD individuals have decreased levels of benefi-
cial bacteria and increased levels of harmful bacteria and yeast. Indeed, the harm-
ful bacteria and yeast, found in insufficient quantities, can contribute to disorders 
in mental functioning and behavior due to their ability to produce toxins such as 
alcohol.

Candida albicans is a yeast-like fungus present in almost all humans. It is 
found in the dark moist mucous membranes that line the vagina, intestinal tract, 
and mouth. Indeed, Candida albicans can cause infections, especially in immuno-
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compromised individuals. In an ordinary situation, the fungus exists only in small 
colonies. However, if the natural balance is disrupted, it grows rapidly leading to 
undesired symptoms (e.g., white yeast infection of the mouth and tongue) [32]. 
Some research has suggested that toxins produced by candida have severe impacts. 
They can affect the brain and result in severe long-term disruptions of the immune 
system [33]. The overgrowth of Candida albicans can be associated with behav-
ioral disorders in children with ASD, such as hyperactivity, aggression, and prob-
lems with concentration. It manifests as headaches, stomach problems, painful 
gases, fatigue, or depression. Studies have showed that some safe methods may be 
used to treat fungus overgrowth like following a low-sugar diet [34].

5  Nutritional Strategies in Autism

Studies have demonstrated significantly low levels of nutrients in blood, urine, hair, 
and other tissues in children with ASD. Laboratory analyses exhibit low levels of 
vitamins, minerals, essential fatty acids (EFA), and amino acids in children with 
autism. Consequently, these deficiencies result in neurological problems such as 
weakness of vision, speech, attention, and socialization. Consistently, such findings 
emphasize the significant role of vitamins and nutrition supplementation in treating 
autism [35–37].

Indeed, different studies have demonstrated the benefits of targeted vitamin/min-
eral nutritional supplementation in the improvement of neurological disorders and 
behavioral and cognitive gains in autistic children [10, 38]. Urine analyses of suc-
cinic, adipic, and suberic acids enable the detection of nutritional deficits in children 
with ASD and the introduction of appropriate supplementation [25]. Existing litera-
ture has showed that the diet of children with ASD children is unbalanced which 
may lead to nutritional deficits resulting in metabolic disorders. Diet analyses of 
children with autism reported that their diet is considerably low in vitamin C; vita-
mins B1, B2, B6, B9, and B12; and vitamin A [39]. Children with ASD often suffer 
from impaired methylation, decreased glutathione, and oxidative stress [40]. In such 
cases, nutritional supplementation (with vitamin methyl-B12, folinic acid, and tri-
methylglycine) is beneficial.

Studies have stated that magnesium and vitamin B6 can reduce symptoms of 
hyperexcitability (physical aggression, instability, scholar attention, hypertony, 
spasm, myoclonus) [41]. Magnesium has diverse essential functions. It is involved 
in bone formation, regulates enzyme activities included in at least 300 enzyme pro-
cesses of intermediate metabolism, and is necessary in all enzyme reactions involv-
ing adenosine triphosphate. Moreover, it is included in many enzymatic reactions 
present in nucleic acid metabolism [42]. A number of studies have described the 
involvement of magnesium in the pathogenesis of autism [12, 43]. Analysis of hair 
and nails of children with autism determines the deficiency of micronutrients, 
including magnesium [44]. Vitamin B6 participates in transamination of amino 
acids, decarboxylation reactions, modulation of the activity of steroid hormones, 
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and regulation of gene expression. Many studies have showed that treatments with 
vitamin B6 and magnesium supplementation have resulted in improvement in 
speech/communication, social interaction, and stereotype behavior [12]. Eating 
habits and nutritional deficiencies in autistic children further emphasize the neces-
sary role of nutritional supplementation.

The levels of dicarboxylic acids after supplementation in the diet of autistic chil-
dren were first described by Kałużna-Czaplińska and co-authors [45, 46]. A hypoth-
esis on the significance of vitamins B2 and B6 and magnesium in treating autism 
was set due to observed dietary deficiency of the aforementioned nutrients [39, 44] 
and the high levels of dicarboxylic acids in the urine of autistic children. Researchers 
have reported that therapy with vitamin B2 can be considered a significant potential 
intervention in increased urinary excretion of adipic and suberic acid. Additionally, 
magnesium was found to be another element of therapeutic intervention in cases 
when high levels of succinic acid are observed [47]. Consistently, statistical analy-
ses have showed that parents could notice an improvement of some autistic symp-
toms like the ability to concentrate and make eye contact.

6  Personalized Diet for Autism

For decades, medicine and diagnosis have used information obtained from analyses 
of metabolic profiles as they provide accurate information about the dynamics of the 
biological system, reflecting genetic and physiological changes [48]. The term 
“metabolome” refers to the complete set of metabolites, including all small- 
molecule metabolites and excluding proteins and nucleic acids [49]. The  importance 
of metabolic profiling in the diagnosis of cancers and neurological and metabolic 
disorders has been increasing. It has also become a crucial part of the diagnostic and 
therapeutic process in ASD.  Homovanillic (HVA) and vanillylmandelic (VMA) 
acids are considered to play a crucial role in the diagnosis of health problem, includ-
ing neurological diseases and disorders.

The determination of 14 organic acids revealed differences in metabolic profiles 
of ASD and healthy individuals [24]. The levels of these compounds in children 
with ASD were found to be elevated. The correlation between severity of ASD 
symptoms and the levels of particular metabolites was implicated.

Findings have showed that some metabolic abnormalities, such as GI tract dys-
function, are associated with ASD and can lead to aggravation of symptoms [50]. 
Data analyses have reported that some children with ASD are diagnosed with 
digestive problems due to limited ability to digest proteins. Hence, children with 
autism follow specialized diets that are low in proteins. Proteins are built with long 
chains of amino acids which can be reassembled to form critical substances like 
neurotransmitters, enzymes, hormones, antibodies, immunoglobulins, and 
many others.

Consistently, many analytic studies have reported abnormally high levels of the 
amino acid, homocysteine (Hcy), in children with ASD. Findings have revealed that 
children with ASD exhibit improper metabolism of Hcy by the cerebral tissue 

T. ElObeid et al.



541

resulting in the accumulation of this compound in the nervous system [51]. 
Homocysteine is considered to contribute to the neuronal damage and cell loss asso-
ciated with ASD [52]. The relationship between levels of Hcy in serum samples of 
ASD individuals and vitamin B12 deficiency had been described first by Paşca et al. 
[53]. They indicated that high levels of Hcy and oxidative stress markers are associ-
ated with ASD. Additionally, other studies have also showed significantly higher 
levels of Hcy in ASD patients compared to healthy children. The results became a 
cornerstone in the preparation of individual and personalized diets for ASD patients 
[45, 46]. This study was independently verified by Ali et al. [54]. Studies have also 
revealed that the introduction of supplements such as vitamin B6, B12, and folate 
could reduce the Hcy levels in blood.

Some disturbances in the levels of glutamate and glutamine have been indicated. 
Findings showed that children with ASD have high levels of glutamate and a low 
level of glutamine [55]. The authors have suggested that the levels of these amino 
acids may serve as a distinguishing factor of high IQ between children with ASD 
and healthy children.

Hypotheses stating that the levels of glutamate and homocysteine are associated 
with aggression and irritability could be the key to treating such ASD symptoms.

Furthermore, the levels of other amino acids such as taurine [56], lysine [57, 58], 
and aspartic acid [59] were also found to be increased in children with ASD.

Indeed, a well-balanced diet containing all the essential and nonessential nutri-
ents is indispensable for proper functioning of the body. Consequently, a diet rich in 
some nutrients and substances may contribute to the improvement of different 
health conditions. However, individuals with ASD exhibit many nutritional deficits 
due to their restrictive diets. Thus, the assumption that nutrition intervention can 
significantly contribute to treat ASD-associated symptoms and comorbidities is rea-
sonably implicated.

7  Conclusion

Vitamins, minerals, amino acids, and essential fatty acids found in food are a neces-
sity for the proper development of a child’s brain. Any deficiency in such nutrients 
can affect the production of neurotransmitters and disturb normal visual and cogni-
tive processing. Nutrition deficiencies, allergies, sensitivities, and gastrointestinal 
disorders are often reported in children with autism. Autistic children have restric-
tive eating behaviors and problem feeding behaviors that put them at risk for poor 
nutrition intake. Many researchers believe that improving nutritional intake of the 
autistic child can help improve overall health, behavior, and brain function. In exist-
ing literature, there are reports of the beneficial effects of vitamins and different 
nutritional supplements in the treatment of autism. This has also been ascertained 
by parents of autistic children who have reported improvement of some autistic 
symptoms like concentration and eye contact after introducing nutrition supplemen-
tation. Consequently, there is an increasing interest in an individualized diet and 
supplementation for autistic children.
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Nutritional strategies and personalized diet have been necessary and helpful for 
many autistic children with a disorder in metabolism, nutritional deficiencies, and 
bacterial overgrowth. Indeed, nutritional interventions are a matter of parent/care-
giver choice.

Many studies have been conducted by scientists across different countries and 
scientific specialties to explore nutritional strategies and personalized diets for those 
with ASD. Continued observations and research on the association between nutri-
tion intervention and ASD and its comorbidities are required.
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Abstract This chapter reviews the literature surrounding autism spectrum disor-
ders (ASD) and their relation to gastrointestinal (GI), behavioral, neurological, and 
immunological functioning. Individuals with ASD often have poor GI health, 
including bowel motility issues, autoimmune and/or other adverse responses to cer-
tain foods, and lack of necessary nutrient absorption. These issues may be caused or 
exacerbated by restrictive behavioral patterns (e.g., preference for sweet and salty 
foods and/or refusal of healthy foods). Those individuals with GI issues tend to 
demonstrate more behavioral deficits (e.g., irritability, agitation, hyperactivity) and 
also tend to have an imbalance in overall gut microbiome composition, thus cor-
roborating several studies that have implicated brain–gut pathways as potential 
mediators of behavioral dysfunction.

We examine the literature regarding dietary approaches to  managing  ASDs, 
including elimination diets for gluten, casein, or  complex carbohydrates, a keto-
genic diet, and a low oxalate diet. We also explore the research examining dietary 
supplements such as fatty acids, pro- and prebiotics, vitamins, minerals, glutathi-
one, phytochemicals, and hormones. The research on dietary approaches to manag-
ing ASDs is limited and the results are mixed. However, a few approaches, such as 
the gluten-free/casein-free diet, fatty acid supplementation, and pre/probiotics have 
generally demonstrated improved GI and associated behavioral symptoms. Given 
that GI issues seem to be overrepresented in ASD populations, and that GI issues 
have been associated with a number behavioral and neurological deficits, dietary 
manipulation may offer a cheap and easily implemented approach to improve the 
lives of those with ASD.
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1  Overview of Autism Spectrum Disorders

1.1  Prevalence and Common Features

Autism spectrum disorders (ASDs) are characterized by sustained deficits with 
social communication/interactions and repetitive/restricted behavioral patterns that 
may interfere with activities of daily living. By some accounts, approximately 60 
million people are affected worldwide by ASDs. The Autism and Developmental 
Disabilities Monitoring (ADDM) Network estimates that the prevalence among 
8-year-old children has increased from approximately one in 150 children during 
the years 2000 to 2002 to one in 68 children during the years 2010 to 2012. 
According to the Centers for Disease Control and Prevention, about one in 59 chil-
dren currently have a diagnosis of ASD [1]. This increase in ASD diagnoses may be 
at least partially due to the relatively recent inclusion of milder disorders, such as 
Asperger syndrome and pervasive developmental disorder (PDD), along with 
autism in the Diagnostic and Statistical Manual of Mental Disorders-5’s definition 
of an ASD.  Other contributors to the increase in ASD diagnoses may include 
changes in referral practices and public awareness but may also include increased 
exposure to environmental risk factors. A number of ASD-related behavioral, neu-
rological, immunological, and gastrointestinal (GI) features have been described.

ASD symptoms often gradually manifest within the first 2 or 3 years of life. 
About 50% of parents first notice the ASD-related symptoms by 1.5 years of age, 
whereas about 80% notice something unusual by 2 years [2, 3]. From an early age, 
individuals with ASDs tend to lack social–emotional reciprocity. Rather than reflect-
ing, commenting, sharing feelings, and generally participating in a conversation, 
they may be more prone to simply requesting or labeling. Although adults can 
develop compensatory strategies to overcome these challenges, they may still suffer 
from the anxiety and effort of continuously evaluating appropriate social interactions.

Individuals with ASDs may also experience delayed language, speech compre-
hension deficits, echoed speech, superfluous language, or even a complete lack of 
language development. Others may have an impaired ability to communicate with 
others, despite possessing vocabulary or grammar skills. Nonverbal behaviors 
essential to communication (e.g., eye contact, gestures, facial expressions, body 
orientation, and speech intonation) are often diminished, absent, or atypical relative 
to cultural standards.

In addition to social interaction and communication deficits, individuals with 
ASD often display restricted and/or repetitive behaviors such as finger flicking, con-
tinuously using the same objects, repetitive speech, and rigidity to routine. This may 
manifest differently depending on the age of the individual. Deviance from a struc-
tured routine may cause distress, as they maintain these patterns of behavior with 
abnormal intensity. Symptoms of distress may include shutting down communica-
tion, aggression, tantrums, and/or self-injurious behavior [4]. Other common fea-
tures include intellectual disability, temporal processing deficits, affective disorders 
(e.g., anxiety, depression), attention deficit disorders (with or without  hyperactivity), 
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oppositional defiant disorders, sleep disorders, epilepsy, and Tourette syndrome 
and/or related disorders, and increased incidence of metabolic disorders such as 
phenylketonuria [5–9].

Several neuroanatomical features have been described, including an excess of 
neurons (perhaps resulting from lack of normal apoptosis/pruning during the brain’s 
development; [2, 10]), ectopic neuronal arrangement (perhaps resulting from abnor-
mal neuronal migration during the brain’s development), and abnormal synaptic 
development [11, 12]. Interestingly, a pattern of brain overgrowth early in life fol-
lowed by slower-than-normal growth has been described in some ASD individuals 
[13] that would be consistent with diminished normal early pruning. These charac-
teristics have been associated specifically with communication dysfunction of the 
brain’s neural networks [14], particularly in the so-called mirror neuron network, 
which consists of widespread cortical neurons that spike when an individual per-
forms an action and when others perform a similar action. This network has been 
hypothesized to modulate imitation, empathy, social awareness, and communica-
tion. Other studies have suggested neurochemical imbalances in excitatory/inhibi-
tory neurotransmitters and/or their receptors [15–19] and impaired mitochondrial 
functioning [20].

Finally, ASDs have also been associated with a number of inflammatory/immu-
nological factors, including increased expression of pro-inflammatory cytokines 
and increased activation of microglia in the brain [21–23]. In some cases, increased 
severity of these symptoms has been associated with more severe behavioral defi-
cits. Presumably, maternal exposure to infectious agents or environmental toxins 
during pregnancy can lead to early overactivation of the fetal immune system, lead-
ing to problems with nervous system development [24].

1.2  Potential Causes and Risk Factors

Autism and other ASDs have been associated with a number of environmental and 
genetic risk factors. For example, some evidence suggests that environmental insults 
during gestation (e.g., infections and/or exposure to teratogens such as drugs and 
pollution) may play a role in the development of ASDs [25–27]. Some studies have 
reported significantly higher levels of heavy metals in ASD children compared to 
matched controls [28, 29]. However, other studies have reported lower levels of 
heavy metals or no significant differences between ASD individuals and controls 
[30, 31].

The high degree of heritability [32–36] suggests a strong genetic influence, and 
genetic disorders such as Fragile X syndrome have a strong association with ASDs 
and related behavioral symptoms. Links between ASDs and schizophrenia have also 
been suggested, especially in individuals with abnormalities on chromosome 1 
(i.e., 1q21.1 deletion syndrome; [37]). Postmortem analyses of brains from ASD 
individuals have recently shown a significant decrease in RNA editing, especially 
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with synaptic genes across several brain regions, and similar patterns of dysregu-
lated RNA editing were observed in the brains of Fragile X individuals [38].

Simply having a Y chromosome seems to be one of the greatest risk factors for a 
diagnosis of ASD, in that they occur about twice as often in males when intellectual 
disabilities are also present, and more than 5× as often without intellectual disabili-
ties [39]. One main hypothesis for this phenomenon suggests that females require a 
greater etiologic load to display impairments consistent with an ASD diagnosis 
[40]. For example, in a subject pool that presented with ASDs and/or developmen-
tal/intellectual disabilities, Jacquemont et al. [41] reported that females had more 
deleterious autosomal variants (copy number and single nucleotide) than males. A 
higher number of these deleterious variants was associated with lower performance 
IQ. The authors hypothesized that increased mutational burden (more deleterious 
variants) and worse presentation of symptoms (lower IQ scores) are required for 
females to meet the ASD threshold. Another study demonstrated that females with 
ASD have more problems with social interaction, communication, externalizing 
behavioral problems, irritability, feelings of lethargy, and lower IQ/language pro-
cessing abilities compared to ASD males of the same age range, and that the differ-
ences grew larger with age [42].

However, some studies have not corroborated ASD-related sex differences in 
social communication, cognitive functioning, or adaptive behaviors [43, 44]. 
Furthermore, one study reported that young ASD females had significantly better 
social skills than young ASD males [45], but that this may be due to general female 
behavioral traits/tendencies in maintaining social relationships (e.g., empathy and 
care taking).

1.3  Eating Behaviors

Problems with eating can decrease the quality of nutrient intake and GI health in 
those with ASDs [46, 47]. Excessive rigidity regarding routines in individuals with 
ASDs can lead to extreme behavioral reactions to foods (particularly regarding tex-
ture) and/or rituals around food packaging, presentation, preparation, and/or eating 
patterns. Therefore, it is not surprising that children with ASD were reported to 
consume a significantly lower volume of food compared to their non-ASD siblings 
[48]. In one study, at least 78% of ASD children omitted one or more food groups 
and displayed problematic mealtime behaviors, such as pushing away food, turning 
away their head, crying, leaving the table, making negative statements, and/or dis-
playing aggression toward caregivers [49]. Schreck et al. [50] reported that children 
with ASDs generally accepted a relatively narrow range of presented food options 
and refused food significantly more often than children without ASDs, but that they 
were more likely to accept food that was paired with specific preferred utensils. 
Similarly, Bandini et al. [51] reported that children with ASDs refused more foods 
and had a smaller food repertoire than typically developing children of the same age 
range. These findings can be partially explained by behavioral rigidity and 
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 intolerance to new foods. However, it is not clear how much of an effect their medi-
cations, such as stimulants prescribed for attention deficits and/or hyperactivity, 
may play a role in this reduced food intake. Furthermore, motor behaviors in indi-
viduals with ASDs, such as weak sucking, tongue thrusting, and poor lip closure, 
can further affect eating patterns and reactions to food [52]. For example, caregivers 
reported that children with ASDs required more supervision during mealtimes 
because they had tendencies to gag, vomit, cough, or choke [48].

Interestingly, an fMRI study reported a significantly positive correlation between 
taste reactivity and response to sweeter tastes versus neutral tastes in the primary 
gustatory cortex of children with ASDs compared to typically developing children, 
and that children with ASDs who reported more taste-related symptoms had a 
greater cortical response [53]. Nevertheless, caregiver education can positively 
impact the eating behaviors of children with ASDs. For example, parents of 
3–6-year-old children in Japan were provided education on factors contributing to 
food selectivity and approaches for coping with problems of selective eating [54]. 
By the end of the study, the range of acceptable foods significantly increased.

1.4  Characteristics of Gastrointestinal Dysfunction

Individuals with ASDs seem to be more susceptible to GI issues, such as chronic 
abdominal pain, impaired peristaltic reflexes, bowel motility disorders (e.g., consti-
pation and/or chronic loose stools), and/or bloating. Compared to children with 
ASD but without GI symptoms, those with GI symptoms are more likely to be irri-
table, agitated, socially withdrawn, lethargic, hyperactive, and/or noncompliant 
[4, 55–60].

Constipation seems to be most strongly correlated with dairy intake, indicating 
that specific foods may be incongruent with the GI makeup of individuals with 
ASD.  Those that experience diarrhea, loose stools, and/or gaseousness tend to 
exhibit lower than normal activity of digestive enzymes such as disaccharidase, 
lactase, maltase, sucrase, palatinase, and glucoamylase, as well as higher pancrea-
tobiliary fluid output following secretin stimulation. Furthermore, protein intake 
that is significantly higher than the recommended dietary allowance is associated 
with increased bowel motility issues.

Endoscopic examination has revealed increased blood flow (hyperemia) consis-
tent with gastroesophageal reflux (e.g., esophageal swelling, gastritis duodenitis, 
and colitis). Other tests have indicated incomplete digestion of dietary gluten and 
casein, low levels of gastric acid, excessive levels of abnormal gut bacteria, increased 
intestinal permeability (“leaky gut”), increased absorption of incompletely hydro-
lyzed peptides, and elevated serotonin concentrations in the GI associated with GI 
inflammation [4, 49, 51, 61–66]. These GI-related symptoms, combined with 
restricted and rigid eating patterns/food preferences, can lead to inefficient and/or 
ineffective nutrient absorption [4, 51, 66]. Indeed, some studies have reported 
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 significant differences in nutrient intake between children with and without ASDs 
[49, 61–63, 66].

For example, Schreck et al. [50] reported that children with ASDs generally con-
sume fewer vegetables, fruits, and starches than children without ASDs. Others 
have demonstrated inadequate consumption of dietary fiber, minerals such as potas-
sium, iron, zinc, magnesium, and calcium [61, 62, 67, 68] and vitamins such as the 
retinoids (vitamin A), riboflavin (vitamin B2), folate/folic acid (vitamin B9), ascor-
bic acid (vitamin C), cyanocobalamin (vitamin B12), and vitamin D [4, 51, 56, 61, 
62, 66–68]. Other studies have reported higher than average consumption of calo-
ries from monosaturated fats (perhaps due to a preference for crunchy/crispy/fried 
snacks; [49, 56, 61]) and niacin (vitamin B3; [66]).

Physical ramifications of imbalanced nutrient intake include reports of scurvy, 
presumably caused by a paucity of fruits and vegetables in the diet [69] as well as 
lower bone mass density scores in males with ASD [68]. Children with ASDs are 
also more likely to be obese, presumably due to increased preference for snack 
foods and/or decreased ability to exercise from poor motor skills, low-muscle tone, 
and/or unstable posture [59, 70].

1.5  Mechanisms of Gastrointestinal Dysfunction

The brain and the gut can interact via multiple pathways, including those mediated 
by the vagus nerve, immune responses, and metabolites [71–75]. Many of the GI 
issues that children with ASD endorse seem to be associated with “leaky gut.” 
Normally, the small intestinal mucosa acts a luminal barrier to prohibit substances 
from entering the bloodstream. However, in individuals with ASDs, this luminal 
barrier is impaired, allowing larger molecules that normally cannot cross the mem-
brane, to pass via various ways through the compromised membrane [76]. These 
enterocolitis specific issues seem to mediate the neurobehavioral features observed 
in children with ASD [58].

The gut contains a microbial collection composed of various bacteria, viruses, 
and fungi that develops and grows during infancy. Changes in gut microbiota com-
position can impact cognitive behaviors (e.g., depression, anxiety, increased stress 
levels), but these symptoms may also be reversed by replacing beneficial microbes 
in the gut through probiotic supplementation [56, 74]. Hoban et al. [77] recently 
showed that gut microbes can regulate the expression of microRNA in the amygdala 
and prefrontal cortex, providing at least one mechanism by which the microbiota 
could influence cognition, affect, and behavior.

Interestingly, there is often an overall imbalance in the gut microbe composition 
of individuals with ASDs. A healthy gut normally contains species of Bifidobacteria, 
Lactobacillus, Prevotella, Coprococcus, and Veillonellaceae, which help break 
down carbohydrates and control the expression of inflammatory cytokines (e.g., 
TNF-α). But Mezzelani et al. [78] reported that individuals with ASDs tend to have 
decreased levels of these bacteria. Deficiencies in beneficial gut microbes, which 
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may be attributed to the poor dietary patterns often exhibited by individuals with 
ASDs, can foster the growth of potentially harmful bacterial species such as 
Clostridia, Desulfovibrio, and Bacteroides. It is therefore not surprising that these 
species are found more often in stool samples of individuals with ASDs than those 
without ASDs [56, 79–82]. Lipopolysaccharides (LPS) are endotoxins found in 
Gram-negative bacteria (e.g., Desulfovibrio and Bacteroides) that can disrupt the 
blood–brain barrier and interfere with neuroimmunological communication, and 
such pathways have been found to be disrupted in individuals with ASD [78, 83]. 
Prenatal exposure to bacterial LPS via maternal infections that occur during preg-
nancy may also play a role in the development of ASDs [84].

Other potential explanations for the GI issues observed in individuals with ASD 
include autoimmune responses against the gut epithelium and/or allergic reactions/
sensitivities to certain foods. Specifically, chronic gastritis is associated with an 
increased number of lymphoid aggregates in the mucosa and an increased number 
of local immune defense cells. Cow’s milk (for example) may cause an allergic 
reaction, which results in an antigen induced distal constipation [55]. Whether 
caused by poor diet, gut microbiome imbalances, or autoimmune/allergic responses, 
chronic inflammation in the GI is also associated with inflammation in other organs, 
including the brain [57].

1.6  Current Treatment Options

The overarching treatment goal for individuals with ASDs is to increase quality of 
life, including functional independence, increased social interaction, and improved 
language skills. Improvements in these areas of life will often reduce stress for both 
the individual and the family, but specific treatment goals depend on the range and 
severity of impairment. Generally, higher IQ and earlier intervention have both been 
associated with better overall outcomes. As reviewed by Poleg et  al. [85], most 
available treatments are tailored toward behavioral impairments and psychoeduca-
tion [85, 86]. Perhaps due to the widely variable nature of ASD symptoms, no spe-
cific treatment strategy has been proven as reliably effective [87]. Behavioral 
intervention and positive support will not “cure” ASDs but can mask or reduce the 
presentation of ASD symptoms.

Similarly, no pharmaceutical treatments have been shown to reliably improve the 
social and language problems central to a diagnosis of ASD. However, overall brain 
function, repetitive behaviors, and comorbid/secondary symptoms such as attention 
deficits, hyperactivity, irritability, depression, and/or anxiety have been targets of 
pharmaceutical intervention. Over 50% of children with an ASD diagnosis are pre-
scribed psychoactive drugs such as antipsychotics (e.g., risperidone and apripra-
zole), antidepressants (e.g., serotonin/norepinephrine reuptake inhibitors), 
stimulants (e.g., methylphenidate, norepinephrine reuptake inhibitors), antihyper-
tensives (e.g., beta-blockers, guanfacine), depressants (e.g., GABAergic drugs), and 
hormones (e.g., oxytocin, vasopressin) [88–92]. However, one recent study that 
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assessed a cohort of Danish ASD children born between 1992 and 2011 reported 
that only about 30% of the sample used ADHD medications (e.g., methylpheni-
date), antipsychotics (e.g., risperidone), antidepressants (e.g., sertraline), and/or 
hormones (e.g., melatonin) [93]. These data suggest regional differences in either 
ASD diagnoses, symptom presentation, and/or treatment protocols.

One recent study found that postnatal administration of an antidiabetic drug (pio-
glitazone) improved ASD-like social impairments in a rat model of autism (prenatal 
LPS exposure; [84]). Unfortunately, although certain psychoactive drugs may pro-
vide some relief from symptoms such as repetitive behaviors (e.g., antidepressants), 
irritability, aggression, self-injurious behaviors (e.g., antipsychotics), or attention 
deficits/hyperactivity (e.g., stimulants, antihypertensives) [90, 94, 95], individuals 
with ASDs (and children in general) can often respond atypically. Additionally, 
these drugs have a number of unpleasant and/or harmful side effects, including 
weight gain, lethargy, and dyskinesias [96].

2  Dietary Approaches to Autism Spectrum 
Disorder Management

The relative lack of efficacy for either behavioral or pharmaceutical treatment strat-
egies for ASDs has led to an increased interest in the use of complementary or 
alternative medicine in the treatment of autism [97–99]. The beneficial effects of 
dietary interventions for neurological disorders and injuries have been reported 
many times. For example, papers from our laboratory have demonstrated improve-
ments in neuropathology and/or behaviors in mouse studies of irradiation [100] and 
Alzheimer’s disease [101] and in human studies of recovery from coronary artery 
bypass surgery [102] and stroke [103]. Due in part to the lack of available empiri-
cally validated therapies, there has been an increasing trend toward using similar 
strategies in children with ASD [104]. In a study conducted by Hall and Riccio 
[105], parents commonly resorted to trying elimination diets (e.g., gluten-free/
casein-free) and/or dietary supplements including probiotics, omega-3 fatty acids, 
and melatonin.

2.1  Elimination Diets

Based on the hypothesis that some ASD symptoms are at least partly caused by 
dietary hypersensitivities that may be exacerbated by the GI issues mentioned 
above, “elimination diets” aim to improve behavioral symptoms by restricting 
intake of the problem-causing component(s) [4, 104].
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2.1.1  Casein and Gluten

Dietary proteins such as casein, found in milk, and the gluten, found in grains such 
as wheat, rye, and barley, have been linked to heightened inflammatory and immune 
responses [106, 107]. In a study by Jyonouchi et  al. [83], children with ASD 
expressed more proinflammatory cytokines and LPS (endotoxins produced by 
pathogenic microbial intestinal flora) after the consumption of cow’s milk or gliadin 
(a component of wheat gluten). Similarly, casein and gluten can induce expression 
of immunoglobulin A and G antibodies in subsets of individuals with ASDs, which 
could exacerbate symptoms [108, 109].

Another explanation behind some of the atypical behavior observed in children 
with ASD is the “excess opioid” hypothesis, which proposes that gluten and casein 
are metabolized in the gut into short-chain peptides called gluteomorphins and case-
omorphins (respectively) that are structurally similar to endorphins and have opiate 
agonist properties. Normally, the small intestinal mucosa acts as a luminal barrier to 
prohibit such metabolites from entering the bloodstream. However, in individuals 
with ASD, with increased intestinal permeability (“leaky gut”) due to inflammation, 
this luminal barrier is impaired, potentially allowing these “exorphin” (exogenous 
opioid) metabolites into the bloodstream and ultimately into the brain to activate 
opiate receptors [52, 57, 76, 78, 104, 110].

Regardless of the specific mechanisms by which these dietary proteins may 
exacerbate ASD symptoms, some evidence suggests that reducing their consump-
tion may help. Ghalichi et  al. [111] conducted a randomized controlled trial in 
which children with ASDs were assigned to a gluten-free diet or their regular diet. 
Those in the “gluten-free” group exhibited a significant decrease in GI symptoms 
and stereotyped behaviors with slightly improved communication and social inter-
action, whereas those who maintained a regular diet actually showed a significant 
increase in their GI symptoms after 6 weeks. Another study [112] reported that, 
compared to controls, children with ASD had higher levels of casein-specific anti-
bodies, and their ASD symptoms seemed to improve after 8 weeks on the cow’s 
milk elimination diet. However, some studies have shown no significant differences 
in intestinal permeability and behavioral symptoms between individuals who were 
on a gluten-/casein-free diet and those who were not [113, 114]. A systemic review 
by the Cochrane group suggested that there is little hard evidence for the effective-
ness of casein- and gluten-free diets in ASDs, but that only large-scale, randomized 
trials would yield more conclusive data [115].

2.1.2  Specific Carbohydrate Diet

The specific carbohydrate diet eliminates ingestion of complex carbohydrates (e.g., 
sugars, grains, starches, and dairy), allowing only those requiring minimal diges-
tion. Nutrients in the diet come from monosaccharides (e.g., fruit, some vegetables, 
honey, meat, eggs, natural cheeses, homemade yogurt, nuts, soaked lentils, and 
beans). The idea behind the diet is that complex carbohydrates take longer to break 
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down and digest in the GI system, thereby becoming a foundation for pathogenic 
intestinal microflora to breed [4, 52, 116].

Individuals with colonic and ileocolonic Crohn’s disease who followed the diet 
for nearly 3 years found that their symptoms generally improved [117]. Although 
these individuals did not have ASDs, their GI symptoms were similar to those found 
in individuals with ASDs, so the results may be generalizable across populations. In 
a 2018 case study, Barnhill et al. [118] observed a 4-year-old male who was diag-
nosed with ASD and followed the specific carbohydrate diet for 4 months. He 
showed significant improvement in stool consistency and level of irritability when 
passing stool. His symptoms, including sensory, repetitive, and ritualistic behaviors, 
receptive and expressive language problems, and learning and memory also signifi-
cantly improved.

2.1.3  Ketogenic Diet

The ketogenic diet (and the similar modified Atkins diet), which generally pre-
scribes low-carbohydrate, moderate protein, and high-fat intake, forces the metabo-
lism of ketones rather than glucose, and its overall effects include increased blood 
ketones, reduced blood glucose, and improved mitochondrial function [119]. The 
diet has shown some effectiveness in treating individuals with refractory epilepsy 
(which is more common in individuals with ASD than those without) and other 
neurological disorders. Indeed, in one study that administered a ketogenic diet to 
ASD children who presented with seizures, it was found that the sample showed an 
overall decrease in seizures, along with improved learning ability and social 
skills [120].

Animal models of ASDs have yielded some promising results using the keto-
genic diet. For example, Ruskin et al. [119] assessed the BTBR mouse model of 
ASD, which has severely reduced interhemispheric communication due an absent 
corpus callosum and a diminished hippocampal commissure, and displayed behav-
iors similar to those seen in humans with ASDs (abnormal social interactions, play 
behaviors, and vocalizations). They reported that the ketogenic diet increased socia-
bility, decreased repetitive behaviors, and improved social communication. Another 
mouse study [121] that examined the offspring of C57B1/6 mice given an infection 
during pregnancy reported that male, but not female, offspring exhibited behavioral 
patterns similar to those seen in humans with ASDs, and that a ketogenic diet atten-
uated these behaviors. Other studies using rodent models of autism have yielded 
mixed results. For example, the diet significantly improved sociability in glut3+/− 
(but not wild-type) mice, and significantly improved spatial cognition in wild-type 
(but not glut3+/−) mice [122]. Kasprowska-Liśkiewicz et al. [123] also demonstrated 
increased social interaction, but no differences in  locomotor activity, anxiety, or 
working memory, in male Long-Evans rats, and that the administration of exoge-
nous ketones did not affect social behavior.

Human studies have also demonstrated some modest improvements from the 
ketogenic diet. For example, the aforementioned study [120] not only reported 
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fewer seizures, but also improved learning ability and social skills. Additionally, 
Evangeliou et al. [20] implemented the ketogenic diet in 18 children with autistic 
behavior for 6 months. They reported significant improvement in two subjects, aver-
age improvement in eight subjects, and minor improvement in eight subjects, with 
the individuals on the lower end of the ASD spectrum showing the most improve-
ment. In a study comparing a modified Atkins/ketogenic diet to a gluten-/casein-free 
diet, El-Rashidy et  al. [124] found that a ketogenic diet improved cognition and 
sociability significantly more than the gluten-free/casein-free diet. Finally, a case 
study of a 6-year-old ASD patient with glucose hypometabolism showed that 1 
month of a ketogenic diet improved hyperactivity, attention span, abnormal reac-
tions to stimuli, communication skills, fear, anxiety, and emotional reactions [125].

2.1.4  Low Oxalate Diet

One study reported a 3× higher concentration of plasma oxalate and more than a 
2.5× higher concentration of urinary oxalate than the recommended value in urine 
among a sample of children with ASD compared to healthy peers [126]. High con-
centrations of oxalates are found in spinach, beets, cocoa, black tea, and certain 
fruits, grains and nuts. Related compounds such as oxalic acid, in conjunction with 
GI system dysfunction, have been linked to impaired neurological development and 
abnormalities in the nervous system [4, 127]. However, there have been no empiri-
cal studies demonstrating the effectiveness of a low oxalate diet on individuals 
with ASD.

2.2  Supplements

In addition to eliminating problem-causing compounds (e.g., certain proteins, car-
bohydrates, oxalates) from the diet, some studies suggest that supplementing the 
diet with beneficial compounds may improve ASD symptoms.

2.2.1  Fatty Acids

Insufficient omega-3 fatty acid intake has been implicated in the abnormal develop-
ment of the nervous system [4], and children with ASDs often have decreased 
plasma levels of phospholipid fatty acids [52]. Thus, a reduced omega-3 index (the 
proportion of omega-3 fatty acids to the total amount of fatty acids in the brain) may 
be a biomarker for ASDs, because neurons should be rich in polyunsaturated fatty 
acids to ensure normal development, membrane fluidity, and functional properties.

Nevertheless, there have been mixed reviews regarding the results of omega-3 
fatty acid supplementation [4]. Parellada et al. [128] found that children aged 5–17 
years who supplemented their diets with omega-3 fatty acids for approximately 2 
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months showed a significant improvement in social motivation as reported by par-
ents. Another study that provided supplemental omega-3 fatty acids for 3 months 
showed a significant improvement of atypical sensory processing from baseline 
(again, as reported by parents; [129]). They also found increased levels of long- 
chain omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid 
(DHA), which promote healthy brain development.

The administration of omega-3 fatty acids along with vitamin B12 has also been 
found to increase the growth of a Gram-positive bacterium (Staphylococcus) and 
reduce survival of a Gram-negative bacterium (Clostridia; [130]). Another combi-
nation study administered medium chain triglycerides (which also improve fatty 
acid levels) along with a ketogenic diet and gluten-free diet to children with ASD 
for 3 months [131]. The combination of multiple dietary therapies showed signifi-
cant improvement in core features of ASD and symptom severity.

A meta-analysis conducted by Cheng et al. [132] suggested that omega-3 fatty 
acid supplementation in ASD children induced only borderline improvements in 
hyperactivity, but significant improvements in stereotypic behavior. When Agostoni 
et al. [133] reviewed studies on omega-3 fatty acid supplementation across develop-
mental psychopathologies, they found mixed effects on ASD, with nonsignificant 
trends for beneficial effects on impaired behavior.

A fatty acid-like compound derived from the cannabis plant may also offer some 
relief from ASD symptoms. Since cannabidiol (CBD) has anticonvulsive, sedative, 
hypnotic, antipsychotic, anti-inflammatory, and neuroprotective properties, it may 
benefit individuals with ASDs [85, 134, 135]. For example, one study demonstrated 
that CBD reduced seizures by 70% in a mouse model of an epileptic disorder 
(Dravet syndrome), and when administered in low doses, significantly increased 
social interaction [136].

2.2.2  Pro- and Pre-biotics

Probiotics are live microorganisms (e.g., Lactobacillus, Bifidobacterium spp.) that 
naturally occur in certain (often fermented) foods such as yogurt and sauerkraut or 
can be added to the diet via supplemental capsules [137]. Prebiotics are compounds 
found in (often high fiber) foods that selectively promote the growth and coloniza-
tion of healthy gut probiotics. Improving gut health via ingestion of dietary probiot-
ics or prebiotics may ameliorate some of the gut-related issues associated with the 
ASDs [138, 139].

Probiotics have been shown to alleviate GI dysfunction commonly associated 
with ASD by a number of mechanisms [52]. For example, probiotics may reduce 
gut permeability and reconstruct or stabilize the intestinal barrier via increased 
mucin production [56, 140]. They also produce digestive enzymes that metabolize 
potentially toxic/irritating compounds (such as casein and the glutens; [141]), syn-
thesize antioxidants that protect the gut from pathogens [137], and modulate 
immune responses. Supplemental consumption of beneficial probiotic bacteria such 
as Lactobacillus can normalize the gut microbiome and influence  social/sensory/
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cognitive behaviors [142]. A probiotic mixture of Lactobacillus, Streptococcus, and 
Bifidobacterium species attenuated elevated levels of Clostridia and reversed persis-
tent ASD-like behaviors induced by propionic acid (a neurotoxin) in young, male 
golden Syrian hamsters [143]. In another study using a rodent model of ASDs, 
Shank3b−/− mice were administered Lactobacillus, resulting in fewer unsocial/
aggressive behaviors in males, and fewer stereotypical repetitive behaviors in both 
males and females [144].

In a double-blind, placebo-controlled, crossover-designed feeding sample, a 
sample of 17 ASD subjects took a probiotic (Lactobacillus plantarum WCSF1) for 
12 weeks. The supplement significantly increased Lactobacilli and Enterococci 
bacteria and reduced Clostridia bacteria in the gut and significantly decreased 
behavioral and emotional disturbances [145]. The first study to evaluate prebiotic 
supplementation in ASD demonstrated that a galacto-oligosaccharide, in combina-
tion with a gluten-free/casein-free diet, improved beneficial bacteria growth and 
increased gut microbiota diversity [146].

2.2.3  Vitamins

These organic compounds are essential nutrients that play a wide role in general life 
functions. Insufficient consumption of vitamins can lead to a number of psychiatric 
issues [147] and can potentially exacerbate the issues already present in the ASDs. 
A recent literature review found mixed results on the overall effectiveness of vita-
min supplementation among population with ASD, most likely due to the heteroge-
neity of methodological aspects (e.g., type of vitamin, dosage, sample size, treatment 
duration; [148]). Nevertheless, several studies have been published that suggest 
therapeutic potential for supplementing with certain vitamins.

For example, vitamin B6 (pyridoxine) is involved in the synthesis of serotonin, 
dopamine, and norepinephrine [148], and supplementation  has been shown to 
improve behavioral symptoms, sleep, and GI symptoms [66, 149, 150]. Individuals 
with ASDs often have less vitamin B9 (folic acid) in their cerebrospinal fluid, 
because autoantibodies block folic acid synthesis by binding to folate receptors and 
inhibiting folate transport. Therefore, dietary supplementation with folic acid has 
been suggested for ASD individuals with cerebral folate deficiency syndrome. In a 
recent study, Alfawaz et al. [130] reported that dietary supplementation with vita-
min B12 (cobalamin) or omega-3 fatty acid equally alleviated ASD-like symptoms in 
a rat model of ASD (neurotoxic propionic acid administration). Methyl B12 (meth-
ylcobalamin) administration has also induced improvements in methylation, anti-
oxidant capacity, and clinician-rated global symptoms in an ASD sample [151].

Individuals with ASDs were also reported to have lower levels of vitamin C 
(ascorbic acid), suggesting that supplementation may provide some benefit [150]. 
Some ASD individuals have even presented with scurvy (a symptom of vitamin C 
deficiency), presumably caused by a paucity of fruits and vegetables in their diet 
[69]. Maternal vitamin deficiencies (e.g., vitamin D) during pregnancy may increase 
the infant’s risk of developing an ASD, suggesting that prenatal supplementation 
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may also provide some benefit [4, 150]. Furthermore, vitamin D deficiencies in 
individuals with ASDs may exacerbate symptoms. Patrick and Ames [64] proposed 
that vitamin D supplementation could lower the elevated levels of serotonin and the 
associated GI inflammation in ASD subjects.

2.2.4  Minerals

These inorganic compounds are essential nutrients that play a wide role in general 
life functions. Like vitamin B6, magnesium has been implicated in improving 
behavioral symptoms, sleep, and GI symptoms [66, 149, 150]. It is also involved in 
serotonin, dopamine, and norepinephrine synthesis [148]. Zinc has been implicated 
in neuronal genesis, plasticity, fetal growth, cellular differentiation and reproduc-
tion, tissue repair, and immunity. Adams and Holloway [150] reported a signifi-
cantly lower zinc to copper ratio in children with ASD, suggesting that increasing 
zinc levels (and/or reducing levels of copper) may aid this population. In corrobora-
tion of this idea, the administration of zinc reversed the effects of impaired vocaliza-
tion and improved social behavior in a rodent model of autism (prenatal valproic 
acid exposure; [152]).

2.2.5  Glutathione

Oxidative stress is a common biomarker in ASD populations and is congruent with 
GI dysfunction. Lower antioxidant capacity has been implicated as a potential con-
tribution to ASD pathophysiology and social impairment. Glutathione, an antioxi-
dant molecule synthesized in the liver, has been reported as deficient in populations 
with ASD [153]. Although glutathione has poor oral bioavailability, ingestion of 
N-acetylcysteine (NAC), which is metabolized to one of its precursors (l-cysteine), 
can replenish glutathione levels. NAC supplementation has demonstrated mixed 
results. Although it seems to increase levels of glutathione in individuals with ASD 
[154–156], a recent study in which NAC was administered to subjects with ASDs 
for 6 months reported no significant improvements in sociability or repetitive behav-
iors compared to controls [157]. However, NAC seemed to improve the effects of 
Risperidone treatment on irritability and hyperactivity among subjects with ASDs 
[154, 155].

2.2.6  Phytochemicals

Sulforaphane is an organosulfur phytochemical (an organic plant-derived compound 
that contains sulfur) found in cruciferous vegetables such as broccoli seeds and 
sprouts. It has a number of reported physiological effects, including antioxidant/
anti-inflammatory properties [158]. It has also been found to regulate the expression 
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of cytoprotective responses through long-lasting mediation of a transcription factor, 
making it a potentially efficient dietary therapeutic [159].

One study [160] examined whether dietary treatment with sulforaphane might 
reduce the severity of socially impaired behavior among a sample of young males 
with ASDs. After an 18-week period, they found that the sample’s social interac-
tions, aberrant behavior, and verbal communication significantly improved, with 
symptoms starting to change around 1 month after initiating treatment. In a 2018 
study, Bent and colleagues investigated whether treating a sample of ASD adoles-
cents with sulforaphane would improve behavioral impairments and metabolic out-
put. They found that social communication and symptom severity significantly 
improved, and that metabolites involved in oxidative stress, amino acid/gut micro-
biome, neurotransmitters, hormones/stress response, and sphingomyelin metabo-
lism were significantly different in the ASD sample. In a study of subjects who took 
sulforaphane for a few years, there was considerable improvement, and subjects 
reported that it worked better than pharmacological interventions such as aripipra-
zole and levetiracetam [161]. However, one recent study [162] reported that a sig-
nificant number of subjects in a study of individuals without ASDs experienced 
upset stomach while taking sulforaphane supplements. Finally, prenatal administra-
tion of another phytochemical, resveratrol (a stilbenoid found in grapes, berries, 
nuts, etc.) was reported to prevent social impairments in a valproic acid exposure 
rodent model of ASDs [163].

2.2.7  Hormones

Secretin is a hormone that stimulates pancreatic secretion and inhibits gastric acid 
secretion, thereby maintaining the pH of the intestinal luminal fluid in the GI sys-
tem. Individuals with ASDs tend to produce lower levels of this hormone, so their 
gastric acid secretion is higher and pancreatic secretion is lower, which increases 
luminal acidity and permeability [76]. Therefore, secretin supplementation may be 
a viable therapeutic agent to improve GI dysfunction in individuals with ASDs. One 
case study found a significant improvement in diet and behavioral symptoms after a 
6-month intravenous administration of secretin [164]. However, other studies have 
concluded that secretin showed no improvement in the core features of ASDs after 
single or multiple doses [165, 166].

Melatonin is a hormone secreted by the pineal gland, GI system, lungs, renal 
cortex, and retina and is responsible for regulating circadian rhythm, GI motility, 
and influencing immune and reproductive systems [167]. The secretion pattern of 
melatonin is different in individuals with ASDs, which could explain the common 
symptom of sleep problems. The administration of melatonin can ameliorate sleep 
disturbances [168–170]. Mothers of children with ASDs have been reported to have 
lower levels of melatonin in their urine compared to mothers of children in control 
groups, suggesting that parental melatonin levels could be a potential contributor to 
the development of ASDs in their offspring [171]. Finally, the GI system has a high 
concentration of melatonin, which exerts both excitatory and inhibitory effects on 
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the gut muscles and modulates inflammatory responses. Although there is no empir-
ical evidence of melatonin alleviating GI issues in ASD populations, its role in the 
GI system may lead to future research developing this theory.

3  Conclusion

Although there has been extensive research on the symptoms and potential causes 
of ASDs, the role of GI dysfunction is an emerging topic of interest. Not only do 
individuals with ASDs display rigid eating patterns, but they are more likely to suf-
fer from GI issues such as diarrhea, constipation, and irritable bowel syndrome. 
Ultimately, the dietary approaches discussed throughout this chapter may amelio-
rate, at least partially, both GI and behavioral impairments. Dietary approaches may 
be cheaper, easier to implement, and better tolerated with fewer side effects than 
pharmaceutical interventions. Future research should also determine whether these 
diets can be generalizable to different populations and if they are feasible in differ-
ent settings (areas with fewer resources, lower socioeconomic areas, countries with 
different dietary restrictions, etc.).
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Abstract Autism is a developmental disorder that affects communication and 
behavior. Although autism can be diagnosed at any age, it is said to be a “develop-
mental disorder” because symptoms generally appear in the first 2 years of life. The 
primary cause of autism is still not clear and therapy is currently restricted to con-
trolling behavioral abnormalities. However, emerging studies have shown a link 
between mitochondrial dysfunction and autism. Dietary supplements that promote 
mitochondrial biogenesis and inhibit the production of oxidative stress have been 
used to treat autism patients. Dietary adjustments in treating autism is a novel 
approach to suppress autistic symptoms. Supplementation with antioxidants has 
been found to not only inhibit cognitive decline but also improve behavioral symp-
toms in autism. Dietary supplements fortified with vitamins should only be given 
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under the supervision of a physician. A wide range of nutraceuticals are under 
 clinical trials to understand whether they physiologically target mitochondrial path-
ways and improve the quality of life in autism.

Keywords Autism · ASD · Nutritional imbalance · Dietary therapy · 
Mitochondrial dysfunction · Protein maldigestion · Malabsorption · Amino acids · 
Peptides · Gluten-free, casein-free (GFCF) diet

1  Introduction

Autism a neurodevelopmental disorder characterized by disrupted social and com-
municational interactions with stereotyped and repetitive behavior characterized by 
differing levels of severity. Though genetics play a vital role in the cause of the 
disease, research in the recent years has strongly suggested nutritional deficiencies 
and imbalances as contributing and aggravating factors of autism. ASD has a clear 
biological basis with features of known medical disorders. Available evidence links 
oxidative stress, mitochondrial dysfunction, and immune dysregulation/inflamma-
tion in the brain of ASD individuals to the disorder abnormalities. The brain regions 
found to contain these physiological abnormalities in individuals with ASD are 
involved in speech and auditory processing, social behavior, memory, and sensory 
and motor coordination.

Many children with ASD have selective eating that goes beyond the usual “picky 
eating” behavior seen in most children at specific developmental stages. These types 
of self-limiting diets are usually a direct result of the disorder. The diet may be lim-
ited to as few as two or three foods or have food preferences. The most common 
gastrointestinal (GI) symptoms include chronic diarrhea, abdominal distention, dis-
comfort and bloating, gastroesophageal reflux disease (GERD), excessive gas, con-
stipation, fecal impaction, food regurgitation, and a leaky gut syndrome. Children 
with autism are also at risk for many other nutritional problems such as nutrient 
deficiencies, food allergies, food intolerances, and feeding problems.

Briefly, the most common dietary “treatments” or approaches involves the list 
below. Some of these nutrients have been studied to see if providing/restricting chil-
dren with these supplements may help with autism symptoms. However, we believe 
more research is needed and the situation should be judged on individual basis.

• Gluten-free, casein-free (GFCF) diet
• Exclusion of phenolic compounds and foods high in salicylates
• Exclusion of food additives
• Yeast-free diet
• Supplements (in particular antioxidants like vitamins and minerals)
• Fish oils and other supplements rich in omega-3 fats
• Probiotics and enzymes
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2  Protein Maldigestion in Autistic Children

Many studies have revealed that digestive impairment in autistic children contribute 
to immune and GI impairment, evident in clinical cases. But there is lack of data for 
the direct assessment of proteolytic enzyme levels and activity in these children. 
Results from one study also indicated decreased levels of saccharolytic digestive 
enzymes. Characterization of upper gastrointestinal tract in these children revealed 
decreased activity of glucoamylase in 58.3% of children with autism compared to 
healthy controls [1]. Another study found decreased levels of ileal sucrose isomalt-
ose, maltase glucose amylase, and lactase mRNA in children with ASD and gastro-
intestinal symptoms when compared to non-autistic children presenting similar 
gastrointestinal symptoms. Hence, it can be concluded that these symptoms are 
autism-specific. As these enzymes are located on the brush border of the enterocyte 
membrane, reduction in their levels is attributed to chronic inflammation of the GI 
tract which may result in the impairment of other brush border enzymes such as 
peptidases [2].

3  Role of Amino Acids/Peptides in Autism

Increased levels of urinary peptides of dietary origin provides evidence that autistic 
children experience impairment in protein digestion with increased intestinal per-
meability. But these findings are viewed carefully as the opioid excess theory 
hypothesizes that breakdown products of certain dietary proteins such as casein and 
gluten are potent agonists of opioid receptors that can have systemic effects and are 
able to cross the blood–brain barrier [1]. The presence of urinary peptides in chil-
dren with ASD is classified as exorphins: exogenous opioids including casomor-
phins, gliadinomorphins, gluteomorphins, deltorphin, and dermorphin. The same 
population undergoing treatment with a gluten-free, casein-free diet (GFCF, this 
regimen is the removal of all wheat protein (gluten) and milk protein (casein) from 
the diet), i.e., GFCF diet for 2–4 years showed significant reduction in urinary pep-
tide levels with improved behavioral metrics, despite a high intake of meat and fish 
protein. Many animal studies have revealed that gut peptidase inhibition specifically 
dipeptidyl peptidase IV results in increased levels of urinary peptides of dietary 
origin. This indicates that a set of autistic children will have reduced digestive 
enzyme activity, and undigested dietary peptides can cross the intestinal mucosal 
barrier exerting biological effects systemically [1].

Reports from various studies have shown altered amino acid profiles. Some 
studies have shown elevated plasma amino acid levels such as glutamic acid, 
aspartic acid, and taurine, while other studies have shown decreased levels of 
amino acids, specifically glutamine. A study by Arnold et  al. showed frequent 
amino acid deficiencies in children with ASD given both restricted (GFCF) and 
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unrestricted diets. Children with autism on unrestricted diets showed deficiency in 
valine, leucine, phenylalanine, and lysine, while children on restricted diets were 
deficient in isoleucine. In another study, Adams et al. found decreased levels of 
isoleucine, phenylalanine, tryptophan, and taurine which might be due to decreased 
protein intake or impaired protein digestion. Low levels of plasma amino acids in 
autistic children suggest an impaired capacity for protein digestion and increased 
passage of dietary peptides into systemic circulation by compromised intestinal 
integrity [1].

On a concluding remark, many plasma amino acids serve either as neurotrans-
mitters (glutamate, aspartate) or precursors (tryptophan and tyrosine) for important 
neurotransmitters such as serotonin and dopamine. Disturbance or deficiencies in 
these systems are found to be common among children with autism and contribute 
significantly to autistic symptoms [1].

4  Dietary Therapies in Autism

Dietary adjustments in treating autism is a newer approach to suppress autistic 
symptoms. Many physicians have proposed different diets to improve behavior and 
other symptoms among autistic children.

Some of the proportionate diets are discussed below.

4.1  Elimination Diet

Allergenic foods or substances in food have shown increase in the levels of IgG, 
IgE, and IgA antibody classes, leading to immune dysregulation in autistic patients. 
Hence, as the name implies, this diet entails an elimination of those foods that are 
found to be allergenic. This diet needs careful monitoring as elimination of aller-
genic foods in the diet may also lead to malnutrition which in turn leads to an 
increase of the symptoms of the disease. Studies have shown greater improvement 
in autistic patients’ clinical symptoms after adopting an elimination diet.

One such important form of elimination diet is the GFCF diet. This diet neces-
sitates the complete removal of major sources of gluten and casein. However, one 
source of casein is cow’s milk and other dairy products, the removal of which may 
also simultaneously lead to deficiency in calcium: a major nutrient aiding the main-
tenance of bone and teeth health. Goat or sheep milk is an often-suggested alterna-
tive but that may require the body to tackle new allergens. Hence, specialists suggest 
soy or rice milk and yeast flakes with added molasses that can serve as substitute 
for cheese [3].
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4.2  Feingold Diet (A Food Restriction Diet)

The principles of this diet fall in line with the elimination diet. The primary recom-
mendation is to avoid and eliminate any potential sources of preservatives, food 
additives, food enhancers and dye additives from the diet which can cause allergies 
or intolerance and may have carcinogenic and mutagenic properties. These include 
the presence of salicylates in toothpastes, mouth wash, and cough syrups as well as 
in natural foods like apples, grapes, cucumbers and any ready-to-eat packet food 
and fast foods [3].

4.3  The Ketogenic Diet

This is a high-fat, low-protein, and low-carbohydrate diet initially developed to treat 
children with frequent epileptic attacks. The main source of energy production in 
this form of diet is from fat accounting to 90%, the remaining is from protein and 
carbohydrates. After the initiation of the diet, it has to be continued for 2–3 years 
with an initial period of fasting. During the diet, the body will be in the state of 
ketosis where the metabolic shift occurs from glucose to the main source of energy 
being ketone compounds formed from fatty acids in the blood.

Many groups of researchers have found that ketogenic diet is one of the best 
forms of dietary therapy for autism. It is also hypothesized that the diet has a posi-
tive impact on the mechanisms of neurological diseases. But adopting this diet 
requires greater expertise from both the physician and dietician as the uncontrolled 
concentration of ketone bodies in the blood serum leads to high risk of metabolic 
disorders [3].

4.4  The Specific Carbohydrate Diet (SCD)

The diet was introduced by Gottschall as a method to treat autism. The basic prem-
ise of this diet is the alleviation of malabsorption thereby preventing the growth of 
pathogenic intestinal microflora. The diet recommends the intake of only monosac-
charides sourced from fruits, vegetables, and honey avoiding complex polysaccha-
rides as the digestion of polysaccharides takes longer time. This eventually disturbs 
the gastrointestinal tract leading to difficulty in absorption where the residual food 
becomes a breeding ground for pathogenic intestinal flora. The aim of this diet is to 
restore normal functions of intestine and to prevent the development of intestinal 
pathogenic microorganisms. Recommended foods are meat, eggs, natural cheese, 
homemade yogurt, vegetables (cabbage, cauliflower, onions, spinach, pepper), fresh 
fruits, nuts (almonds, walnuts), soaked lentils, and beans [3].
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4.5  Low Oxalate Diet

The clinical symptoms of autism, a genetically predisposed disease, are aggravated 
by gastrointestinal disturbances including high levels of oxalates in the blood serum. 
The acceptable daily intake of dietary oxalates in an adult is 250 mg/day, and it goes 
up to about 1000  mg/day in a Western diet. However, patients with autism are 
required to restrict their intake of dietary oxalates to just 40–50 mg/day. Foods rich 
in oxalates are spinach, beetroot, cocoa, black tea, figs, lemon zest, green apples, 
black grapes, kiwis, oats, wheat, peanuts, cashew nuts, and blueberries [3].

5  Different Nutritional Imbalance Affecting Growth 
and Development in Autism

Rapid brain and nerve growth occur during childhood and continue through adoles-
cence and adulthood. Evidence has shown the importance of nutritional supple-
ments for the cause of autism. Many studies have suggested that low scores on 
behavioral assessment tests have consistently been correlated with low nutritional 
levels, and when supplemented with specific nutritional additives, the hyperactivity, 
impulsiveness, and inability to pay attention improve dramatically.

5.1  Omega-3 Fatty Acids

Omega-3 fatty acids, also known as ω-3 fatty acids or n-3 fatty acids, are polyun-
saturated fatty acids (PUFA). Omega-3 fatty acids occur naturally in two forms, 
triglycerides and phospholipids. The major composition of brain nerve cells is fat. 
Three omega-3 fatty acids are important in human physiology. These are α-linolenic 
acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). The 
chemical structure of these key PUFA is presented in Table 1. They are found pri-
marily in fish, eggs, and flax seeds. The most widely available dietary source of EPA 
and DHA is fish. PUFA are an absolute necessity for human health. Their concen-
trations in the brain also play an important role in neurological disorders like autism. 
The ability of the brain to create neural signals in response to new experiences and 
learning environment is known as neuronal plasticity, a crucial step in long term 
memory and learning. Proper levels of omega-3 fatty acids and DHA are important 
for membrane fluidity that maintains learning ability and enhances neuronal plas-
ticity [5].
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5.2  Zinc

Zinc, the mood mineral, plays an important role as it serves as a cofactor to several 
neurotransmitters affecting mood and learning. Specifically, the production of dopa-
mine, an important neurotransmitter in learning and emotions like motivation and 
pleasure, is disturbed with low zinc levels. Zinc also plays an important role in 
clearing toxic chemicals from the brain tissue called mercury, the improper elimina-
tion of which leads to the accumulation of toxicants leading to rise in conditions 
such as autism [6].

5.3  Vitamins

All the vitamins are necessary at optimal levels for the healthy development of the 
brain. Specifically, vitamin D supplementations have been shown to reverse some 
autistic behaviors. Vitamins possess strong antioxidant activity and help in counter-

Table 1 Chemical structures of vital polyunsaturated fatty acids (PUFA): omega-3 fatty acids

PUFAa Chemical structure(s) References

α-Linolenic acid (ALA)
It is an essential fatty acid 
found in seeds, nuts, and 
many common vegetable oils

PubChem
ALA was first 
isolated by 
Rollett [4]

Eicosapentaenoic acid (EPA)
Found in oily fish. A portion 
of absorbed ALA is converted 
into EPA. Acts as a precursor 
for prostaglandin-3 and 
thromboxane-3 families and 
inhibits arachidonic acid 
conversion into the 
thromboxane-2 and 
prostaglandin-2 families

PubChem
Omega-3 fatty 
acids, 
particularly 
EPA, have 
been studied 
for their effect 
on ASD 
patients

Docosahexaenoic acid (DHA)
It is abundant in seafood. It 
can be synthesized from 
ALA. It is a primary structural 
component of the human 
brain and major component in 
the retina. It is widely used as 
a food supplement

PubChem

aIn 1929 George and Mildred Burr reported that dietary fatty acid was required to prevent a defi-
ciency disease that occurred in rats fed a fat-free diet. The discovery of essential fatty acids was a 
paradigm-changing finding [The Journal of Lipid Research, 56, 11–21 (2015)]. Original work 
[Journal of Biological Chemistry, 82, 345–367 (1929) and Journal of Biological Chemistry, 86, 
587–621 (1930)]
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ing the deleterious effects of free radicals on cellular and mitochondrial function 
[7]. They also act as cofactors and play an important role in many biological pro-
cesses. They play a vital role in DNA synthesis and control lipid and protein metab-
olism. Researchers have also found that low folate levels in pregnancy were 
associated with hyperactivity in children. Vitamin B1 has also shown clinical ben-
efit in autistic children. Vitamin C acts as double-edged sword in autism. It is 
 essential for the synthesis of certain neurotransmitters and it also exhibits antioxi-
dant properties. Absorption of vitamin C takes place in the small intestine. The 
higher levels of consumption of vitamin C (around 1 g/day) show reduced absorp-
tion efficiency. Researchers have also shown absence of a specific gene encoding 
for a protein essential in vitamin A synthesis. Supplementation of vitamin A in clini-
cal studies of autism patients has significantly improved language skills and eye 
contact. But it is very important that vitamin A supplementation has to be taken 
under the supervision of physicians [7].

5.4  Iron

Iron deficiency in patients with autism might be caused by malabsorption of the 
nutrient in the gastrointestinal tract. Thus, the deficiency of iron is said to produce 
negative impact on sleep and neuroprotection. Some of clinical studies have sug-
gested that cognitive impairment, reduced growth, disturbance in concentration, and 
mood changes in autistic children are associated with anemia [8].

5.5  Magnesium

Magnesium and vitamin B6 work together in improving clinical symptoms of 
autism. When a group of autistic children were supplemented with magnesium and 
vitamin B6, 70% of the children showed improvement in social interaction and 
communication [9].

5.6  Probiotics

Probiotics help rejuvenate certain healthy strains of microorganisms which in turn 
leads to better utilization of food ingredients along with alleviating the develop-
ment of pathogenic organisms thereby increasing immunomodulatory effects in the 
body. This also helps overcome gastrointestinal complications associated with 
autism such as constipation, acute diarrhea, inflammatory intestinal disease, and 
irritable bowel syndrome [3]. A chapter in this book has been dedicated to probiot-
ics discussion.
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6  Must Avoid Foods in Autism

• Gluten. In part II the role of gluten in autism is explained.
• Dairy products. The GFCF diet is discussed above.
• Sugars.
• Corn.
• Artificial ingredients include dyes, flavoring agents, taste enhancers, and preser-

vatives. In part II a chapter details popular natural food coloring additives.

7  Mitochondrial Dysfunction in Autism

Autism refers to a group of neurodegenerative diseases. The primary cause of autism 
is still not clear, and therapy is currently restricted to controlling behavioral abnor-
malities. However, emerging studies have shown a link between mitochondrial dys-
function and autism [10]. Coleman and Blass [11] and Lombard have postulated 
that autism is possibly because of mitochondrial dysfunction which results in neu-
ronal oxidative phosphorylation within the central nervous system. These hypothe-
ses are based on outcome that lactic acidosis, increase in Krebs cycle metabolites 
levels, plasma carnitine deficiency, and diminished brain glucose utilization and 
reduced ATP levels have been found in autistic children. Furthermore, Lombard 
[12] postulated that autism may be a disorder because of mitochondrial dysfunction 
[11, 12]. Several clinical studies have confirmed the involvement of mitochondrial 
dysfunction in autism, where they found an increase in the lactate content in the 
blood of autistic patients [13–15]. An MRI scan of autistic patients showed changes 
in brain energy and phospholipid metabolism in autism that lead to impairments in 
learning and memory [16]. Richard et al. [17] found that children with autism have 
higher levels of in tumor necrosis factor-α which inhibits mitochondrial functions in 
lymphocytes and the brain [18, 19]. An increase in the levels of pyruvate, ubiqui-
none, and acylcarnitines, the markers of mitochondrial function, has also been 
reported among children with autism [20, 21]. Analysis of postmortem brain sam-
ples of autistic patients has shown the presence of oxidative stress, decrease in 
major cellular antioxidants, altered proteins, and lipid metabolism, and it also 
affects the functions of important enzymes. GSH levels were found to be reduced in 
autism brains which promotes oxidative stress, immune dysfunction, and apoptosis 
promoting the development of autism [22, 23]. Mitochondria can be a critical target 
for the therapeutic management of autism.

8  Anti-Oxidants in Targeting Autism

Dietary supplements that promote mitochondrial biogenesis and inhibit the produc-
tion of oxidative stress have been used to treat autism patients [24]. Supplementation 
with antioxidants has been found to not only inhibit cognitive decline but also 
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improve behavioral symptoms in autism [25]. Dietary supplements fortified with 
vitamins should only be given under the supervision of a physician [7]. A wide 
range of nutraceuticals are under clinical trials to understand whether they physio-
logically target mitochondrial pathways and improve the quality of life in autism. 
Chemical structures of selected antioxidant supplement that targets mitochondrial 
pathways are presented below (see Table 2).

8.1  L-Carnitine

L-Carnitine is a cellular compound that has an important role in the metabolism of 
lipids in mitochondria. Carnitine relocates long-chain fatty acids along the mito-
chondrial inner membrane as acylcarnitine esters. These esters are oxidized to 
acetyl- CoA which takes part in the Krebs cycle causing oxidative phosphorylation 
which in turn results in the production of ATP. Carnitine inhibits CoA exhaustion 
and eliminates acyl compounds that are toxic in nature. Till date, no pharmacologi-
cal intervention which can increase the levels of CoA is available. Diet is the major 
source of carnitine, although some quantity is also synthesized by the muscle, liver, 

Table 2 Chemical structures of supplements that targets mitochondrial pathways

Antioxidant supplement Chemical structure References

L-Carnitine (vitamin BT)
It is a quaternary 
ammonium compound 
involved in metabolism 
in most mammals, 
plants, and some bacteria

PubChem
Discovered 1905 in 
meat extract. Structure 
was established 1927
Bremer [26]

L-Creatine
It is biosynthesized from 
the amino acids glycine 
and arginine

O

N
OH

NH

H2N

PubChem
Identified in 1832 by 
Michel Eugène 
Chevreul
Cannan and Shore [27]

CoQ10 (ubiquinone 10)
It is a 1,4-benzoquinone 
also known as 
ubidecarenone or 
coenzyme Q

O

O

O

O

CH3
H3C

H3C

CH3 6–10

H

PubChem
Identified in 1958 by 
Donald E. Wolf and 
Karl Folkers
Crane [28]

L-Arginine
It is an α-amino acid that 
is used in the 
biosynthesis of proteins

NH

NH2

H
N

O

OHH2N

PubChem
First isolated in 1886 
from lupin and 
pumpkin seedlings by 
the German chemist 
Ernst Schulze
Apel [29]
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and kidneys. Skeletal muscles are rich in carnitine [30]. Levels of carnitine in blood 
are controlled by its active reabsorption in the proximal renal tubules. L-Carnitine 
fortified food supplements for mitochondrial dysfunction are expected to improve 
the free carnitine content and remove toxic compounds from the body. Carnitine is 
available in supplements fortified with vitamins and other cofactors and is given to 
autistic patients either orally or parentally [7].

8.2  Coenzyme Q10

Coenzyme Q10 (also known as ubiquinone) endogenously produced in mammalian 
mitochondria is a critical component of the mitochondrial electron transport chain. 
CoQ10 exists in all cellular and organelle membranes. It plays a significant role in 
intracellular signaling and also acts as a strong antioxidant. CoQ10 controls the 
mitochondrial permeability transition pore involved in apoptosis and leads to the 
activation of uncoupling proteins. Any alterations in the CoQ10 biosynthetic results 
in human mitochondrial disease like neonatal encephalopathy with nephropathy 
(COQ2), Leigh syndrome, lactic acidosis, and nephropathy (PDSS2) infantile 
nephropathy, hepatopathy, retardation (PDSS1) and recessive ataxia, cerebellar 
atrophy ± retardation, lactic acidosis, and exercise intolerance (ADCK3). Exogenous 
administration of CoQ10 revived in 2007 has been found to improve the cognitive 
and behavioral conditions in mitochondrial disease like autism [7].

8.3  L-Creatine

L-Creatine is a compound existing in all cells, which, in the presence of phosphate, 
forms phosphocreatine in mitochondria. It is released through anaerobic metabo-
lism and is considered a high-energy source. It plays an important role during the 
relocation of high-energy phosphates from mitochondria to cytoplasm for the pro-
duction of ATP. High levels of creatine have been found in tissues like the skeletal 
muscle and brain because of their higher energy demand. Creatine levels are main-
tained by endogenous production and through diet. Decrease in the levels of phos-
phocreatine has been found in the skeletal muscles and brain of patients with 
mitochondrial dysfunction. Clinical trials have shown that exogenous administra-
tion of creatine in mitochondrial cytopathies improves the quality of life in patients 
with mitochondrial cytopathies. Similarly, it has been found that creatine given to 
pediatric patients with mitochondrial encephalomyopathies improves the behavior 
and cognitive decline [7].

L-Arginine L-Arginine is a semi-essential amino acid playing an important role in 
growth, urea elimination, and synthesis of creatine. Nitric oxide acting as a neu-
rotransmitter and having vasodilatory properties is produced by L-arginine. 
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Administration of L-arginine (500 mg/kg/dose) reduces the severity of stroke-like 
symptoms and improves microcirculation in patients with mitochondrial encephalo-
myopathy, lactic acidosis, and stroke-like episodes (MELAS). Arginine has been 
successfully used in stroke and other types of mitochondrial diseases like autism to 
reduce the progression and severity of the disease [7].

9  Conclusion

Over the past two decades, research on the effect of diet and nutrition on ASD has 
been increasing. Particular attention has focused on the role of food additives, 
refined sugar, food allergies, and fatty acid metabolism. Many studies have also 
proposed that the increase in oxidative stress is linked to the pathogenesis of this 
neurocognitive disorder. The increased production of reactive oxygen species (ROS) 
both centrally (in the brain) and peripherally (in the plasma) may result in the reduc-
tion of brain cell numbers leading to apoptosis and contributing to autism develop-
ment. On one hand systemic review analysis results on diet/ nutritional intervention 
which however seems to be conflicting and not conclusive while on the other hand 
controlled, long-term (12 months) nutritional and dietary intervention clinical trials 
revealed that there was a significant improvement in nonverbal intellectual ability in 
the treatment group compared to the non-treatment group. Treatments used antioxi-
dants like vitamin/mineral supplements, essential fatty acids, carnitine, GFCF diet, 
etc. It appears that a comprehensive nutritional and dietary intervention is effective 
at ameliorating nutritional status, nonverbal IQ, autism symptoms, and other symp-
toms in most individuals with ASD reflecting potential therapeutic benefit of anti-
oxidants (by enhancing antioxidants capacity) in improving social communication, 
unusual behaviors, and self-regulation behaviors of children with ASD. It is also 
possible that certain antioxidants balance neurotransmitter levels in the brain, which 
decreases the presentation of some features of autism. Generally, the treatment 
group had significantly increased amounts of EPA; DHA; carnitine; vitamins A, B2, 
B5, B6, B12, and folic acid; and coenzyme Q10. The word treatment should be used 
with caution and should be interpreted as interventions that are intended to help 
autistic individuals to adjust more effectively to their surroundings.
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Abstract Characterized by a wide range of behavioural, social and language prob-
lems, autism is a complex developmental disability that affects an individual’s 
capacity to communicate and interact with others. Although the real causes that lead 
to the development of autism are still unclear, the gastrointestinal tract has been 
found to play a major role in the development of autism. Alterations in macrobiotic 
compositions have been reported in autistic children. Irregularities in carbohydrate 
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digestion and absorption could also explain some of the gastrointestinal problems 
reported in autistic patients, although their role in the neurological and behavioural 
problems remains uncertain. A relationship between improved gut health and 
decrease of symptoms in autism has been reported as well. Studies done to evaluate 
the gluten-free diets, casein-free diets, pre- and probiotic and multivitamin supple-
mentation have shown promising results. Probiotics have been thought to alleviate 
the progression of autism and reduce cognitive and behavioural deficits.

Keywords Autism · ASD · Cognitive and behavioural deficits · Gut–brain axis · 
GI dysfunction · Barrier pathway · Microbiome · Probiotics

1  Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized 
by disrupted social and communication interactions with stereotyped and repetitive 
behaviour of different levels of severity. ASD has traditionally been framed as a 
behavioural disorder. However, evidence is accumulating that ASD is characterized 
by certain physiological abnormalities, including oxidative stress, mitochondrial 
dysfunction and immune dysregulation/inflammation. The brain regions found to 
contain these physiological abnormalities in individuals with ASD are involved in 
speech and auditory processing, social behaviour, memory and sensory and motor 
coordination. Though genetics play a vital role in the cause of the disease, recent 
investigations have strongly suggested nutritional deficiencies and imbalances as 
also contributing to and aggravating autism. Studies have shown that people with 
autism often have abnormal digestive health conditions. Research indicates there is 
a strong link between the functioning of the brain and the gut where postnatal devel-
opment of a child depends on the microbiome. Some experts claim that several 
types of food and diet interventions can treat (social and behavioural management) 
children and adults with ASD. In this chapter, we discuss various theories as well as 
the effectiveness of diets and probiotics, the so-called “friendly bacteria”, in helping 
ease the symptoms of autism. Also, we present some notable findings, demonstrat-
ing probiotic success in relieving GI symptoms in autistic kids as well as its efficacy 
in controlling the children’s anxiety and oversensitivity to stimuli.

2  Altered Gut–Brain Axis in Autism

The occurrence of gastrointestinal (GI) problems due to alterations in the gut micro-
biota has been documented in autism based on existing patient observations. This 
complexity in the crosstalk between the gut and the brain has been discussed 
broadly as the “gut–brain axis” or GBA. The triad of GBA, immune system and GI 
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microflora cross-communication is illustrated in Fig. 1. Various studies involving 
animal models of different behavioural disorders such as autism, anxiety and cogni-
tive  dysfunction have shown that the constitution of the gut microbiota has an influ-
ence in the brain functions. It functions by monitoring and integrating the gut 
functions along with the emotional and cognitive centres of the brain and the 
peripheral intestinal functions and mechanisms such as immune activation, intesti-
nal permeability, enteric reflex and entero-endocrine signalling [3]. Cognitive and 
behavioural alterations, induced due to various neuroactive compounds in the intes-
tinal lumen crossing the blood–brain barrier [4]. The link between GI symptoms 
and neurodevelopmental disorders has been supported by the following observations:

• The onset of disease usually follows antimicrobial therapy.
• At the advent of the disease, frequent persistence of a number of gastrointestinal 

abnormalities has been observed.
• Autistic symptoms have sometimes been reduced by oral vancomycin treatment, 

while relapse occurs following cessation of treatment.

The gut–brain axis accesses the signal from the gut microbiota, influences the 
brain functions and vice versa. The bidirectional communication acts via the neuro-
endocrine and neuroimmune mechanism which involves both the autonomic ner-
vous system (ANS) and the enteric nervous system (ENS). The fundamental 
morphologic components of the brain to gut microbiota signalling are the sympa-
thetic and parasympathetic nerves of the ANS [5]. The sympathetic system inhibits 

Fig. 1 The triad of gut–brain axis, immune system and GI microbiome. Adapted from Sirisinha 
[1] and Thakur et al. [2]
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the intestinal motor functions and decreases gut secretion. Under conditions of 
stress, the sympathetic system is over activated, the integrity of the gut epithelium 
is destroyed and gut motility and secretions are changed [6]. Stress-induced changes 
of the gut alter the habitat of resident bacteria and promote alterations to microbiota 
composition or activity [7]. The hypothalamus–pituitary–adrenal (HPA) axis is 
another critical mechanism by which the brain influences the composition of the gut 
microbiota. When the HPA axis is overactivated, the levels of circulating cortisol 
and pro-inflammatory cytokines are significantly elevated [8].

The human GI tract contains approximately 104 bacteria belonging to approxi-
mately 1000 species. The healthy adult GI tract is most dominated by Bacteroidetes 
and Firmicutes phyla (both account for up to 70–90% of total bacteria), followed by 
Actinobacteria, Proteobacteria and Verrucomicrobia [9]. The symbiotic microbiota 
dwelling in the gut have long been appreciated for the various beneficial effects they 
offer to the host, including providing essential nutrients by metabolizing indigest-
ible dietary compounds, defending the gut against opportunistic pathogen coloniza-
tion by nutrient competition and antimicrobial substance production and contributing 
to the intestinal epithelial barrier. Moreover, studies on the immune defects in germ- 
free (GF) mice have suggested that gut microbiome is essential to the host immune 
system [10]. A recent review also indicated that gut bacterial colonization could 
drive maturation and functionality of the host’s adaptive immune system [11, 12].

Bifidobacterium, a beneficial bacteria appeared to be reduced in children with 
autism [13], while other probiotics, i.e. Lactobacillus, Bacteroides and Desulfovibrio, 
were reported to be present in higher concentrations amongst them [14]. Consistent 
with this, the abundances of Blautia, Dialister, Prevotella, Turicibacter and 
Veillonella were all decreased [15]. Children with autism had much lower levels of 
Bifidobacterium (−45%, p = 0.002), slightly lower levels of Enterococcus (−16%, 
p  =  0.05 per Wilcox) and much higher levels of Lactobacillus (+100%, 
p = 0.00003) [14].

Potentially harmful Clostridium species were observed to be abundant in faeces 
of children with autism [16]. Recent studies related to faecal microbial profiles of 
autistic patients have also indicated tenfold higher counts of Clostridium spp., 
which produce neurotoxins and contribute to the development of autistic behav-
iours, compared with healthy controls [17].

In addition, De Angelis et al. indicated that Oscillospira decreased and Roseburia 
increased in Alzheimer’s Disease (AD). Meanwhile it was also observed that oppor-
tunistic pathogens like Enterobacter and Shigella were elevated in the case of AD 
patients [18]. Faecalibacterium [19] and Ruminococcus [20] were also reported to 
increase in patients with autism. Notably, these particular species are known to be 
versatile carbohydrate metabolizers [21]. Blautia plays an important role in nutrient 
assimilation and gut maturation in children [22]. The reduction of these beneficial 
bacteria in autism patients may be implicated in the pathogenesis of the disease. 
Short-chain fatty acids (SCFAs), the critical mediators within the microbiota–gut–
brain axis, can cross the blood–brain barrier (BBB) and modulate brain activity 
directly [4].
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Therefore, a number of possible mechanisms have been postulated relating the 
gut microbiome and the brain axis in autism. Few of these pathways are dis-
cussed below.

2.1  The Barrier Pathway

An increase in intestinal permeability was found in patients with autism, and this 
was measured by the lactulose/mannitol test [23]. One particular study showed that 
the impaired intestinal and blood–brain barrier function in autism decreased the 
level of intestinal tight junction (TJ) components and caused an increase in the 
Claudin level in the autism brain when compared to a group of controls [24]. The 
microbiota along with its metabolites contributes to the regulation of the intestinal 
barrier. The dysbiosis in the case of autism is a result of increased permeability of 
the gastrointestinal tract which is referred to as the “leaky gut”. The “leaky gut” 
allows bacterial metabolites, metabolites that do not naturally cross this barrier and 
are potentially neuroactive, to readily cross the intestinal barrier. Studies have 
shown evidence of increased metabolites in urine and systemic circulation in autism 
[25]. Zonulin has structural similarities with several growth factors known to affect 
intercellular TJ integrity. This enzyme regulating intestinal permeability was seen to 
be significantly increased in subjects with autism bearing GI symptoms also show-
ing hampered intestinal permeability in the disease condition [26]. Hence, a dis-
rupted intestinal barrier allows endotoxins to enter the bloodstream. For instance, 
lipopolysaccharide (LPS) is a potent endotoxin which alters neuronal and microg-
lial activity in the amygdala, a region involved in control of emotions [27]. In 
patients with autism, the serum LPS levels were significantly high when compared 
to healthy individuals, and this could be correlated with impairment in social behav-
ioural scores [28]. Targeting improvement in the epithelial barrier in autism can 
reduce the entrance of the microbial endotoxins, thus normalizing the gut–brain 
pathway. The BBB acts as a shield against the infiltration of pathogens and other 
endotoxins entering the brain. In order to maintain brain functions and develop-
ment, it is necessary to maintain the integrity of this barrier. BBB dysfunction can 
be caused by multiple prenatal and postnatal risk factors that are also evident in 
autism [29]. Several of these risk factors are detailed in Chap. “Overview and 
Introduction to Autism Spectrum Disorder (ASD)”.

2.2  The Serotonin Pathway

The serotonin functions in the brain both for regulation of mood and cognition and 
for regulating intestinal secretion, motility and pain perception. Its synthesis in the 
intestine and the brain depends upon the intake of dietary tryptophan [30]. 
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Serotonin synthesis in the brain is decreased in patients with autism. A recent 
study demonstrated the correlation between whole blood serotonin level and the 
intestinal symptoms in autism [31]. Inflammation in the intestinal tract leads to 
production of serotonin by the enterochromaffin cells and intestinal mast cells. 
This leads to alteration in motility, vasodilation and an increase in vascular perme-
ability, causing functional intestinal dysmotility. During intestinal tract inflamma-
tion, there is increased consumption of dietary tryptophan, causing low 
concentrations to be available for the brain. Thus, brain serotonin levels will be 
reduced causing mood and cognitive dysfunction in autism. On depleting dietary 
tryptophan, indeed an increase in autistic behaviour was observed in autism 
patients. Also, the availability of tryptophan was seen to be affected in the case of 
intestinal dysbiosis in autism [32].

In a murine model of autism induced by prenatal exposure to valproic acid 
(VPA), impairments in social behaviour were associated with intestinal inflam-
mation and a disturbed serotonergic system in the brain and intestinal tract [32]. 
In the prefrontal cortex as well as in the amygdale, reduced levels of serotonin 
and increased turnover were found in VPA-exposed male offspring. The reduc-
tion in intestinal serotonin in VPA-exposed mice was attributable to reduced 
number of serotonin-positive cells (possibly enterochromaffin cells) in the small 
intestine [33].

2.3  Immune System Pathway

The gut microbiota can also be related to cerebral dysfunctions by modulating the 
host immune response. Pathogenic and bacterial microbiota stimulate the secretion 
of pro-inflammatory cytokines like IL-1, IL-6 and IL-8 by the intestinal epithelial 
cells, dendritic cells and macrophages [34], which account for various neuropsychi-
atric disorders including anxiety, schizophrenia as well as autism [35]. Parents of 
autism children report more often food allergies than parents of healthy children 
[36]. The persistent default state of mucosal immune tolerance observed in food 
allergy is strongly associated with a changed microbiota composition such as 
enhanced Bacteroidetes and Enterobacter. The majority of allergies are character-
ized by a T-helper 2-type immune response with the characteristic cytokines inter-
leukin (IL) 4, IL5 and IL13. Supporting the role of allergy in autism, children 
produced significantly higher levels of the mentioned cytokines [37]. In addition, 
less IL-10-producing T cells are present in the periphery and intestinal mucosa as 
well as reduced plasma levels of tumour necrosis factorβ in autism patients suffer-
ing from intestinal problems [38]. Taken together, there seems to be a disturbed 
T-cell balance in the intestinal tract of autism patients.
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2.4  Neuronal Pathway

Another possible mechanism by which the microbiota–gut–brain axis mediates 
communication may be through the use of established neuronal circuits. Vagal affer-
ents are critical neuronal pathways allowing information flow from the viscera to 
the CNS. Gut microbiota can deliver their signals to the brain via the vagus nerve 
[5]. In a study with autism patients suffering from epilepsy, besides reducing the 
seizure frequency, stimulation of the vagus nerve resulted in improved verbal skills, 
mood and alertness [39]. Epilepsy has been observed in about 30% of autistic 
patients [40].

It might be that microbial neurotransmitters affect the ENS and afferent nerve 
function directly or via the intestinal epithelium. Based on the fact that stress-related 
host neurotransmitter release increases the proliferation rate and the activity of 
intestinal microbiota [41], it has been postulated that microbiota-derived neu-
rotransmitters have a primary role in the sustainability of the microbes themselves 
in the intestinal tract in stressful situations [29]. In fact, neurochemical and behav-
ioural effects were not present in vagotomized mice, identifying the vagus as the 
major modulatory constitutive communication pathway between the microbiota and 
the brain [42]. These data suggest that vagus stimulation, possibly through a 
“healthy” microbiome, might be beneficial in autism. Taken together, the role of the 
ENS, the vagus nerve and bacterial neuroactive metabolites and molecular path-
ways in relation to the microbiome–gut–brain axis remains to be established 
in autism.

Recent research has indicated that the effect of the gut microbiota extends much 
beyond the modulation of the gut itself. Metabolites derived from the microbiota 
can be absorbed and transported by the blood before crossing the BBB to modulate 
cerebral function. For example, strains of Lactobacillus rhamnosus YS9 are able to 
produce gamma-aminobutyric acid (GABA), an important inhibitory neurotrans-
mitter in the brain [26].

A large percentage of autism patients have a history of extensive antibiotic use. 
Oral antibiotics (i.e. β-lactams) disrupt the protective microbiota and cause the pro-
liferation of anaerobic bacteria in the gut. For example, Clostridia, Bacteroidetes 
and Desulfovibrio are common bacteria that may promote GI symptoms and autistic 
behaviours in autism [43].

3  Probiotics in Autism

The internationally accepted definition of probiotics is “live microorganisms which 
when administered in adequate amounts confer a health benefit on the host”. 
Probiotics are typically administered as a food supplement promoting various health 
benefits to the host by maintaining the stability and composition of the intestinal and 
gut microbiota and increasing resistance against various pathological infections [44]. 
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The potentially synergistic combinations of pro- and prebiotics are called symbiotics 
[45]. Various preclinical and clinical findings have suggested that treatment with 
probiotics can help improve gastrointestinal health, thereby stabilizing behavioural 
abnormalities in adults and children with autism [46]. The probiotic influence of gut 
microbiome and ASD behavioural abnormalities is depicted in Fig. 2.

Currently, the consumption of probiotic cells via food products has been catego-
rized as functional foods, the worldwide market for which had been predicted to 
increase from 33 billion in 2000 to 176.7 billion in 2013. About 60–70% of the total 
food market comprises of probiotic foods [49]. There has been remarkable success 
in the past few decades in producing dairy products like ice cream, flavoured liquid 
milk, fermented milk, milk powder, baby food, frozen dairy products, buttermilk, 
cheese and many others which contain probiotics and can be safely administered in 
all these forms. One of the key aspects for probiotics to gain such rapid momentum 
is that they are safe, comparatively cheap and an accessible target for microbial 
infections. The World Health Organization (WHO) in 1994 considered probiotics to 
be used as an effective immune defence system in the cases of antibiotic resistance. 
This treatment was termed as microbial interference therapy [50].

The probiotic microbes are artificially introduced into the food at the time of its 
production. Most of the cultures are commercially available in extremely concen-
trated form as either freeze-dried powders or highly concentrated frozen cultures. 
Some of the popularly used probiotic microorganisms are Lactobacillus rhamnosus, 
Lactobacillus reuteri, Bifidobacteria and certain strains of Lactobacillus casei and 
Lactobacillus acidophilus group. Other microbes include Bacillus coagulans; 

Fig. 2 Probiotic influence of gut microflora and ASD behavioural abnormalities. Adapted from 
Poornachandra Rao and Sreenivasa [47] and Sánchez et al. [48]
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Escherichia coli strains; certain enterococci, especially Enterococcus faecium 
SF68; and the yeast Saccharomyces boulardii. Probiotic products may contain 
either a single strain or a mixture of two or more strains. The effect of probiotics is 
very strain specific and cannot be generalized. A single strain may exhibit different 
benefits when used individually and in combination. The benefits of a probiotic 
formulation also differ by the patient group [45]. Once probiotics are incorporated 
in the food, its effectiveness depends upon the total number of viable cells per ml 
and also the number of active cells present on being consumed by the individ-
ual [51].

It is also noted that on addition of the probiotic microbes, the aroma and the fla-
vours in the food are modified due to the formation of metabolic components during 
fermentation such as the synthesis of acetic acid by Bifidobacterium spp. Therefore, 
in order to attain product quality and patient competence for its administration, 
necessary steps are taken in order to eradicate the smell and aftertaste [52].

The known mechanisms by which probiotic bacteria have an impact on the gut 
microbiota may be as follows:

 1. Competition for dietary ingredients as growth substrates
 2. Bioconversion of, for example, sugars into fermentation products with inhibitory 

properties
 3. Production of growth substrates
 4. Direct effect on pathogens
 5. Competitive exclusion for binding sites
 6. Improved barrier function
 7. Reduction of inflammation, thus altering intestinal properties for colonization 

and persistence within and
 8. Stimulation of innate immune response

In a recent study using a rodent model of autism, the alteration in the gut micro-
biota and the related alteration in serum metabolites were considered to play an 
important role in the behavioural manifestation of autism-like behaviour and subse-
quent GI function alteration. However, these changes were seen to be rapidly revers-
ible by ingestion of probiotics [53].

There have been interesting findings made in human autism research where the 
main microbiota intervention in the clinical study is the probiotic administration. 
One such study used faecal transplantation. In this study, it was observed that on 
being treated with probiotics for over 6 months (n = 6), children diagnosed with 
autism showed a decrease in the severity of diarrhoea and constipation. Each par-
ticipant received a 6-month supply of DelPro® containing 10 billion CFUs of 
different probiotic strains including L. acidophilus, L. casei, Lactobacillus del-
brueckii, Bifidobacterium longum and B. bifidum and 8  mg of Del-Immune V® 
powder, containing peptidoglycan, muramyl peptides and nucleotide-containing 
components or DNA motifs that is derived from the L. rhamnosus V strain. Any 
other probiotics were advised to be discontinued. An Autism Treatment Evaluation 
Checklist (ATEC) score, which reflects the changes occurring in autism patients 
and accesses various domains like speech/language/communication, sociability, 
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sensory/cognitive awareness and health/physical/behaviour, was studied. Thus, in 
this study following probiotic treatment, an 88% improvement in the above-men-
tioned domains of autism was observed overall. The mean ATEC value decreased 
from 72.8 to 58.3 [54].

Parracho et  al. carried out a randomized, double blind, controlled study with 
children from age 3 to 16 suffering from autism and divided them into a placebo and 
probiotic group. The probiotic group was given 4.5 × 1010 CFU Lactobacillus plan-
tarum WCFS1 daily over a period of 6 weeks. Group I received placebo during the 
first feeding period (3  weeks) and probiotic during the second feeding period 
(3 weeks), and vice versa for group II (i.e. probiotic first). Improvements in destruc-
tive and antisocial behaviour, anxiety and communication problems were observed 
in the children with autism who were treated with probiotics [55].

A previous study showed that in the case of the offspring of an immune-activated 
mother, gut permeability was affected, an abnormal increase in the level of cyto-
kines and gut dysbiosis was observed and hence changes in neuropathological and 
behavioural autism features due to changes caused by Clostridia and Bacteroidia in 
the gut environment were seen. On the treatment with probiotic Bacteroides fragilis, 
intestinal permeability was improved in MIA, and this specifically increased pro- 
inflammatory cytokine IL-6 in the colon. It was also seen that this treatment could 
restore 6 out of 67 bacterial species units which are compromised in the case of 
autism patients. An improvement in communication, repetitive sensorimotor and 
anxiety of the MIA offspring was achieved. However, they also found that the effect 
of B. fragilis on autism behaviour was seen when treated with Bacteroides thetaio-
taomicron and not on treating with Enterococcus faecalis. Thus, from this study it 
was inferred that treatment with probiotics in autism relieved certain symptoms by 
reducing inflammation, improving the gut permeability, restoring microbial imbal-
ances and ameliorating nonsocial autism symptoms [56].

In another clinical study, all the autism patients suffering from severe GI prob-
lems were grouped. The participants received probiotic capsules of L. acidophilus 
(strain Rosell-11, containing 5 × 109 CFU/g) orally, twice daily for 2 months. The 
use of antibiotics during therapy was restrained, and urine samples were collected 
for each of the participants. Prior to treatment, the level of D-arabinitol was signifi-
cantly higher in the urine of children with autism and was seen to decrease thereaf-
ter. The autistic symptoms such as concentration and following out orders also 
improved after the probiotic therapy [57].

In a trial with autism patients (n = 11), an oral liquid dose of vancomycin 500 mg/
day was given, thrice a day for 8 weeks. This was followed by probiotic therapy 
given orally for 4 weeks, comprising of a mixture of L. acidophilus, L. bulgaricus 
and B. bifidum (40 × 109 CFUs/ml). This suggested that multiple probiotic therapy 
led to short-term pre- and post-therapy improvement in communication as well as 
pattern behaviours [58].

From the results obtained by researchers on examining a group of children with 
autism (n = 22) of ages four to ten where the patients were administered a sugar-free 
diet and probiotic capsules of L. acidophilus (5  ×  109  CFU/g) for a period of 
2 months, twice daily, major changes were observed in the behavioural domains 
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with significant improvement in concentration and the ability to follow instructions. 
However, there was no improvement in other distinct behaviours and the ability to 
make eye contact [59].

4  Conclusion

Perturbation of GI tract bacterial microflora may play an important role in the 
pathophysiology of some digestive tract disorders. Probiotics have been used as a 
treatment modality for over a century. Microbial modification with the use of anti-
biotics, probiotics and faecal transplantation has been effective in the treatment of 
GI conditions. They may restore normal bacterial microflora and effect the func-
tioning of the GI tract by a variety of mechanisms. Gut microbiome-related changes 
are seen in children with autism compared to normally developed children. Virtually 
all of the GI functions postulated to be impaired in ASD have been shown to be 
improved by probiotics in animal studies. Evidence suggests that probiotics can 
have beneficial effects for people with autism as well. However, many questions 
regarding the use of probiotics in GI disorders remain to be answered in future stud-
ies, such as most optimal doses, duration of treatment, physiological and immuno-
logical effects, efficacy of specific probiotics in specific disease states and safety in 
debilitated patients, since there is a complex interplay in these conditions between 
GI function (motility, secretion, permeability), the immune system and the 
microbiota.
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Abstract Autism is a complex neurodevelopmental disorder that is evident in early 
childhood and can persist throughout the entire life. The disease is basically charac-
terized by hurdles in social interaction where the individuals demonstrate repetitive 
and stereotyped interests or patterns of behavior. A wide number of neuroanatomi-
cal studies with autistic patients revealed alterations in brain development which 
lead to diverse cellular and anatomical processes including atypical neurogenesis, 
neuronal migration, maturation, differentiation, and degeneration. Special educa-
tion programs, speech and language therapy, have been employed for the  amelioration 
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of behavioral deficits in autism. Although commonly prescribed antidepressants, 
antipsychotics, anticonvulsants, and stimulants have revealed satisfactory responses 
in autistic individuals, adverse side effects and increased risk of several other com-
plications including obesity, dyslipidemia, diabetes mellitus, thyroid disorders, etc. 
have compelled the researchers to turn their attention toward herbal remedies. 
Alternative approaches with natural compounds are on continuous clinical trial to 
confirm their efficacy and to understand their potential in autism treatment. This 
chapter aims to cover the major plant-based natural products which hold promising 
outcomes in the field of reliable therapeutic interventions for autism.

Keywords ASD, autism · Neurodevelopmental disorder · Herbal remedies · 
Neurotherapeutics, natural products, nutrition therapy, neuronal migration · 
Antidepressants · Antipsychotics

Abbreviations

CTIP2 Chicken ovalbumin upstream promoter transcription factor-interacting 
protein 2

GABA Gamma-aminobutyric acid
IL-6 Interleukin-6
LTP Long-term potentiation
NMDA N-methyl-D-aspartic acid
STAT3 Signal transducer and activator of transcription 3
TBR1 T-box brain 1
TNF-α tumor necrosis factor-α

1  Introduction

Autism spectrum disorder (ASD) is a cumulative neurological disorder distin-
guished by difficulties in social interactions and communication, language develop-
ment, and restricted or stereotyped interest and preferences [1, 2]. Autism has 
multiple subtypes, e.g., Rett syndrome, Asperger’s syndrome, and childhood disin-
tegration, and each individual with this rare disorder faces unique challenges [3]. 
Highly variable symptoms usually show onset by the age of 6 months, become evi-
dent by 2 or 3 years, and have a tendency to continue through adulthood. The median 
wide-scale pervasiveness of autism is around 0.62–0.70%, but estimates of 1–2% 
are made in the latest surveys [4, 5].

The precise cause behind the prevalence of autism is not yet comprehensible. 
Both genetics and environmental exposures have their individual roles to play [6]. 
Some of the suspected risks include gene-level mutations, being born to older parents, 
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having a closely related family member with autism, severe viral infections, metabolic 
imbalances, and vulnerability to harmful chemicals, toxins, and heavy metals [6–8]. 
In autistic children, processing information in the brain is affected by alterations in 
the association between neurons and their synapses. Case studies and animal model 
experiments have also suggested that altered neuroimmune responses and autoim-
munity lead to phenotypic defects apparent in autism [9]. Increased levels of pro-
inflammatory cytokines were detected in brain specimen samples, cerebrospinal 
fluid, and peripheral blood isolated from autistic subjects.

For the benefit of autistic children, many treatment approaches have been made 
through the development of different education techniques, rehabilitation training, 
sensory integration, and distinctive dietary approaches [10, 11]. Nutritional enhance-
ment with modified diet and supplements of vitamin and minerals, along with the 
practice of Epsom salt bath, cutting down on sugar, gluten, and casein, intake of 
probiotics, exposure to greenery, and increase in reading habits may have several 
beneficial impacts in long duration. Herbal medicines and acupuncture displayed 
promising results in behavioral and developmental improvements in affected chil-
dren [12]. In this chapter, we highlighted the natural compounds and plant-based 
drugs which have experimentally proved to be worthwhile with regard to autism 
therapeutics.

2  Characteristics of Autism

Autism cannot be distinguished only by a single symptom. There is a large range of 
abnormal manifestations associated with it. Variations in age, features, and cogni-
tive ability are correlated with the development of altered behavioral patterns in 
different individuals [13].

Abnormal communication skills and social attachment become apparent in autis-
tic infants who develop relatively less attention to social stimuli, have problems 
maintaining eye contact and turn-taking, and fail to employ facial and bodily ges-
tures to express themselves to others [14]. In some cases, autistic children with 
intellectual disability exhibit destructive nature and excessive aggression. Repetitive 
patterns of behavior are observed in autism, such as placing objects according to a 
specific order, being intolerant to changes, hand rolling, and body rocking. About 
60–80% of affected individuals display poor muscle tone and motor planning as 
well as an unvarying pattern of everyday routine [15].

The early signs of autism in preschool children include delayed speech develop-
ment, speaking in a voice that sounds very monotonous or flat, frequent repetitions 
of a particular set of words or phrases, preferring to communicate using limited 
words, and ignoring their names being called despite possessing normal hearing 
ability [16]. Individuals with autism are intolerant of people entering their own 
 personal space and are generally unable to distinctly express their thoughts and 
desires to others [17].
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3  Causes of Autism

3.1  Genetics

The complexity of autism arises due to interactions among multiple genes, the envi-
ronment as well as the epigenetic factors [18]. Although the genetic basis of autism 
is complex and elusive, escalating evidences from genome sequencing have revealed 
the link between genetic alterations and development of the disorder [19]. Siblings 
of an autistic individual are 25% more likely to develop the condition. Twin studies 
have also reported increased heritability of autism. The exact cause behind genetic 
alterations could not be revealed yet; however, the disease cannot be linked with 
single-gene mutation or any single chromosomal abnormality [20].

3.2  Environmental Causes

Fetal exposure to air pollutants containing heavy metals, toxins (such as thalido-
mide, valproic acid, retinoic acid), and suspended particulates elevates the risk of 
autism [21]. Prenatal stress, unhealthy lifestyle and diet as well as a familial history 
of infectious diseases are some of the factors leading to behavioral anomalies visi-
ble in autistic infants [22, 23]. Perinatal factors of autism include low birth weight, 
preterm delivery, and asphyxia during birth [24]. Genetic heterogeneity may also 
rise due to environmental influences, which in turn can be associated with enzy-
matic deficits in autism. Gene-environment interactions are complex and its under-
standing is still in the root level.

3.3  Neuropathogical Complications

Electrophysiological detections and neuroimaging of test subjects suggest that 
autism is associated with atypical neural connectivity, leading to altered information 
processing [25]. Neural networks in autism involve decreased fronto-posterior and 
enhanced parietal-occipital connectivity and reduced long-range and increased 
short-range connectivity to temporal binding deficits. Increase in total brain volume 
is reported as one of the neuroanatomical features in autism [26]. An enlarged 
amygdala and a significantly minimized volume of corpus callosum have consis-
tently been revealed in affected individuals [27]. Moreover, an alteration in GABA 
and serotonin neurotransmitter levels has also been associated with autism [28]. 
Several hypotheses for the neurological basis of this disorder have been put forward 
which include impaired neuronal migration during early gestation, abnormal spac-
ing between the neurons and disordered synapses, over-connectivity due to exces-
sive neuronal outgrowth, and disturbed excitatory as well as inhibitory networks [29].
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4  Recent Advances in Treatment Therapy and Management 
of Autism

Although a few psychosocial interventions have proved to be beneficial, no single 
treatment strategy for autism can be distinguished as the best one. A wide range of 
symptoms are exhibited by the affected individuals that differ to a huge degree. 
Treatment methods are being tailored to the needs of each patient. Special training, 
educational programs, and behavioral therapies may assist in improving self-care, 
maturity, and job skills, while medications can ameliorate anxiety and irritability 
[10]. Among the useful interventions, applied behavior analysis (ABA) depends on 
unique one-on-one teaching tasks using the behaviorist principles of stimulus, 
response, and reward [30]. Discrete trial training (DTT) uses a slightly different 
technique to teach fundamental skills, such as attention, compliance, and imitation. 
Pivotal response training (PRT) improves self-management and social attachment in 
autistic individuals. Diagnosed children are generally prescribed with antidepres-
sants, anticonvulsants, stimulants, and antipsychotics, such as risperidone or aripip-
razole [31]. However, side effects of long-term intake need to be widely investigated 
as each individual responds uniquely to such drugs. Modulation of gene functioning 
also proved to be an effective approach in the management of autism, but the pro-
cess requires precision and expertise [32]. Thus, an uncompromising search for 
alternative strategies is evident through the recent reports accumulating on autism.

5  Natural Products in the Treatment of Autism

The need for safe and reliable medications for the successful management of autism 
has led to the exploration of various plant-based natural products which bear thera-
peutic potential. Effective herbal medicines taken along with conventional rehabili-
tation and training programs may improve the core symptoms with fewer side 
effects [33]. Here, we have compiled the most important natural compounds that 
have proven to be very beneficial in ameliorating the pathophysiological conditions 
involved in autism.

5.1  Luteolin

Microglia are one of the primary macrophages of the central nervous system (CNS) 
whose main function is detailed scanning and activation during insults, such as 
damage, disease, or infection [34]. Their activation also implicates inflammatory 
responses of the CNS [35]. Maternal immune activation and resulting microglial 
dysfunction in the developing brain is associated with the occurrence of autism [36]. 
Several etiological theories with different degrees of evidence that have been pro-
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posed to target microglial activation in order to regulate these inflammatory cas-
cades can have positive effects in autism treatment [37–39].

Luteolin is a naturally occurring flavonoid found in edible plants. In a human 
cell-based model of maternal immune activation, luteolin treatment significantly 
counteracted IL-6 induced increment of glial fibrillary acidic protein (GFAP) in 
astrocytes [40]. GFAP are usually surplus in proliferative glial scars [41]. In addi-
tion, a marked depletion in the levels of phosphorylated transcription factor 
STAT3 was noted [40]. Excessive phosphorylation of STAT3 is an indication of 
heightened activity of the cytokine and growth factors that often lead to inflam-
mation [42]. Regulated levels of TBR1-positive and CTIP2-positive cells are also 
evident on luteolin administration [40]. TBR1 and CTIP2 expression is important 
for normal cortical development in initial stages [43, 44]. In a study reported by 
Bertolino et al. [45], the flavonoid luteolin along with the fatty acid palmitoyle-
thanolamide together proved to be neuroprotective and anti-inflammatory. 
Co-ultramicronized luteolin and palmitoylethanolamide showed beneficial out-
comes in autistic murine models. Subsequent examinations on its effects in a 
10-year-old male child improved the clinical scenario to a remarkable extent. 
Another luteolin formulation, commercially known as NeuroProtek®, was shown 
to be equally beneficial to a large cohort of children with ASD [46].Thus, luteolin 
might be regarded as a safe and effective medication for the management of autis-
tic behavior [47].

Since autism is represented as a condition associated with neuroinflammation, 
high levels of interleukin-6 (IL-6) and tumor necrosis factor (TNF) are also visual-
ized in the serum of affected individuals [48]. But autistic children who routinely 
took a dietary formulation with luteolin showed improved social attachment and 
behavior. The serum levels of IL-6, TNF, and other cytokines also favorably dimin-
ished on luteolin intake [49]. Luteolin also inhibits mast cell-dependent stimulation 
of activated T cells and minimizes histamine, leukotrienes as well as other inflam-
matory molecules [50].

5.2  Green Tea Extract (Camellia sinensis)

There is a positive correlation between increased oxidative stress and the develop-
ment of autism [51]. Increased levels of lipid peroxidation and major antioxidant 
serum proteins, altered status of glutathione, and major antioxidant enzymes such as 
superoxide dismutase, glutathione peroxidase, and catalase are observed in children 
with autism. This demonstrates the linkage between the mechanism of elevated oxi-
dative stress and development of autism [52].

Camellia sinensis is an important dietary source of polyphenols, principally fla-
vonoids, whose antioxidant potentials are well recognized. Green tea has been 
experimentally proved to exert a wide range of favorable health effects [53]. 
Flavonoids can cross blood-brain barrier and display a multitude of neuroprotective 
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properties [54]. Daily intake of green tea extract (75 and 300 mg/kg) after postnatal 
day 14 for 40 consecutive days has shown a substantial improvement in motor coor-
dination, nociceptive response, locomotion, anxiety, exploratory activity, and cogni-
tion in valproate-induced autistic mice. Formation of oxidative stress markers was 
also downregulated on the administration of the extract in both the doses. Histological 
findings at 300 mg/kg of the extract confirmed its neuroprotective potential [55]. 
Bioactive components in green tea can directly regulate the level of neurotransmit-
ters in brain, particularly dopamine and serotonin in specific brain regions.

L-theanine, an amino acid of tea, displays anti-stress effect and is capable of 
NMDA-independent increase in long-term potentiation (LTP), thereby improving 
memory [56]. Consumption of epigallocatechin-3-gallate, the major type of cate-
chin in green tea, can reverse the cardinal behavioral alterations in sodium- valproate- 
treated autistic rat model [57]. One of the key pathological findings in autism 
involves the loss of Purkinje cell integrity in the cerebellum region [58]. Histological 
findings in subjects that consumed 300 mg/kg of green tea extract regularly showed 
a gradual regeneration of distinct Purkinje layer and cells, which suggests its neuro-
protective potential in the treatment of autism [59].

5.3  Piperine

Piperine, chemically an N-acylpiperidine, is the major alkaloid isolated from black 
pepper (Piper nigrum) and long pepper (Piper longum). The compound is capable 
of activating heat and acidity-sensing ion channels on the pain-sensing nerve cells, 
particularly known as nociceptors [60]. Its action on the nervous system is critically 
acclaimed since it is traditionally used to treat seizure disorders and displays con-
siderable anti-oxidative effects along with notable enhancement of memory and 
cognition [61].

Pretreatment with piperine in cultured hippocampal neurons showed protection 
against loss of cell viability due to glutamatergic upsurge. The mechanism of its 
action has been hypothesized to be associated with the regulation of Ca2+ ion entry 
into the neurons and pre-synaptic release of glutamine [62]. Sodium valproate- 
induced autistic Balb/C mice have been experimentally treated with 20 mg/kg of 
piperine, following which they were subjected to behavioral evaluation, histopatho-
logical observation, and biochemical assessment after postnatal day 14. The results 
demonstrated that piperine is capable of inducing favorable neurorescue effects, as 
evident through its antioxidant activity, memory improvement, and neuroprotective 
attributes [63]. The compound also executes anxiolytic effect, for which it holds the 
potential to act as a medication for anti-stress and relaxation. So, clinical trials with 
piperine are progressing to unveil its prospective beneficial effects in autistic chil-
dren [61].
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5.4  Curcumin

Curcumin is the principal curcuminoid of turmeric, Curcuma longa, which is well- 
known for its neuroprotective properties. It is reported to target multiple pathways 
related to cellular signaling and extend its role in regulating nitrosative or oxidative 
stress, mitochondrial functioning, as well as protein aggregation [64]. Curcumin 
exhibits a wide range of anti-inflammatory effects and is able to cross the blood- 
brain barrier easily [65].

In a study conducted to assess the effect of prenatal valproic acid exposure, it has 
been revealed that curcumin supplements help diminish dysfunctions and signifi-
cantly improve the level of antioxidant enzymes [66]. Up to 200 mg/kg of curcumin 
administered in rats displaying autistic phenotype can attenuate oxidative stress, 
mitochondrial dysfunction, release of tumor necrosis factor (TNF-α), and matrix 
metalloproteinases. Thus, curcumin has been reported to act as neuro- 
psychopharmacotherapeutic adjunct for autism spectrum disorders [67]. As a direct 
treatment or adjunct, curcumin is capable of reducing several inflammatory markers 
in various diseases and has consistently demonstrated in vitro and in vivo antioxi-
dant radical scavenging activities [68, 69]. Increase in synaptic plasticity, leading to 
enhancement of cognition is possible with the regular intake of curcumin in diet 
[70]. Although there are no convincing reports on clinical studies on the usefulness 
of curcumin in human clinical trials, evidence for curcumin as a neuroprotective 
agent is sufficient for it to be employed in upcoming research related to autism and 
other related disorders.

5.5  Cannabinoids

Medical use of Cannabis is being explored in various neurological disorders cur-
rently, and different levels of efficacy are seen with its utilization [71]. 
Tetrahydrocannabinol (THC), the phytocannabinoid, which forms the main psycho-
active component of Cannabis sativa, can exacerbate several neurological disor-
ders, when employed in the adequate quantity. Cannabidiol (CBD) is reported to be 
sufficiently effective in suppressing autistic behavior [72]. The compound could 
promise therapeutic options like immunomodulation, antioxidant defense, and neu-
roprotection, with little or no side effects [73]. Cannabidivarin (CBDV) has also 
displayed satisfactory potential to ameliorate behavioral alterations, and clinical tri-
als with this compound have shown immense improvement of autistic condition. 
Moreover, 10  mg/kg/day of CBDV for 12  weeks has been approved for further 
assessment to confirm its tolerability and safety level [74].

The endocannabinoid (EC) system represents a major neuromodulatory system 
that can regulate the emotional responses and behavioral reactivity for desired level 
of social interaction. In most cases, the EC system is found to be affected in patients 
diagnosed with autism spectrum disorders [75]. Group of endogenous molecules 
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like signaling compounds consisting of arachidonic acid compound derived and 
associated enzymes are able to bind and activate the EC receptors, resulting in 
upregulation of RNA and protein levels [76]. However, a fault in this system dis-
turbs the normal metabolic pathways and leads to neuroinflammation. Therefore, 
the activation of the EC system with natural cannabinoid phyto-products could 
regulate immune responses, display antioxidant activity, and help in ameliorating 
the plethora of autistic symptoms [75].

5.6  Ginkgo biloba Extract

Important compounds present in the standardized extract of Ginkgo biloba leaves, 
specifically EGb 761 [Ginkgo biloba extract EGb 761, Rökan, Tanakan, Tebonin], 
include approximately 24% flavone glycosides (primarily quercetin, kaempferol, 
and isorhamnetin) and 6% terpene lactones (2.8–3.4% ginkgolides A, B, and C and 
2.6–3.2% bilobalide) [77]. Ginkgolide B and bilobalide account for about 0.8% and 
3% of the total extract. Other constituents include proanthocyanadins, glucose, 
rhamnose, organic acids, D-glucaric acid, and ginkgolic acid [78].

The terpenoids, organic acids, and flavonoids present in the extract facilitate its 
neuroprotective effects against disorders such as ischemic stroke, Parkinson’s dis-
ease, and Alzheimer’s disease [79]. An observational study showed that 100 mg/kg 
twice a day of Ginkgo biloba extract is sufficient to improve aberrant behavior and 
symptoms in autistic individuals. The extract is capable of ameliorating behavioral 
irritability, hyperactivity, inadequate eye contact, and inappropriate speech in autism 
[80]. For the treatment of autism, Ginkgo biloba extract is used as an adjunct to 
risperidone at 80 mg/day for patients under 30 kg and 120 mg/day for patients above 
30 kg. The treated group showed less adverse effect as compared to the placebo. The 
literature related to the pharmacokinetics and bioavailability, in relation to the cen-
tral nervous system (CNS), is still sparse. Further research is required to be carried 
out to assess the probable efficacy of Ginkgo biloba to improve neurological condi-
tions, including autism [81].

6  Conclusion

Plant-based drugs exhibit promising therapeutic effects against a range of complica-
tions, including neurodevelopmental disorders like autism. Ongoing research con-
ducted over multiple years has come to the conclusion that the benefits and adverse 
effects of these natural products are yet to be established, proven, and/or recom-
mended in near future. These natural products that are recognized as possible drug 
entities can serve as chemical models or templates for the synthesis or modification 
of novel substances for treating autism. Above all, plant resources can prove to be 
reliable pharmacological treatments for diminishing the behavioral issues in autistic 
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individuals. More than half of the patients are prescribed psychoactive drugs or 
anticonvulsants, more specifically, synthetically prepared antidepressants, stimu-
lants, and antipsychotics, which bear numerous side effects evident from their long- 
term consumption. Although improved learning techniques, substitute therapies, 
and interventions which have improved the scenario of autism are available nowa-
days, herbal treatments still emerge as a trustworthy alternative among them all. All 
we need now is for their potential to work against autism needs to be concluded as 
long-standing and firm through further research.
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Abstract Autism spectrum disorder (ASD) is a complex neurodevelopmental dis-
order with symptoms ranging from lack of social interaction and communication 
deficits to rigid, repetitive, and stereotypic behavior. It has also been associated with 
comorbidities such as anxiety, aggression, epilepsy, deficit in sensory processing, as 
well as ADHD (attention deficit hyperactivity disorder). Apart from several behav-
ioral and cognitive complications arising as a result of central nervous system dys-
function, there are various physiological comorbidities such as immune system 
deregulation, neuroinflammation, oxidative stress, mitochondrial dysfunction, and 
gastrointestinal complications which can worsen existing behavioral complications. 
There are no available treatments for these physiological comorbidities. The preva-
lence of gastrointestinal complications in ASD ranges from 9% to 70% and it cor-
relates with behaviors consistent with the autistic endophenotype indicating that 
these are one of the major comorbidities associated with ASD. A strong connection 
of gut–brain cross talk occurs as a result of gut dysbiosis responsible for excessive 
production of short-chain fatty acids such as propanoic acid (PPA) by abnormal gut 
flora in ASD patients. This worsens behavioral, neurochemical, and mitochondrial 
dysfunction occurring in ASD. These physiological comorbidities are responsible 
for the generation of free radical species that cause immune system dysfunction 
leading to synthesis of various pro-inflammatory cytokines and chemokines. This in 
turn causes activation of microglia. Dietary phytochemicals are thought to be safer 
and useful as an alternative neurotherapeutic moiety. These compounds provide 
neuroprotection by modulating signaling pathways such as Nrf2, NF-κB, MAPK 
pathway or Sirtuin-FoxO pathway. There has been recent evidence in scientific lit-
erature regarding the modulation of gut–brain cross talk responsible for behavioral, 
biochemical, and mitochondrial dysfunction as well as cellular and behavioral sen-
sory alterations by dietary phytochemicals such as curcumin, resveratrol,  naringenin, 
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and sulforaphane. These dietary phytochemicals can be formulated in novel brain-
targeted delivery systems which overcome their limitation of low oral bioavailabil-
ity and short half-life leading to prolonged action. Till date, not much work has been 
done on the development of brain-targeted neurotherapeutics for ASD. In this chap-
ter we discuss plausible mechanisms and evidence from our own and other scientific 
research for the utilization of curcumin, resveratrol, naringenin, and sulforaphane as 
neurotherapeutics for ASD.

Keywords Autism spectrum disorder · ASD · Nutrition therapy · Dietary 
phytochemicals · Neurotherapeutics · Herbal remedies · Curcumin · Naringenin · 
Resveratrol · Sulforaphane

1  Introduction

Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with 
behavioral symptoms manifesting at 3 years of age. Behavioral symptoms range 
from deficits in social interaction and communication skills to restrictive, rigid, per-
vasive, and stereotypic behavior. It has also been associated with comorbidities such 
as anxiety, depression, aggression, as well as ADHD (attention deficit hyperactivity 
disorder), epilepsy and deficit in sensory processing [1–4]. According to the National 
Institute of Mental Health, 2.41% of children in US have ASD. Prevalence of ASD 
has been reported by US Center for Disease Control and Prevention (CDC) to be 
1 in 68 children in 2014 in comparison to 2010 reports of 1 in 88. World Health 
Organization (WHO) reports of 2017 show that worldwide 1  in 160 children are 
suffering from ASD [5]. ASDs show significant skewness for occurrence in boys 
with a sex ratio of 4:1 [6–9]. Complex amalgamation of genetic, epigenetic, and 
environmental factors exists in ASD. It includes complex interaction between pre-
existing genetic factors and environmental factors [10–13].

Currently, there is no cure that exists for the core symptoms associated with ASD 
with even the basic disturbances not being modifiable. Associated symptoms such 
as anxiety, depression, irritability, epilepsy, and some mood disturbances can, how-
ever, be decreased with pharmacological agents like antipsychotics, antidepressants, 
mood stabilizers, medications for ADHD, NMDA receptor antagonists, melatonin, 
oxytocin, and omega-3 fatty acids [14, 15]. Two antipsychotic drugs—resperidone 
and aripripazole—have been shown to lead to improvement of associated symptoms 
in clinical trials and have been approved for symptomatic treatment of ASD by the 
US-FDA [16, 17].

However, these agents are not used as part of pharmacotherapy for the core 
symptoms of social interaction, repetitive and restricted behavior as they are untreat-
able. The primary research focus now is to develop novel treatments that target these 
core symptoms, many of which are under clinical trials; for these disorders as well 
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for the core symptoms drugs like IGF-1, Evorolimus, Arbaclofen, Fenobam, 
Memantine, and Lithium. These are under clinical trials for the treatment of aggres-
sion, irritability, social withdrawal, and sensory gating. Currently under phase I, 
Memantine is being explored as a treatment for the core symptoms of ASD. Oxytocin 
is thought to be implicated in ASD when considering the two core symptoms of 
social development and repetitive behavior. It has been observed in animal models 
that oxytocin, when centrally administered, improves social deficits, enhances 
social novelty preference, and decreases aggression [14, 15].

Apart from several behavioral and cognitive complications arising as a result of 
central nervous system dysfunction, there are many physiological comorbidities 
associated with ASD which can worsen behavioral complications. Research and 
clinical studies have indicated many physiological comorbidities like immune sys-
tem deregulation, environmental toxicant exposures, oxidative stress, mitochondrial 
dysfunction, and gastrointestinal complications [18–21]. There are no treatments 
currently available for these physiological comorbidities.

The prevalence of gastrointestinal complications in ASD ranges from 9% to 
70%. It correlates with behaviors consistent with autistic endophenotype indicating 
that these are one of the major comorbidities associated with ASD [22–24]. Song 
et al. [25] found significant increase in Clostridium bolteae and Clostridium clusters 
I and XI. Finegold et al. [26] noted an increase of Desulfovibrio spp. and Wang et al. 
[27] have observed higher levels of Sutterella and Ruminococcus spp. in individuals 
with ASD compared to control [28, 29]. These gut bacteria produce short-chain 
fatty acids (SCFAs) such as propanoic acid (PPA) as a consequence of metabolism 
of dietary carbohydrates as well as amino acids [30]. Scientific literature has sug-
gested that behavioral and gastrointestinal complications worsen in autistic children 
after intake of a diet rich in carbohydrates or foods that use PPA as a preservative 
[23, 31–34].

Propanoic acid (PPA) is an organic acid which can cross blood–brain barrier 
(BBB) [35] and cause alterations in the levels of serotonin, dopamine, and gluta-
mate by stimulating calcium release [36]. It causes disruption of glutamate: 
GABAergic transmission which simulates what occurs in autism [37–39]. It releases 
pro-inflammatory cytokines, depletes endogenous antioxidants, and elevates lipid 
peroxidase leading to oxidative stress [40, 41].

Immune system dysregulation and generation of reactive oxygen species (ROS) 
leads to synthesis of various pro-inflammatory cytokines and chemokines causing 
activation of microglia. In order to tackle this, dietary phytochemicals were thought 
to be a safer and more useful alternative as an adjunct neurotherapeutic moiety. 
These compounds provide neuroprotection by modulation of various signaling 
pathways [42, 43]. The signaling pathways which are modulated by phytochemicals 
are either the Nrf2 pathway [44], the NF-κB signaling pathway [45, 46], MAPK 
pathway [47, 48] or Sirtuin-FoxO pathway [49, 50]. Hence, in this chapter we bring 
forth a variety of dietary phytochemicals such as curcumin, resveratrol, naringenin, 
and sulforaphane and the plausible mechanism and evidence for their use as neuro-
therapeutics for autism spectrum disorders.
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2  Dietary Phytochemicals as Neurotherapeutic

Phytopharmaceuticals are a safer alternative and, owing to their therapeutic poten-
tial, are recently being considered important in medicine. These natural antioxidants 
provide a safe path for protecting the body against free radicals. Our central nervous 
system has a mechanism for combating oxidative stress utilizing our endogenous 
oxidant system. However, this endogenous defense mechanism needs a support sys-
tem. This system is modulated by dietary phytochemicals such as various polyphe-
nols, alkaloids, flavonoids, terpenoids, saponins, polyunsaturated fatty acids, other 
phytochemicals such as sulforaphane, curcumin, resveratrol, and allicin. There is 
vast scientific and empirical evidence in support of the use of antioxidants as 
neurotherapeutic.

These dietary phytochemicals may have a beneficial effect in reducing neuronal 
damage thereby having neuroprotective action. A number of studies have explored 
their use in slowing down neuronal loss in various neurodegenerative disorders like 
multiple sclerosis, amyotrophic lateral sclerosis, stroke, Parkinson’s disease, 
Alzheimer’s disease, and Huntington’s disease [51]. The role of dietary phytochem-
icals as neurotherapeutic for autism spectrum disorders has not been explored much. 
In this chapter we will delve into understanding the mechanism of their beneficial 
effect in ASD.

3  Why Are Dietary Phytochemicals Beneficial in Autism 
Spectrum Disorder (ASD)?

3.1  Neuroinflammation and Oxidative Stress  
Associated with ASD

ASD involves neuroinflammation as indicated by immune system dysregulation and 
microglial activation [52, 53]. Though microglial cells have protective properties, 
sustained microglia activation can result in the damage of neurons. ASD shows 
sustained activation of microglial cells as indicated by neuroinflammation found in 
brains of ASD patients obtained during postmortem studies [53]. Immune system 
dysregulation as well as increased levels of inflammatory cytokines like TNF-α, 
IL-6, IL-β, IL-2, IL-4, IL-13, have been found in the brain of individuals with ASD 
[54, 55]. Onore et al. [56] have shown that the levels of adhesion molecules are 
reduced in children having ASD.

It is found that patients with ASD have increased levels of TNF-α, INF-γ as well 
as microglia activation in CSF, plasma, and amniotic fluid [55, 57–59]. Clinical stud-
ies have shown elevated levels of MMP-9 in the samples of amniotic fluid. MMP-9 
is involved in processing of pro-inflammatory cytokines and genes associated with 
ASD [60]. Growth factors such as TGF-1β are decreased and BDNF is increased in 
the brain (postmortem) and plasma of children with autism [61]. These inflamma-
tory cytokines are responsible for the generation of ASD-like behaviors [62, 63].
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3.2  Oxidative Stress and Mitochondrial Dysfunction in ASD

Reactive oxygen species (ROS) is responsible for oxidative stress involved in the 
pathogenesis of autism [64, 65]. Children suffering from autism have low levels of 
coenzyme Q10 along with high levels of malondialdehyde (MDA) [66]. González- 
fraguela et al. [67] have indicated that total GSH was lowered in ASD patients while 
there was increase in the levels of catalase, MDA, and 8-hydroxy-2deoxyguanosine 
(8OHdG) in the blood samples of children suffering from autism. Figure 1 describes 
the mechanism of oxidative stress in autism spectrum disorders (ASD).

Development of oxidative stress in ASD as a result of free radical generation is 
responsible for mitochondrial dysfunction. It can lead to the generation of inflam-
matory cytokines and activation of microglia. This sustained activation of microglia 
will be responsible for neuroinflammation as a result of neuronal dysfunction and 
manifest as behavioral symptoms associated with ASD.

Disruption of the electron transport chain of mitochondria and oxidative stress 
are major physiological disturbances occurring as part of ASD [68, 69]. Impairment 
of mitochondrial energy metabolism is one of the primary pathological conse-
quences of autism. Meta-analysis of three population-based studies by Rossignol 
and Frye [69] has revealed that 30% of children among the ASD population show 
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Fig. 1 Oxidative stress mechanism in autism spectrum disorder (ASD)
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similar biomarkers to those occurring in mitochondrial disease. Its prevalence in 
ASD was at 5.0% which is significantly higher than the prevalence across the gen-
eral population (∼0.01%) indicating that there is a close connection between ASD 
and mitochondrial dysfunction (MD) [70]. Acquired mitochondrial dysfunction can 
occur as a result of exposure to environmental pollutants like pesticides and biphe-
nyls which lead to epigenetic changes and the release of pro-inflammatory cyto-
kines by dysregulation of the immune system and oxidative stress. Neuroinflammatory 
response stimulated by matrix metalloproteinases (MMPs) also plays an important 
role in the development of autistic phenotype as MMPs stimulate release of pro- 
inflammatory cytokines along with mitochondrial dysfunction. This leads to neuro-
nal dysfunction and consequently, the development of autistic phenotype [68, 71]. 
Dysregulation of the immune system may release pro-inflammatory cytokines in 
individuals with autism which may lead to ROS production. While prenatal expo-
sure may lead to functional disconnection and lack of integration of information 
processed by the brain, postnatal exposure leads to mitochondrial dysfunction and 
oxidative stress resulting in glial cell activation. Sustained glial cell activation has 
been observed to cause neuroinflammation in brains of individuals suffering from 
ASD [53, 54, 72]. The overexpression of HSP-70 can be a protective mechanism as 
a result of prevention of misfolding of proteins. It can also play a significant role as 
a potential biomarker induced as a result of neuroinflammation and oxidative 
stress [73].

3.3  Role of Gut-Microbiota in ASD: How Are They 
Responsible for Microglial Activation, Mitochondrial 
Dysfunction, Oxidative Stress, and Neuroinflammation 
in ASD?

Gastrointestinal complications occur among 70% of autistic patients. They have 
abnormal gut flora. It has been observed that gut bacteria such as Clostridia, 
Desulfovibrio, Sutterella, and Ruminococcus species produce short-chain fatty 
acids (SCFAs) such as PPA because of the metabolism of dietary carbohydrates and 
amino acids [26, 27, 29, 30].

Propanoic acid (PPA) is responsible for the generation of pro-inflammatory cyto-
kines like TNF-α, IL-6, INF-ϒ and the reduction in the levels of endogenous anti-
oxidants such as glutathione, superoxide dismutase as well the elevation of lipid 
peroxidase [41]. PPA causes disruption of GAP junction coupling as a result of 
increase in the levels of neurotransmitters such as serotonin, dopamine, and gluta-
mate [74–76] (Fig. 2).

A strong gut–brain cross talk exists in ASD which is responsible for worsening 
of behavioral and gastrointestinal symptoms after consumption of diet rich in carbo-
hydrates or food in which PPA is present as a preservative [23, 31]. These short- 
chain fatty acids result in the enhanced production of serotonin from enteric neurons 
of the gut and cause severe contractions of the smooth muscles of the gut [75]. In 
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their study aimed at understanding the effect of CNS exposure of PPA on the behav-
ioral, biochemical, and neurological pathology, MacFabe et al. [75, 77] adminis-
tered an intracerebroventricular injection of PPA to adolescent rats. PPA inhibits 
mitochondrial Complex I, II, III, and IV activity as it can enter Kreb’s cycle as 
propionyl-CoA and cause disruption of ETC by reducing production of ATP 
[75, 78–81].

Mitochondrial dysfunction is a result of disruption of the electron transport chain 
(ETC). This leads to damage of mitochondrial DNA further leading to the genera-
tion of a reactive oxygen species (ROS) as a result of oxidative stress. This in turn 
will cause the generation of inflammatory cytokines responsible for activation of the 
transcription factor NF-κB leading to neuroinflammation and further behavioral 
changes characteristic to ASD (Fig. 3).

Hence, gut dysbiosis and genetic susceptibility along with various environmental 
factors are responsible for immune system activation, oxidative stress, and mito-
chondrial dysfunction in patients suffering from ASD. All of these physiological 
comorbidities associated with autism can worsen the behavioral complications. 
Thus, dietary phytochemicals can prove to be a safer alternative in these patients. 
They can help mitigate the oxidative stress and neuroinflammation occurring as part 
of ASD. We will now delve further into the mechanistic details of the beneficial 
aspect of dietary phytochemicals such as curcumin, resveratrol, naringenin, and sul-
foraphane which have, till date, been explored by the scientific community as a 
neurotherapeutic in ASD.

Fig. 2 An overview of PPA as an environmental factor in ASD
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4  Antioxidant Potential of Curcumin, Resveratrol, 
Naringenin, and Sulforaphane: Cross Talk  
Between Nrf2–NF-κB Pathways

Nrf2 is a transcription factor protecting cells from damage by oxidative stress. It 
does so through the activation of various genes expressed in the antioxidant 
response element (ARE) such as NADPH, GSH, SOD, catalase, heme-oxygenae-1 
(HO-1), and NQO1. It binds to ARE and is responsible for maintaining cellular 
homeostasis by balancing of redox pathways. Nrf2 function can cause cellular dys-
function and apoptosis. Activity of Nrf2 is regulated by its inhibitor protein Keap1 
(Kelch-like ECH-associated protein 1) present near the plasma membrane seques-
tering Nrf2 inside the cell. Keap1 acts as an important link for interaction of Nrf2 
with CuI3- Rbx E3 ubiquitin ligase complex. This interaction will eventually lead 
to Nrf2 ubiquitination and cause proteasomal degradation of Nrf2 so reduced levels 
of Nrf2 are maintained. During oxidative stress, reactive oxygen species (ROS) 

Fig. 3 Mechanism of neuroinflammation caused by PPA
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cause modification of cysteine residues of Keap1 and hence, can no longer cause 
repression of Nrf2. This leads to Nrf2 translocation into the nucleus. Nrf2 gets 
associated with Maf proteins. After getting associated with Maf proteins it binds to 
the promoter region of the genes present on the ARE, protecting them from cellular 
stress. This leads to the initiation of transcription [82, 83]. NF-κB is a major tran-
scription factor regulating the activation of the immune system. In response to 
enhanced oxidative stress, it initiates the release of pro-inflammatory cytokines 
such as TNF-α, IL-β, Il-6, and LPS. It consists of p65, p50, p52, and RelB. Under 
basal conditions, inhibitor of NF-κB (IkB-α) sequesters NF-κB in the cell. Increased 
oxidative stress causes activation of IkB kinase, which phosphorylates NF-κB 
inhibitor. This results in proteasomal degradation of IkB-α and translocation of 
NF-κB to the nucleus where it binds with the genome at the k region. NF-κB causes 
transcription of various pro- inflammatory cytokines with the help of histone acetyl 
transferases (HAT). There is strong molecular cross talk between Nrf2 and NF-κB 
pathway [82, 83]. There is inhibition of the NF-κB pathway activation by Nrf2–
ARE pathway by increasing the expression of antioxidant genes as well as HO-1. 
This prevents cellular stress and apoptosis by neutralization of free radicals. 
Another process which causes inhibition of transcription of various pro-inflamma-
tory cytokines by NF-κB is through Keap1. Once there is translocation of Nrf2 
inside the nucleus in response to oxidative stress, Keap1 binds to IkB kinase and 
reduces the degradation of IkB-α. Hence, Nrf2 pathway inhibits NF-κB activation. 
NF-κB pathway activation also ameliorates Nrf2 pathway activation as a result of 
reduction in the transcription of genes present on ARE. NF-κB also facilitates the 
binding of HDAC3 (histone deacetylase3) to the antioxidant response element 
region as a result of its binding to Maf proteins. This results in repression of tran-
scription caused by Nrf2 [84]. There are various phytochemicals that can activate 
the Nrf2 pathway and interact with Keap1 like curcumin [85, 86], resveratrol [87], 
naringenin [88], and sulforaphane [89–91]. Figure 4 summarizes both the molecu-
lar cross talk between Nrf2/ARE and NF-κB pathway occurring as part of ASD and 
the activation of  Nrf2/ARE pathway by curcumin, resveratrol, naringenin, and sul-
foraphane by acting on Keap1.

5  CURCUMIN: Potential of Indian Solid Gold 
as Neurotherapeutic in ASD

5.1  CURCUMIN: Structure, Description, and Physicochemical 
Properties

Curcumin is the primary curcuminoid present in the Indian spice, turmeric (Curcuma 
longa) and is regarded as “Indian Solid Gold” (Fig.  5). It has several anti- 
inflammatory and antioxidant activities and affects angiogenesis and cell adhesion. 
It also has anticarcinogenic properties evident in its action on three primary cell- 
signaling pathways, i.e., Akt, NF-κB, and PI3K [92–94]. Curcumin is known to be 
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beneficial because of its neuroprotective action in several neurodegenerative dis-
eases like Alzheimer’s, Huntington’s, Parkinson’s, and peripheral neuropathy [95]. 
It primarily exerts its neuroprotective action because of its antiproliferative effect on 
activated microglia and reactive astrocytes which can lead to release of cytokines 
and other reactive substances. This leads to exacerbation of these pathologies [96]. 
Curcumin acts as a potent neuroinflammatory agent which protects against oxida-
tive stress by inducing heme oxygenase-1 (HO-1) resulting in the increased activity 
of the enzyme, heme oxygenase [97]. Karlstetter et al. [98] have shown that cur-
cumin can modulate transcription of microglial cells. It markedly reduces their 

Fig. 4 Molecular cross talk between Nrf2 and NF-κB pathways in ASD. ASD is accompanied by 
gastrointestinal complications. As a result, there is enhanced production by short-chain fatty acids 
such as PPA (propanoic acid) and through abnormal gut flora such as Clostridia, Desulfovibrio, 
and Suttrela species. PPA can cross the blood–brain barrier (BBB) and can cause mitochondrial 
dysfunction as a result of disruption of the electron transport chain. There will be generation of 
reactive oxygen species (ROS) as a result of oxidative stress. In case of mild–moderate oxidative 
stress there is activation of the Nrf2/ARE pathway which will result in dissociation of Nrf2 from 
its inhibitor Keap1 and its translocation in nucleus. In the nucleus, Nrf2 will associate with Maf 
protein and bind itself to the antioxidant response element (ARE). This will lead to transcription of 
antioxidant genes and phase II enzymes which will inhibit ROS. Enhanced oxidative stress will 
activate IKKβ causing phosphorylation of IkB-α. IkB-α is an inhibitor of NF-κB that causes pro-
teasomal degradation of IkB-α. Thus, NF-κB will migrate to the nucleus and bind to its region. 
This will cause transcription of pro-inflammatory cytokines and other genes such as TNF-α, Il-β, 
Il-6, iNOS, and COX-2. There is molecular cross talk between the Nrf2/ARE pathway and the 
NF-κB pathway as free Keap1 prevents degradation of IkB-α leading to inhibition of NF-κB path-
way. The p65 subunit of NF-κB also inhibits Keap1 from interfering with facilitation of transcrip-
tion by Nrf2. Dietary phytochemicals like curcumin, resveratrol, naringenin, and sulforaphane 
enhance the activation of Nrf2/ARE pathway by interacting with Keap1. Hence, they inhibit the 
activation of the NF-κB pathway leading to release of various pro-inflammatory cytokines and 
other cellular stress mediators
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migration by inhibiting NF-κB signaling resulting in suppression of neuroinflam-
mation, a key component of various neurodegenerative diseases. It has also shown 
to be protective in the case of axonal degeneration of neurons [99]. Curcumin has 
shown to be neuroprotective as a result of upregulation of the Nrf2 gene [86]. 
Curcumin also shows its protective effect in restoring cognitive deficits and adult 
neurogenesis in a rat model of Alzheimer’s disease [100, 101].

There is a variety of mechanisms targeted by curcumin like mitochondrial dys-
function, oxidative stress, mTOR pathway, TLR-4 receptors, MAPK pathway, and 
molecular chaperon dysfunction. The primary pharmacological benefit of curcumin 
is its anti-inflammatory effects because of which it is able to show its impact on 
several pathologies. This effect is due to its multifactorial nature of regulating sev-
eral transcription factors, cytokines and enzymes associated with the NF-κB path-
way [102]. It modulates a wide variety of inflammatory targets like TNF-α, COX-2, 
Wnt/β-catenin, 5-LOX, IL-6, IL-1, MMP-9, iNOS, and PPAR-ϒ [103, 104]. Various 
studies have revealed that curcumin exerts its anti-TNF-α effect and MMP-9 inhibi-
tory effects through inhibition of the NF-κB and MAPK pathway [105, 106]. Oral 
administration of curcumin has been centrally neuroprotective [107]. Table  1 
describes the physicochemical profile of curcumin.

5.2  Curcumin as Neurotherapeutic in ASD: Evidence 
from Preclinical Studies

There have not been many preclinical studies on the use of curcumin as a neuro-
therapeutic in ASD. Bhandari and Kuhad [108] have explored the neurotherapeutic 
potential of curcumin in autism spectrum disorders. 1M Propanoic acid (PPA) (4 μl) 
was infused over 10  min into the anterior portion of lateral ventricle to induce 

Fig. 5 Structure of 
curcumin
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autism-like behavior in adolescent rats. PPA is an enteric product of gut bacteria in 
individuals with autism. In order to observe how this enteric product affects behav-
ior and causes biochemical and mitochondrial dysfunction by immune system acti-
vation and producing inflammatory cytokines, this model was validated in our lab. 
Oral administration of curcumin (50, 100, and 200 mg/kg) was carried out starting 
from the second day of induction and was continued up to the 28th day. Rats induced 
with ASD-like phenotype were tested for various neurobehavioral aspects such as 
reciprocal social interaction, stereotypy, locomotor activity, anxiety, novelty, depres-
sion, spatial learning and memory as well as for repetitive and pervasive behavior 
between the 7th and the 28th day. Additionally, estimation of biochemical parame-
ters, activity of mitochondrial complexes, TNF-α and MMP-9 were also carried out.

The findings of this study suggested that MMP-9 release mediated mitochondrial 
dysfunction and release of pro-inflammatory cytokines. This was responsible for the 
development of the characteristic behavioral and biochemical phenotypic profile 
associated with autism. Curcumin (50, 100, and 200 mg/kg) could significantly and 
dose-dependently restore this pathological alteration as a result of its strong antioxi-
dant, anti-inflammatory, anti-TNF-α, and anti-MMP-9 potential. Hence, curcumin 
can be utilized as a potential neurotherapeutic for ameliorating the neurobehavioral, 
biochemical, and molecular alterations occurring in ASD.

Al-Askar et al. [109] have investigated the beneficial effect of curcumin in ame-
liorating the neurodevelopmental brain deficit resulting in autism after exposure of 
mothers to valproic acid (VPA), an antiepileptic drug during the first trimester of 
pregnancy. The researchers used valproic acid rat model of autism in which rat 
fetuses were exposed to VPA (600 mg/kg, intraperitoneal injection) on the 12.5th 
day post conception. At 7 days from their birth, the animals were administered a 
single dose of curcumin (1 g/kg). It was observed that rats administered with VPA 
showed delay in maturation and a reduction in body and brain weight along with 
several signs of toxicity in brain. There was also a reduction in endogenous antioxi-
dants like reduced glutathione and changes in neurotransmitters like depletion of 

Table 1 Physicochemical properties of curcumin

S. no. Physicochemical properties

1. Molecular formula C21H20O6

2. Molecular weight 368.385 g/mol
3. Chemical name Diferuloylmethane
4. IUPAC name (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)

hepta-1,6-diene-3,5-dione
5. Color Yellow-orange
6. Physical description Crystalline powder
7. Solubility Insoluble in water, ether; soluble in alcohol, glacial acetic acid. 

Freely soluble in ethanol, acetic acid
8. Melting point 179–182 °C
9. Log P (polarity) Log Ko/w = 3.29
10. Stability Should be stored in a tightly closed container in a dry and 

well- ventilated place at a temperature of −20 °C
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serotonin and glutamine. There was an increase in oxidative stress parameters such 
as increase in lipid peroxidation, oxidized glutathione, IL-6, and excitatory neu-
rotransmitters such as glutamate. Curcumin supplementation resulted in moderate 
correction of these endogenous dysfunctions and there was significant improvement 
in maturation delay and reduction in body weight.

Shu-juan et  al. [110] also demonstrated the neurotherapeutic potential of cur-
cumin in ameliorating autistic behavior and increase in levels of brain-derived neu-
rotropic factor (BDNF) in sodium valproate rat model of autism by administering 
600 mg/kg VPA, i.p. on 12.5 day after gestation. Curcumin was administered at a 
concentration of 10 g/l for 2 weeks to 35-day old rat pups. There was significant 
improvement in behaviors like social interaction and reduction in repetitive behav-
ior. Curcumin significantly increased levels of BDNF in temporal cortex as well.

6  Resveratrol: Potential of Red Grape Constituent 
as Neurotherapeutic in ASD

6.1  Resveratrol: Structure, Description, and Physicochemical 
Properties

Resveratrol is a polyphenolic stilbenoid produced naturally by several plants when 
attacked by bacteria and fungi [111]. It is found in food sources such as grapes, nuts, 
and berries. It is multifactorial and interacts with various targets. It acts as a cyclo-
oxygenase (COX) inhibitor, PPAR-α activator, eNOS inducer, and SIRT1 activator 
[50, 112, 113]. Resveratrol is an allosteric modulator of the regulatory target SIRT1. 
It enhances AMPK phosphorylation and decreases the oxidative damage occurring 
in F2 hybrid mice [114]. Literature reports have suggested that LPS-induced activa-
tion of NF-κB is suppressed by resveratrol in C6 microglia [115]. Resveratrol ame-
liorates the increased levels of MMP-9 induced as a result of cerebral 
ischemia-reperfusion injury in mice [116]. It also causes inhibition of levels of 
MMP-9 by upregulation of PPAR-α expression in an oxygen glucose deprivation- 
exposed neuron model [117]. Social deficits in the sociability tests evaluated in an 
animal model of ASD, induced using valproic acid, were prevented by resveratrol 
[118]. Resveratrol reduces MMP-9 levels and induces immune responses which 
make the brain resilient to the deposition of β-amyloid. Resveratrol slows down the 
cognitive deficit in Alzheimer’s disease which may also arrest apoptosis of neurons 
[119]. It also reverses neuroinflammation caused by morphine by reversing the 
expression of HDAC1 [120]. Resveratrol modulates many calcium signaling path-
ways. Hence, resveratrol acts not only by immunomodulation but also by lowering 
hyperexcitability of the membrane [121]. Thus, resveratrol can be used as a thera-
peutic for various diseases such as neurodegeneration, autoimmune disorders, heart 
diseases, and cancer (Fig.  6). Table  2 describes the physicochemical profile of 
resveratrol.
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6.2  Resveratrol as Neurotherapeutic in ASD: Evidence 
from Preclinical Studies

Fontes-Dutra et al. [122] have explored the neurotherapeutic potential of resveratrol 
in the valproic acid (VPA) animal model of autism. The primary aim of these 
researchers was to understand the neurodevelopmental deficit occurring as a result 
of exposure to valproic acid prenatally and whether resveratrol could be used as a 
probable intervention. Effects of resveratrol on sensory behavior were evaluated 
after induction of autism. Sensory brain regions were studied for their localization 
of GABAergic parvalbumin (PVC) neurons and expressions of excitatory and inhib-
itory synapses. Treatment with resveratrol (3.6 mg/kg) was done in pregnant dams 
from gestation day E6.5 to E18.5 and they were administered valproic acid (600 mg/
kg) at E12.5. Behavioral parameters such as nest seeking (NS) behavior and behav-
ior during the whisker nuisance task (WNT) were evaluated in male pups. Brain 
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Fig. 6 Structure of 
resveratrol

Table 2 Physicochemical properties of resveratrol

S. no. Physicochemical properties

1. Molecular 
formula

C14H12O3

2. Molecular 
weight

228.247 g/mol

3. Chemical 
name

Trans-resveratrol; 3,4′,5-Trihydroxystilbene

4. IUPAC name 5-[(E)-2-(hydroxyphenyl)ethenyl]benzene-1,3-diol
5. Color Off-white powder
6. Physical 

description
Solid

7. Melting point 254 °C
8. Solubility Solubility in water is 3 mg/100 ml; soluble in ethanol, DMSO and 

DMF, solubility in phosphate buffer saline (pH 7.4) is 100 μg/ml
9. Log P 

(polarity)
Log Ko/w = 3.10

10. Stability Should be stored in a tightly closed container in a dry and 
well-ventilated place at a temperature of −20 °C
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tissues were removed on postnatal day 30 and were analyzed for protein expression 
as well as localization of PVC neurons. Their results indicated that there is change 
in localization of PVC neurons in the sensory cortex as well as the amygdala. The 
treatment with RSV showed significant prevention of the alterations occurring after 
valproic acid exposure.

Scientific literature has documented that if pregnant women are exposed to pro-
gesterone in the form of oral contraceptive pills, in food or drink or any preterm 
birth drug, it can lead to development of autism in the child. Hence, in order to 
ameliorate autistic behavior induced as a result of prenatal/postnatal exposure to 
progestin, use of resveratrol was evaluated as plausible therapeutic intervention by 
Xie et al. [123]. Their results indicated that there was significant improvement in 
autistic behavior after oral administration as a result of activation of the ERβ path-
way in the amygdala. The mechanism deciphered from their results indicated his-
tone and DNA demethylation of the promotor region of ERβ resulting in the 
activation of the ERβ pathway. This results in reduction of oxidative stress, mito-
chondrial dysfunction, and lipid peroxidation in the brain leading to amelioration of 
autistic behavior.

The ameliorative potential of resveratrol on neuroinflammation was studied in 
rats induced with ASD-like phenotype using PPA by Bhandari and Kuhad [124]. 
Resveratrol was administered in doses (5, 10, and 15 mg/kg) starting from the 2nd 
day post-surgery and continued up to the 28th day. Rats were tested for various 
behavioral paradigms between the 7th and 28th day. Behavioral tests included tests 
for sociability, repetitive behavior, anxiety, depression, novel object recognition, 
and the Morris water maze test for perseverative behavior. Biochemical tests for 
oxidative stress, mitochondrial complexes, TNF-α, and MMP-9 were also assessed. 
The findings of this study suggested that MMP-9 activation resulted in mitochon-
drial dysfunction and inflammatory cytokine release leading to the development of 
phenotypic profile similar to that present in ASD. Resveratrol (5, 10, and 15 mg/kg) 
dose dependency restored characteristic neuropathological, behavioral, and mito-
chondrial dysfunction in PPA-administered rats induced with ASD. Therefore, res-
veratrol can be explored clinically as a neurotherapeutic agent for ameliorating the 
neurobehavioral, biochemical, and molecular alterations occurring in ASD.

7  Naringenin: Potential of Grapefruit Constituent 
as Neurotherapeutic in ASD

7.1  Naringenin: Structure, Description, and Physicochemical 
Properties

(±)-Naringenin (Fig. 7) is a flavanone abundantly present in grapefruit, oranges, and 
tomato skin [125, 126] (Fig. 8). Naringenin shows inhibition of CYP1A2 isoform of 
human cytochrome P450 metabolizing enzymes [127]. Naringenin exerts an anti-
oxidant effect by reducing oxidative damage to DNA induced by exposure to 
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 radiations in mice as a result of inhibition of the NF-κB pathway [128]. It also 
shows an antihyperlipidemic effect by inhibiting very low-density lipoproteins 
(VLDL) secretion [129]. It also shows antidepressant potential in chronic unpredict-
able mild stress by BDNF signaling [130]. Naringenin has antiproliferative effects 
in breast, colon, and uterus cancer cells as a result of its ability to hamper cell pro-
liferation by binding to estrogen receptors (ER) [131]. It has been observed to have 
antiestrogenic effects by the regulation of palmitoylation of estrogen receptor-α. It 
also showed beneficial effects in osteoporosis, cancer, and cardiovascular diseases 
[132]. Naringenin also plays a role in the suppression of neuroinflammation by trig-
gering the suppression of cytokine signaling 3 expression (SOCS)-3 in glial cells 
[133]. It shows a neuroprotective effect in the middle cerebral artery occlusion 
(MCAO) model of ischemic stroke as a result of NF-κB pathway inactivation [134]. 
Table 3 describes the physicochemical profile of naringenin.

7.2  Naringenin as Neurotherapeutic in ASD: Evidence 
from Preclinical Studies

To this day, there have not been any studies done on the evaluation of neurotherapeu-
tic efficacy of naringenin and its brain-targeted nanocarriers in ASD.  Recently, 
Bhandari et al. [135] explored, in their study, the neurotherapeutic potential of narin-
genin, naringenin-loaded glutathione, and Tween-80 coated nanocarriers in ASD. The 
primary objective of the current study was to evaluate the neurotherapeutic potential 
of naringenin and its brain-targeted nanoformulation in an experimental paradigm of 
ASD. A 1M propanoic acid (PPA) (4 μl) was infused into the anterior portion of the 
lateral ventricle in Sprague Dawley rats to induce an ASD-like phenotype. Naringenin 
in doses of 25, 50, and 100 mg/kg, naringenin-loaded poly(lactic- co- glycolic acid) 

Fig. 7 Structure of 
naringenin

Fig. 8 Source of 
naringenin
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(PLGA) nanoparticles (25 mg/kg), glutathione (GSH), Tween-80 coated naringenin 
nanoparticles (25 mg/kg), and minocycline (50 mg/kg) were given per-orally thrice 
daily (8 hourly) for 29 days. A battery of neurobehavioral tests and biochemical, 
blood–brain barrier permeability, TNF-α, MMP-9, HSP-70, and P-glycoprotein tests 
were performed at different points of time to study the autistic phenotype. The 
Pearson correlation was applied between various neurobehavioral tests and neuroin-
flammatory markers like TNF-α, MMP-9, HSP-70, and P-glycoprotein levels. The 
primary mechanism associated with the neuroinflammatory cascade was mitochon-
drial complex inhibition and generation of ROS as indicated by biochemical markers 
and mediated by MMP. There was also an increase in the plasma levels of circulating 
antibodies to heat shock protein 70, TNF-α, and an upregulation of efflux transport-
ers such as P-glycoprotein (P-gp). Naringenin was effective in its unencapsulated 
form only at a higher dose of 100 mg/kg. In the unencapsulated form, it cannot cross 
BBB efficiently due to its low bioavailability and P-glycoprotein efflux. In the exper-
iment, glutathione and Tween-80 coated naringenin nanocarriers served as multifac-
torial neurotherapeutic agents which restored neuropathology generated as a result 
of PPA administration, by circumventing low oral bioavailability of naringenin and 
enhancing its brain uptake at a low oral dose of 25 mg/kg. Therefore, these brain-
targeted nanocarriers of naringenin can be utilized in clinics as a neurotherapeutic 
for ASD.

The main aim of the research group was to increase oral bioavailability of narin-
genin by developing naringenin-loaded poly(lactic-co-glycolic acid) (PLGA) nano-
carriers and provide sustained drug release. The nanoprecipitation method was used 
to prepare NGN-PLGA nanocarriers that were coated with 1% polysorbate 80 or 1% 
glutathione to produce Tween-80-NGN-PLGA or GLU-NGN-PLGA nanoparticles. 
The morphology was examined by optical microscopy, florescent microscopy, field 

Table 3 Physicochemical properties of naringenin

S. no. Physicochemical properties

1. Molecular 
formula

C15H12O5

2. Molecular 
weight

272.256 g/mol

3. Chemical name (S)-5,7-Dihydroxy-2-(4-hydroxyphenyl)chroman-4-one, Naringenin
4. IUPAC name (2S)-5,7-Dihydroxy-2-(4-hydroxyphenyl)-2,3-dihydrochromen-4-one
5. Color Off-white powder
6. Physical 

description
Crystalline solid

7. Melting point 251 °C
8. Solubility Sparingly soluble in water and aqueous buffers; soluble in ethanol, 

DMSO, and DMF
9. Log P (polarity) Log Ko/w = 2.52
10. Stability Should be stored in a tightly closed container in a dry and well- 

ventilated place at a temperature of −20 °C
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emission scanning emission microscopy (FE-SEM), and transmission electron 
microscopy (TEM). Particle size and zeta potential of the formulations were deter-
mined using photon correlation spectroscopy. Total drug content and encapsulation 
efficiency (EE) was determined using dialysis membrane, centrifugation method, 
and ultraviolet spectroscopy, respectively. In vitro release studies were performed 
using sample and separate method (SS). Fourier transform infrared  spectroscopy 
(FT-IR), differential scanning calorimetry (DSC), powder X-ray diffraction studies 
(PXRD), and nuclear magnetic resonance (NMR) were carried out to confirm the 
encapsulation of drug into nanoparticles and the coating of nanocarriers with gluta-
thione and Tween-80. Real-time and accelerated stability studies of both nanosus-
pension and lyophilized nanoparticles were carried out at 4  °C and 25  °C for 6 
months. Other studies such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl- tetrazolium 
bromide (MTT) assay, in vivo brain uptake using coumarin-6 loaded nanoparticles 
and confocal laser scanning microscope (CLSM) and single dose pharmacokinetics 
were performed to quantify the drug in the plasma and brain of rats.

It was found that both the coated as well as uncoated nanoparticles were spheri-
cal with particle size less than 200  nm, had high drug content and entrapment 
efficiency, and sustained-release profile with initial burst release and exhibited 
Korsmeyer–Peppas release kinetics with Fickian release mechanism. Optimized 
uncoated and coated NGN-PLGA nanoparticles were characterized using DSC, 
FT-IR, PXRD, and NMR to confirm that naringenin was encapsulated in poly-
meric nanoparticles in an amorphous form and the presence of coating over the 
nanoparticles was confirmed from the shift in characteristic peaks of glutathione 
and Tween-80 in FT-IR and NMR studies. These nanoparticles were stable at 4 °C 
in both nanosuspension and the lyophilized form for 6 months. But only the lyoph-
ilized form was stable at 25 °C as, after 6 months, nanosuspension showed increase 
in size and decrease in entrapment efficiency. The MTT cell viability assay using 
human liver cancer cell line (HepG2) showed that the PLGA nanoparticles were 
nontoxic. In vivo brain uptake studies were done by examining frozen brain sec-
tions after administration of coumarin-6 loaded coated and uncoated nanoparti-
cles. They indicated enhanced uptake for glutathione and Tween-80 coated 
nanocarriers in comparison to uncoated naringenin nanocarriers. Further, single-
dose pharmacokinetic studies showed that there was a significant improvement in 
the relative bioavailability of naringenin from uncoated and coated naringenin 
nanoparticles. This was in comparison to naringenin suspension as well as 
enhanced brain uptake after coating with both glutathione and Tween-80 as indi-
cated by the enhanced brain-to- plasma ratio. Hence, this work has showed that 
PLGA nanoparticles are an efficient delivery system not only for improving oral 
bioavailability of poorly water-soluble drugs such as naringenin but also for 
enhancement of their brain uptake by coating with ligands such as glutathione 
(GSH) and Tween-80. They do so either by inhibiting P-gp efflux, receptor-medi-
ated endocytosis, or the presence of glutathione transporters at BBB. This is part 
of the author’s unpublished data.
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8  Sulforaphane: Potential of Broccoli Constituent 
as Neurotherapeutic in ASD

8.1  Sulforaphane: Structure, Description, 
and Physicochemical Properties

Sulforaphane is chemically known as 1-isothiocyanato-4-(methylsulfinyl) butane 
and this phytochemical belongs to the isothiocyanate group. Sulforaphane is pro-
duced when glucoraphanin is metabolized by the catalytic action of myrosinase. 
Glucoraphanin is a precursor of sulforaphane and is present in vegetables of the 
cruciferous family like broccoli and cauliflower. Isolated by Dr. Paul Talalay and 
Yuesheng Zhang, sulforaphane has been known to show beneficial effect in the 
attenuation of oxidative stress and mitochondrial dysfunction [136, 137]. It is a 
neuroprotective compound and protects hippocampal neurons from apoptotic death 
by free radical generation and oxidative stress [90, 138]. It also has antidiabetic 
[139] and anticarcinogenic effects [140] and helps in the reduction of infarct vol-
ume after ischemic stroke [141]. It acts by action of both the Nrf2-dependent and 
the independent pathways. It is known to activate Nrf2 response element in astro-
cytes [142]. It also upregulates heat shock protein 27 [143]. Table 4 describes the 
physicochemical properties of sulforaphane (Fig. 9).

Table 4 Physicochemical properties of sulforaphane

S. no. Physicochemical properties

1. Molecular formula C6H11NOS2

2. Molecular weight 177.28 g/mol
3. Chemical name Sulforaphane
4. IUPAC name 1-Isothiocyanato-4-methylsulfinylbutane
5. Color Off-white powder
6. Physical description Solid
7. Melting point 68.93 °C
8. Solubility Soluble in DMSO (>5 mg/ml), 100% ethanol, methanol, 

chloroform, and ethyl acetate.
9. Log P (polarity) Log Ko/w = 1.8
10. Stability Should be stored in a tightly closed container in a dry and 

well- ventilated place at a temperature of −20 °C

S

S

C
N

O

Fig. 9 Structure of 
sulforaphane
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8.2  Sulforaphane as Neurotherapeutic in ASD: Evidence 
from Clinical Studies

Singh et al. [144] evaluated the neurotherapeutic action of sulforaphane in young 
men between 13 and 27 years of age, suffering from moderate to severe ASD. This 
was a randomized double-blind and placebo-controlled clinical trial. Patients 
received sulforaphane at a dose of 50–150 μmol/day for 18 weeks and was followed 
by a 4-week period of drug holiday. There were 29 patients of ASD and 15 subjects 
in a placebo control group. They were assessed for their behavior utilizing behav-
ioral rating scales after 18  weeks of treatment. Those receiving placebo showed 
negligible change while there was significant reduction in autistic behavior after 
treatment with sulforaphane for 18 weeks. This was indicated by improvement in 
behavioral scores assessment using behavioral rating scales such as Aberrant 
Behavior Checklist (ABC), Social Responsiveness scale (SRS), and Clinical Global 
Impression Improvement Scale (CGI-I). It was observed that sulforaphane treat-
ment resulted in improvement in social interaction ability and common deficit. 
Hence, sulforaphane present in broccoli can reduce oxidative stress, neuroinflam-
mation, and DNA damage.

Bent et al. [145] conducted an open label study (NCT02654743) to understand 
the antioxidant mechanism of sulforaphane in improving social interaction and 
communication deficit in children suffering from autism. The urine of autistic chil-
dren contains specific metabolites which indicate biochemical and mitochondrial 
dysfunction occurring as a result of gut dysbiosis and neuroinflammation. Bent and 
his team of researchers wished to unearth the potential of sulforaphane in changing 
the metabolites excreted through urine. They enrolled school children suffering 
from ASD in a 12-week study. Fasting urine samples were collected and behavior 
was assessed using behavior scales before starting treatment and after it ended.

9  Bioavailability Issues of Curcumin, Naringenin, 
Resveratrol, and Sulforaphane and the Encapsulation 
of These in Novel Brain-Targeted Delivery Systems: 
Potential and Use in ASD

Dietary phytochemicals have low oral bioavailability. Their bioavailability is depen-
dent on their chemical structures and the dietary form in which they are taken. They 
undergo first-pass metabolism resulting in low oral bioavailability [146, 147].

All four drugs discussed in this chapter have low oral bioavailability. Though all 
of these are absorbed well, they undergo first-pass metabolism and hence require 
higher dose to show effects. There are several documented research reports on novel 
drug delivery systems developed for curcumin [101, 148–151], resveratrol [152], 
naringenin [153–158], and sulforaphane [159]. These research reports indicate the 
increase in oral bioavailability of these drugs after encapsulation in novel drug 
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delivery systems such as PLGA-based nanoparticles, lipid nanoparticles or lipo-
somes or any other method to increase bioavailability. Till date, these systems have 
been developed and evaluated for their use in several neurodegenerative diseases 
such as Alzheimer’s, stroke, Parkinson’s, depression as well as in cancer. But there 
has been no documented literature regarding their use as a targeted delivery system 
for ASD.  In our studies, we have developed glutathione and Tween-80 coated 
naringenin- encapsulated PLGA-based nanocarriers and evaluated their potential in 
ASD [135]. These ligand-coated nanocarriers gave promising results through 
enhanced brain delivery and improvement in bioavailability as compared to unen-
capsulated naringenin. There was a reduction in dose, i.e., similar to the effect 
observed among 25 mg/kg utilizing nanocarriers as observed at 100 mg/kg dose of 
unencapsulated naringenin. The P-gp efflux, enhanced as a result of neuroinflam-
mation, was mitigated by both glutathione and Tween-80 coated nanocarriers. Thus, 
these dietary phytochemicals are a safer alternative for autistic patients and their 
potential as a neurotherapeutic can be enhanced if we develop novel brain-targeted 
delivery systems. It will not only overcome the low bioavailability issues but also 
improve patient compliance by providing sustained action, thus requiring only a 
single dose.

10  Future Prospects of Use of Dietary Phytochemicals 
as Potential Neurotherapeutic in ASD

Immune system deregulation, neuroinflammation, environmental toxicant expo-
sures, oxidative stress, mitochondrial dysfunction and gastrointestinal complications 
are physiological comorbidities occurring in individuals with autism spectrum disor-
ders (ASD) [18, 19, 21, 69] and can worsen behavioral complications. Gastrointestinal 
complications can lead to immune system dysregulation and result in generation of 
oxidative stress due to generation of short-chain fatty acids by abnormal gut flora 
[29]. This leads to synthesis of various pro-inflammatory cytokines and chemokines 
causing activation of microglia. There is an unmet need to develop such neuro-psy-
chopharmaco-therapeutic interventions for ASD that are safer alternatives in com-
parison to the existing drugs which are only meant to mitigate associated symptoms 
of ASD such as anxiety, depression, ADHD, and aggression. To this day, there are no 
therapeutic interventions which target the physiological comorbidities associated 
with ASD, especially gastrointestinal complications and immune system dysregula-
tion. Phytochemicals can act as a useful neurotherapeutic for the attenuation of oxi-
dative stress that initiates mitochondrial dysfunction in ASD. It is clear that curcumin, 
resveratrol, naringenin, and sulforaphane have shown positive results in preclinical 
studies. Currently, clinical studies on sulforaphane and Enhansa® (enhanced absorp-
tion curcumin) have shown positive results in ameliorating behavior and biochemical 
alterations occurring among these individuals [160]. We are now required to explore 
more phytochemicals for their neurotherapeutic potential, both preclinically and 
clinically. These phytochemicals also have low oral bioavailability [161–163]. 
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Blood–brain barrier (BBB) permeability is another important factor which needs to 
be taken into consideration as it prevents the penetration of various neurotherapeu-
tics [164, 165]. There are several ABC efflux transporters across the BBB such as the 
P-gp, encoded by the ABCB1 gene, is responsible for regulating the uptake and 
efflux of drugs across the BBB [166, 167]. Thus, we need to develop such brain-
targeted neurotherapeutics utilizing dietary phytochemicals as they hold enormous 
potential to mitigate various physiological comorbidities associated with autism 
spectrum disorders. Developing such brain-targeted delivery systems will not only 
enhance their therapeutic potential further, but also show sustained action at a lower 
dose resulting in patient compliance.

11  Conclusions

Autism spectrum disorder is a disorder with multifactorial origins. There is an 
involvement of complex genetic mutations and epigenetic changes. It is a complex 
disorder involving behavioral complications and comorbidities such as anxiety, epi-
lepsy, gastrointestinal complications causing gut dysbiosis, oxidative stress, mito-
chondrial dysfunction, and biochemical alterations. The physiological comorbidities 
have the capacity to worsen behavioral and biochemical complications. Till date, no 
neurotherapeutic agent that can ameliorate the physiological comorbidities like gas-
trointestinal complications, oxidative stress, mitochondrial dysfunction, and neuro-
inflammation exist. Dietary phytochemicals provide a new source of hope among all 
the uncertainty surrounding this disorder which currently offers very limited agents 
for therapeutic intervention. The experimental studies discussed in this chapter indi-
cate that dietary phytochemicals such as curcumin, resveratrol, naringenin, and sul-
foraphane hold enormous potential as neurotherapeutic agents for autism spectrum 
disorder. With high healthcare costs and burden on the caregivers of ASD patients, 
these represent a safe and inexpensive approach to mitigate oxidative stress, mito-
chondrial dysfunction, neuroinflammation occurring as a result of gut dysbiosis in 
autistic patients which influence and worsen behavior. Hence, the need of the hour 
is to develop brain-targeted delivery systems for these dietary phytochemicals and 
explore their potential clinically.
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Abstract Autism, or autism spectrum disorders (ASD), is one of the complex 
genetic diseases and its etiology is unknown for majority of the patients. It is char-
acterized by deterioration in social interaction, communication, interests, imagina-
tion, and activities. As autism is a highly heterogeneous disorder, the symptoms can 
vary greatly in each affected individual. Oxidative stress implicates major patho-
genesis of neurological disorders like ASD. Nutrients and dietary supplements play 
an important role in the health of an individual and there are several lines of evi-
dence suggesting the role of dietary factors in the development or pathogenesis of 
ASD. The amino acids supplement has been found to reduce symptoms as they act 
as the precursors of neurotransmitters which in turn may extenuate mental disor-
ders. The biosynthesis of amino acids in the brain is regulated by the concentration 
of amino acids in plasma. Amino acids are also considerable entities as they them-
selves, or peptides consisting of them, have profound antioxidant activities. Dietary 
constituents have an effect on the transport of amino acids across the blood–brain 
barrier (BBB) thus indirectly modulating the therapeutic value of amino acids. 
Among the other factors, voltage-gated calcium channels are directly linked to ASD 
as per results of genetic studies. Malfunctioning of these calcium channels causes 
ASD. The intricate biochemical and molecular machinery contributing to neuro-
logical disorders is still unknown. Here we discuss the preventive role of dietary 
amino acids against and regulation of voltage-gated calcium channels on ASD.

Keywords ASD · Autism · Diet · Amino acids · Neurotransmitters · Antioxidants · 
Blood–brain barrier · Calcium channels · Neurological disorders · Oxidative stress

S. Singh 
Department of Biological Sciences, IISER, Pune, Maharashtra, India 

S. R. Sangam 
Department of Biotechnology, JNTU, Hyderabad, Telangana, India 

R. Senthilkumar (*) 
Department of Biochemistry, Rayalaseema University, Kurnool, Andhra Pradesh, India

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30402-7_24&domain=pdf


648

1  Introduction

According to Johns Hopkins University Bloomberg School of Public Health and the 
CDC 1–2% of children in the USA are affected by neurodevelopmental diseases 
such as ASD and it is characterized by different levels of severity and occurs across 
all ethnic groups. Recent studies have shown that 1 out of 88 children aged 8 years 
will develop an ASD (2012 report that looked at 2008 data), with males more at risk 
than females. In a 2016 report that looked at 2012 data the estimate is 1 in 68 chil-
dren. Blumberg et al. showed that the prevalence of ASD had risen 75% from 2007 
to 2012 in the USA.

Nutrition is one of the key components of one’s mental health and physiological 
well-being. A large number of essential nutrients are provided by our diet while a 
few can be synthesized in the body constitutively or on demand. Several mental 
disorders, where nutrients play a pivotal role, start to take shape at the early stages 
of development. Mutational or genetic disorders cannot be treated completely by 
diet but smart diet plans prove to be promising in the management of symptomatic 
effects and can improve the quality of life by rescuing the phenotype partially. There 
has been increasing awareness of and need for research toward functional foods 
which offer the hope of a better life for patients. Apart from direct contribution 
toward decreasing severity of several pathological conditions, dietary nutrients 
modulate the efficacy of drugs and medication through various means like increas-
ing bioavailability of drugs or facilitating delivery across blood–brain barrier. 
Treatment of neurological disorders is still a challenging task due to poor under-
standing and difficulties in drug-delivery across blood–brain barrier. Amino acids 
have been shown to have health benefits in several neuropsychiatric disorders like 
schizophrenia [1, 2], mood disorders like mania [3, 4], cognitive impairments, and 
autistic disorders [5]. Amino acids modulate the permeability of blood–brain barrier 
and few neuroactive amino acids can further reduce or aggravate neurological 
diseases.

Autism is a neurodevelopmental disorder that had been identified in the early 
twentieth century. However, its exact molecular mechanism or methods for treat-
ment and prevention are still not available [6]. It is a developmental disorder as 
symptoms are observable at an early age. Notably, early-age dietary intake can 
potentially influence the lifestyle and pathogenesis of ASD. Few biochemical stud-
ies have suggested an association of neuroactive amino acids and comorbidities of 
ASD but conclusive implications of neuroactive amino acids on ASD are still lack-
ing [7–9]. Glutamate serum levels are high in ASD subjects [10] while few amino 
acids like methionine, phenylalanine, valine, tryptophan, leucine, and isoleucine 
have been reported to be reduced in ASD patients [11]. Amino acids metabolism is 
also found to be dysregulated in children with ASD and CAMP (Children’s Autism 
Metabolome Project) is currently trying to push toward identification of amino acid- 
based metabotypes as early markers of autism. CAMP’s effort toward mapping 
diagnostic markers has provided us with some concrete clues regarding branched- 
chain amino acid dysregulation and ASD. It has also been reported that ornithine 
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and glutamine metabolism relate more to ASD in males than in females, suggesting 
differential metabolism of amino acids across the different sexes [12]. One of the 
classical studies on Branched-Chain Ketoacid Dehydrogenase Kinase (BCKDK) 
KO mice, showing reduced levels of branched-chain amino acids in the plasma, led 
to autism, gait disorder, and epilepsy in mice. The ASD-like phenotype was par-
tially rescued by feeding the experimental animals with branched-chain amino acids 
[13]. Supplying dietary branched amino acids to human subjects further extended 
this work and it could normalize the levels of branched amino acids in serum [13, 
14]. This work provides strong evidence in favor of the use of dietary amino acids 
as treatment for patients carrying mutation in BCKDK. Other work by Novarino 
group in Austria has shown a strong link between branched-chain amino acid levels 
in the murine brain and ASD [15]. Solute carrier transporter 7a5 (Slc7a5) protein is 
a neutral amino acid transporter enriched at blood–brain barrier and it maintains 
levels of branched-chain amino acids in brain. Homozygous mutation in this gene 
leads to ASD symptoms and the loss of motor coordination, which can partially be 
rescued by injection of amino acids like leucine and isoleucine in Slc7a5 KO adult 
mice [15]. There is growing evidence, based on animal model studies and cohort 
studies on ASD subject matters, that amino acids might help in improving the life-
style of ASD patients and can also be potential biomarkers. Development of bio-
chemical markers will make ASD diagnosis easy, currently done only by trained 
psychiatrists (Fig. 1).

1.1  Types of Autism Symptoms and Disorders Related 
to Autism Types

Among several neurodevelopmental disorders, autism is a lifelong disorder, within 
which patients have impaired communication, repetitive behaviors, hyperactivity, 
and increased interest in a particular subject. Symptoms can be seen at early stages 
of childhood, i.e., approximately 2–3 years. Autism severity and progression is con-
tributed to by both complex genetic predisposition and environmental factors. It was 
identified as a psychological disorder in the early twentieth century and was often 
confused with schizophrenia. Swiss psychiatrist Eugen Bleuler used “autism” to 
refer to a set of schizophrenia-related symptoms [16]. Autism is a Greek word origi-
nating from the word “autos” meaning “self.” Given its origins, this name was prob-
ably chosen as patients exhibited poor social interaction and were acting withdrawn 
from society [16]. Further research and identification of patients lead to the expan-
sion of autism into autism spectrum disorder that broadly includes three different 
sets of developmental disabilities, namely, autistic disorder, Asperger’s syndrome, 
and pervasive developmental disorder not otherwise specified (PDD-NOS) or atypi-
cal autism [17]. Patients with autistic disorder exhibit classical autism symptoms 
like delayed learning of language, communication, and social skills with significant 
level of intellectual disability. They develop very deep interest in some topics and 
exhibit unusual behaviors.
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The second classification under autism spectrum disorder is Asperger’s syn-
drome, reported independently by Hans Asperger—Austrian pediatrician—in 1944 
[18]. Asperger noted behaviors similar to autism in his subjects but the severity of 
symptoms was less and intellectual abilities were uncompromised or rather increased 
in some of them [19].

Fig. 1 Differnt signs of autism infographic
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The third type is pervasive developmental disorder not otherwise specified or 
atypical autism. Individuals belonging to this group do not show all symptoms of 
autistic disorder or Asperger’s syndrome. Deficits are mostly limited to social and 
communication skills but do not meet all the criteria to qualify for specific pervasive 
development disorder.

1.2  Prevalence of Autism Across Age, Race, and Sex

According to the WHO, it is estimated that, on an average, 1 in every 160 children 
has ASD across the world, but these numbers are inaccurate due to the lack of any 
available data from low-economy and developing countries. Improved awareness, 
diagnostic tools, and criteria have caused a gradual increase in the number of ASD 
cases reported year by year. Individuals with ASD often do not have any physical 
characteristics that differentiate them from healthy individuals. It can be diagnosed 
on the basis of their behavior, communication, and socially withdrawn nature. 
Centre for Disease Control and Prevention (CDC) is actively tracking the preva-
lence of ASD across USA since 1998 through its active surveillance system of The 
Autism and Developmental Disabilities Monitoring Network (ADDM) [20, 21]. A 
15% increase in the prevalence of autism was reported: from 1 out of every 68 chil-
dren in 2014 to 1 in 59 children in 2018 across the USA. Getting the exact statistics 
of its prevalence in developing countries is difficult due to the lack of any such 
programs and active affordable diagnosis for such disorders [22] (Fig. 2).
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Fig. 2 ASD prevalence data obtained from CDC website. Plotted here is the year-wise prevalence 
rate of ASD, i.e., one patient with ASD diagnosis per fixed number of population
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The ADDM survey in 2014 also found ASD to be four times more likely to occur 
in males than in females and in non-Hispanic than Hispanic children. Within this 
population, it was more prevalent among non-Hispanic white children compared to 
non-Hispanic black children. Intellectual impairment was highly variable among 
subjects across race, sex, and ethnicity [22]. These numbers provide an idea about 
the prevalence of ASD but these may be far less than the actual numbers as tracking 
ASD is quite challenging due to the variability of symptoms across sex, race, and 
ethnicity. There are also the issues of significant overlap of symptoms with other 
psychiatric disorders, changes in diagnostic criteria, and lastly due to the paucity of 
any robust biochemical diagnostic marker [23]. The Diagnostic and Statistical 
Manual of Mental Disorders, Fifth edition (DSM-V) did away with the social and 
communication subtypes of DSM-IV-TR and brought them into one combined 
domain. As per the DSM-V, individuals with ASD must meet all three criteria under 
the domain of social communication and interaction and at least two of the four 
criteria under the restrictive/repetitive behavior domain. Social communication and 
interaction domain includes following deficits [24]:

 1. Deficits in social–emotional reciprocity
 2. Deficits in nonverbal communicative behaviors
 3. Deficits in developing, understanding, and maintaining relationships.

Four criteria included in restrictive and repetitive interaction includes:

 1. Repetitive speech or motor movements
 2. Insistence or sameness
 3. Restricted interests
 4. Unusual response to sensory input.

2  Dietary Food

2.1  Functional Food and Diet: The Relation to ASD

Functional food helps improve health. It is a kind of food in which a new ingredient 
can be added to a food and the new product thus acquires a new function aiding 
health promotion or disease prevention. Functional foods are one of the fastest 
growing segments of the food industry. In some countries, functional foods have 
already become part of the dietary landscape. Functional foods reduce the risk of 
chronic diseases and have physiological benefits beyond the traditional nutrients it 
contains [25, 26].

The American Dietetic Association (ADA) defines functional foods as foods 
“that include whole foods and fortified, enriched or enhanced foods that have a 
potentially beneficial effect on health when consumed as a part of varied diet on 
regular basis, at effective levels.” The ADA breaks down functional foods into four 
categories: conventional foods, modified foods, medical foods, and foods for spe-
cial dietary use [27].
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2.1.1  Conventional Foods

Conventional foods are the most basic of the functional foods as they have not been 
modified by enrichment or fortification; they are still in their natural state. Most 
whole fruits and vegetables fall into this category because they are rich in phyto-
chemicals such as lycopene and lutein as well as other beneficial compounds 
[28, 29].

2.1.2  Modified Foods

Modified foods have been enriched, fortified, or enhanced with nutrients or other 
beneficial ingredients. Calcium-fortified orange juice, folic acid-enriched breads, 
and margarine enhanced with plant sterols are functional foods that have been mod-
ified. Energy drinks that have been enhanced with herbs such as ginseng and gua-
rana, and other potentially controversial foods also fall into this category [30, 31].

2.1.3  Medical Foods

The FDA defines medical food as “food that is formulated for consumption or 
administration entirely under the supervision of a physician and is intended for the 
specific dietary management of a disease or condition for which distinctive nutri-
tional requirements, based on recognized scientific principles, are established by 
medical evaluation” [32, 33].

2.1.4  Foods for Special Dietary Use

Foods for special dietary use are similar to medical foods but they are available 
commercially and do not require the supervision of a healthcare provider.

2.2  Nutritional Deficits of Autism

Impairment in social interaction, communication, behavior as well as sensory chal-
lenges are prominent features of ASD.  Substantial evidence supports benefits of 
specific behavioral, educational, and some pharmacologic interventions for children 
with ASD. However, given the limited availability of treatment in improving core 
and associated symptoms of ASD, substantial challenges in accessing evidence- 
based treatment approaches and perceptions regarding lessened risks of treatment, 
many families pursue dietary and nutritional approaches as components of treat-
ment. With limitations in the existing empirical evidence, families and providers 
alike often struggle to understand the safety and potential benefit of such approaches 
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[34, 35]. Evidence supporting specific theories, however, is lacking. Studies have 
also explored differences in nutrient status in children with and without ASD and 
potential correlations with ASD symptoms as well as the effects of vitamin supple-
mentation. The results of these studies have been inconclusive [36].

2.3  Amino Acids and Other Natural Compounds  
for Preventive Effects

Milk and dairy products have been found to be beneficial in ASD as they contain 
bioactive peptides, probiotic bacteria, antioxidants, vitamins, specific proteins, oli-
gosaccharides, organic acids, highly absorbable calcium, conjugated linoleic acid, 
and other biologically active components [37, 38].

2.3.1  Omega 3 Fatty Acid Supplementation

Not much evidence supports the effectiveness of omega 3 supplementation in 
improving core or associated ASD symptoms. Three randomized controlled trials 
(RCTs) of omega 3s versus placebo reported no significant group differences on 
most measures of challenging behavior, communication, language, and adaptive 
behavior. One study reported significantly improved scores in the placebo group 
compared with the omega 3 group in externalizing behaviors after 6 months of treat-
ment and another reported a significant improvement in parent ratings of stereotypy 
and lethargy in children receiving omega 3 supplements compared with those 
receiving placebo, teacher ratings were not significantly different. Another RCT of 
dietary docosahexaenoic acid (DHA) supplementation versus placebo reported 
improvement in parent-rated social skills in children receiving placebo versus those 
receiving DHA, while teachers rated communication as improving more in the 
treatment group compared with placebo. Scores on other measures did not differ 
significantly between groups [39–41].

2.4  Digestive Enzyme Supplementation

Evidence is inadequate to assess the effects of short-term digestive enzyme supple-
ments. Two RCTs addressed digestive enzyme supplements compared with pla-
cebo: one evaluated a proteolytic enzyme supplement (Peptizyde) and the other, a 
digestive enzyme supplement (Neo-Digestin); both supplements contained papain 
and pepsin or peptidase. The Peptizyde RCT reported no significant differences in 
measures of behavior, sleep quality, or gastrointestinal symptoms and no significant 
differences in adverse effects. In a 3 month trial of Neo-Digestin versus placebo, 
symptom severity scores improved significantly in the treatment group compared 
with placebo [42, 43].
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2.5  Other Supplements

Two RCTs addressed methyl B12 supplementation. Clinical Global Impression 
(CGI) scores improved significantly in the methyl B12 group in one RCT but stud-
ies reported few other significant group differences in measures of behavior or com-
munication. Two RCTs of levocarnitine reported improvements in symptom severity 
in the levocarnitine group compared with placebo, but scores on other behavioral 
measures or adverse effects did not differ between groups. In the second RCT, 
symptom severity did not differ between groups after 6 months of treatment [44].

3  Amino Acids

Eating a variety of vegetarian and animal proteins throughout the day fulfills the 
daily need for our body’s amino acids. Amino acids are the building blocks of pro-
teins in our body. Our body can synthesize certain amino acids, but others, called 
essential amino acids, must come from protein-containing foods in our diet. We rely 
on amino acids to build and repair tissues, digest food, for the formation and func-
tion of enzymes, and to transport molecules like oxygen throughout our body [45].

3.1  Neuroactive Amino Acids

Neuroactive amino acids play an important role in central brain functions based on 
their availability, metabolism, and/or receptor activity. They are associated with the 
pathogenesis and/or pharmacotherapy of several psychiatric disorders that have 
symptoms, such as cognitive impairment and problems with social interactions, in 
common with ASD. Other amino acids could also be involved and hence, it will be 
important to conduct comprehensive studies in which a number of these amino 
acids are investigated simultaneously. Due to the potential role of neuroactive amino 
acids in the pathogenesis and treatment of ASD, monitoring changes in their con-
centrations in body fluids is also important in the case that they are relevant to early 
diagnosis and intervention among patients with ASD [10, 46, 47].

4  Voltage-Gated Calcium Channels Function/Malfunction 
in ASD

ASD is a syndrome that affects normal brain development and is characterized by 
impaired social interaction, verbal and nonverbal communication and repetitive, 
stereotypic behavior. ASD is a complex disorder arising from a combination of 
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multiple genetic and environmental factors that are independent from race, ethnic-
ity, and socioeconomical status. The high heritability of ASD suggests a strong 
genetic basis for the disorder. Additionally, growing evidence has revealed the role 
of various ion channel gene defects (channelopathies) in the pathogenesis of autism. 
Indeed, recent genome-wide association, and whole exome- and whole-genome 
resequencing studies have linked polymorphisms and rare variants in calcium, 
sodium, and potassium channels and their subunits with susceptibility to ASD, 
much as they do with bipolar disorder, schizophrenia, and other neuropsychiatric 
disorders. Moreover, animal models with these genetic variations recapitulate endo-
phenotypes considered to be correlates of autistic behavior seen in patients. An ion 
flux across the membrane regulates a variety of cell functions, from generation of 
action potentials to gene expression and cell morphology. Thus, it is not surprising 
that channelopathies have profound effects on brain functions [48–51].

Voltage-gated calcium channels (VOCC) are among the factors linked to ASD, 
shown by results of genetic studies. Mutations of nearly all pore-forming and some 
auxiliary subunits of VOCC have been revealed in studies investigating ASD patients 
and populations. Though there are only few electrophysiological characterizations 
of VOCC mutations found in autistic patients, these studies suggest their functional 
relevance. Ion channel subunits comprise of the single largest gene family underly-
ing disorders of heart, muscle, and brain and the most frequently tested for precision 
clinical diagnosis of a broad phenotypic spectrum of central nervous system dis-
ease. These disorders collectively constitute an enormous public health burden, with 
a greater number of diminishing life years than cancer. The significance of each 
variant, which may spell the difference between lifelong disability and sudden 
death, requires the most accurate functional interpretation to assign causality, stimu-
late drug discovery, and guide the use of gene variant-specific therapies. Chromatin 
modification/transcription regulation, MAP kinase/cellular signaling, and neuronal 
development/axon guidance pathways are involved in ASD with variation of copy 
number and deleterious single nucleotides variations [52–58] (Table 1).

5  Conclusion

Amino acids are the chemical building blocks of key neurotransmitters that act on 
the brain to influence mood and behavior. For this reason, proper balance of these 
nutrients is essential for healthy emotional and cognitive development in children. 
NeuroScience’s Targeted Amino Acid Therapies provide patients with amino acid 
supplements specifically formulated to rebuild depleted inhibitory transmitters, 
while simultaneously supporting healthier levels of excitatory neurotransmitters, to 
help children pay attention and improve their cognitive, speech, and social skills. 
ASD is not a simple pathology and is associated with a large spectrum of other 
diseases. In addition to this, defective regulation of ion flux through the cell mem-
brane caused by altered kinetics of ion channels and transporters appears to cause 
an imbalance of excitation/inhibition in neural function. This may lead to defective 
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neuronal circuit formation and physiological response. Restoring ion dynamics to 
their physiological equilibrium may represent a promising therapeutic strategy for 
this neurodevelopmental psychiatric disorder.
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Table 1 Calcium channels and calcium channel subunits implicated in ASD (adapted from [59])

Protein Description Normal function Disease association

CACNA1C Voltage-regulated 
L-type calcium 
channel, alpha 1C 
subunit

Regulates entry of Ca2+ into excitable 
cells: muscle contraction, hormone/
neurotransmitter release, gene 
expression, cell cycle

Timothy syndrome, 
ASD, psychiatric 
diseases

CACNA1D Voltage-regulated 
calcium channel, 
alpha 1D subunit

High-voltage activated, long-lasting 
calcium activity

Sinoatrial node 
dysfunction and 
deafness, ASD, 
psychiatric diseases

CACNA1E Voltage-regulated 
R-type calcium 
channel, alpha 1E 
subunit

High-voltage activated, rapidly 
inactivating

ASD, psychiatric 
diseases

CACNA1F Voltage-regulated 
L-type calcium 
channel, alpha 1F 
subunit

Regulates entry of Ca2+ into excitable 
cells: muscle contraction, hormone/
neurotransmitter release, gene 
expression, cell cycle

ASD and X-linked 
congenital 
stationary night 
blindness

CACNA1G Voltage-regulated 
T-type calcium 
channel, alpha 1G 
subunit

Regulates entry of Ca2+ into excitable 
cells: muscle contraction, hormone/
neurotransmitter release, gene 
expression, cell cycle

ASD; intellectual 
disability; juvenile 
myoclonic epilepsy

CACNA1H Voltage-regulated 
T-type calcium 
channel, alpha 1H 
subunit

Regulates neuronal and cardiac 
pacemaker activity

Familial autism; 
childhood absence 
epilepsy

CACNA1I Voltage-regulated 
T-type calcium 
channel, alpha 1I 
subunit

Characterized by a slower activation 
and inactivation compared to other 
T-channels

Possibly implicated 
ASD

CACNA2D3 Voltage-regulated 
calcium channel, 
alpha 2/delta 3 
subunit

Accessory calcium channel subunit; 
regulates entry of Ca2+ into excitable 
cells

ASD

CACNA2D4 Voltage-regulated 
calcium channel, 
alpha 2/delta 4 
subunit

Accessory calcium channel subunit; 
regulates entry of Ca2+ into excitable 
cells

Gene deletion along 
with CACNA1C 
leads to ASD

CACNB2 Accessory calcium 
channel beta-2 
subunit

Contributes to the function of calcium 
channels. Modulates voltage 
dependence of activation and 
inactivation and controls trafficking of 
the calcium channel family

ASD, psychiatric 
diseases
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Abstract Autism spectrum disorder (ASD) is a developmental disorder that influ-
ences communication and behavior. Numerous researches propose that genes can 
act together with manipulations from the environment to affect development in 
ways that lead to ASD. The broad range of issues facing people with ASD means 
that there is no single proper drug and treatment for ASD. Numerous shortcomings 
associated with the present conventional therapeutic strategies have forced 
 researchers to venture into alternative natural sources for effective compounds. The 
marine environment has emerged as an alternate search environment due to its ver-
satile conditions where organisms employ various biodefense mechanisms for their 
survival. Ascidians are an excellent source for unique bioactive compounds with 
nutritive and therapeutic content and it still holds credit for being an underused 
source from marine animals. Bioactive compounds isolated from ascidians have 
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various commendable biomedical applications due to their unique chemical struc-
tures. The present chapter will focus on the potential of bioactive compounds 
derived from ascidians for the treatment of the neurologic disorder—ASD.

Keywords Marine environment · Ascidians · Alkaloids · Neuroprotection · Autism 
spectrum disorder

1  Introduction

Autism spectrum disorder (ASD) covers a range of neurodevelopmental disorders 
involving deficits in social interaction with self-focus, communication, and nonso-
cial features such as restricted and stereotyped behaviors [1, 2]. ASD poses great 
challenges for both afflicted individuals and their caregivers or family, impacting 
their ability to participate in standardized education, have meaningful peer interac-
tions, hold employment, and overall deterioration in the basic quality of daily life 
(Fig. 1) [3]. The symptoms of ASD are categorized into two types: the primary and 
the secondary symptoms. The primary symptoms include reduced language skills 
and social interaction and the presence of repetitive and stereotypic behaviors [4, 5] 

Fig. 1 Autistic spectrum disorder. ODD oppositional defiant disorder, ADD attention deficit 
disorder, ADHD attention deficit hyperactivity disorder
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while secondary symptoms include self-injury, hyperactivity, aggression, depression, 
and co-occurring psychiatric disorders (anxiety) [6]. Due to a combination of higher 
incidence and/or improved screening, the rate of ASD diagnosis also appears to be 
increasing rapidly in all countries where prevalence studies have been conducted. 
Globally, ASD now affects at least one out of roughly every 100 children [7–9], 
and one out of every 68 children in the USA [10]. Thus, early ASD diagnosis and 
effective treatment, combined with an understanding of its association to the child 
or infant neurocognitive development are of critical concern for both science and 
public health.

2  Early Intervention

When the diagnosis is made, parents are urged to start early intervention. This con-
sists of applied behavioral analysis (ABA), speech therapy, occupational therapy, 
psychomotor therapy, and special education. Toddlers should be placed in regular 
day care to increase interaction with neuro-typically normal children. This  emphasis 
is due to the neural plasticity still present at this age [11] and early intervention in 
autistic patients between the ages 18–48 months has a major positive effect on later 
outcomes.

Speech therapy produces improvement in communication skills. It is most effec-
tive when the therapist adopts a collaborative approach including the family, peers, 
teachers, and special educators. It is often advised to limit the use of language to just 
one at home and at school. Occupational therapy promotes self-care skills, organi-
zation, and attention and play skills. Sensory integration remediates deficits in neu-
rological processing of sensory information, thereby improving adaptation of the 
child to the environment [12].

3  Pharmacotherapy for Autism

Many drugs have been investigated for the alleviation of symptoms. While only few 
drugs have proven to be useful, many others are still undergoing in clinical trials. In 
several controlled studies, risperidone proved to be efficacious in treating irritability 
and aggression in ASD patients of all ages. Risperidone is FDA approved for the 
treatment of irritability in ASD children and adolescents [13]. One multicenter, 
double-blind placebo controlled trial conducted by McCracken et al. assessing ris-
peridone use for irritability in ASD showed a 69% response rate, with more efficient 
reduction of irritability, stereotypic behaviors, hyperactivity, and noncompliance, 
particularly when combined with parent training [14].

Aripiprazole (known as Abilify), a third generation antipsychotic drug used for 
the treatment of schizophrenia, major depression, and psychosis, has also been 
approved by the FDA for use in the treatment of irritability in individuals with 
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autism. Randomized controlled trials using aripiprazole in autistic patients resulted 
in less irritability, hyperactivity, and stereotypies compared to placebo. Side effects 
included weight gain, tremors, and sedation [15].

4  Marine Environment

There has been recent spike in the interest in drug discoveries based on natural 
products, leading to the exploration of the marine resources. Covering above 70% 
of the earth’s surface, the marine environment represents the largest unexplored, 
wealthy resource for the exploration of natural products in the treatment of various 
diseases and disorders [16]. The marine environment contains more than 200,000 
organisms and has survived the unusual conditions of low to zero light, high pres-
sure, high or low temperature, and high salt content. The unique conditions require 
marine organisms to produce a wealth of chemical compounds for adaption [17] 
that have not been found in terrestrial creatures. Natural products have been part of 
the well-known pharmacological sources for the past 50 years and these bioactive 
compounds are derived from terrestrial and marine resources such as plants, ani-
mals, or microorganisms [18]. The marine environment is structurally diverse with 
unique pharmacologically active compounds along with a number of novel metabo-
lites that carry beneficial pharmacological properties. Some of the most interesting 
marine creatures include bacteria, fungi, algae, sponges, soft corals, tunicates, mol-
luscs, and bryozoans that have been reported to possess numerous biologically 
active compounds, globally [19].

5  Marine Ascidians

Ascidians belong to the phylum Chordata (Class: Ascidiacea). It comprises of more 
than 3000 species reported worldwide [20] with more than 400 species being 
reported just in the Indian coast (Fig. 2, [21]). Ascidians represent the most unique 
invertebrate group of animals commonly investigated by chemists for natural marine 
products [22]. Thousands of compounds were reported in marine ascidians [23]; 
they are made up of more than 80% nitrogen and 70% of nitrogenous compounds 
and are divided into two types of structure-based groups of polycyclic aromatic 
alkaloids and peptides [24]. Ascidians have been reported to have several 
 pharmacologically active compounds like antibiotics, cyclin-dependent kinases, 
cytotoxic compounds and display immunosuppressive activities and inhibition of 
topoisomerases among other activities [25, 26]. A recent update has showed more 
than 300 alkaloids being reported from the ascidians and their occurrence, structural 
type and biological function have been clearly investigated [18]. The notable ascid-
ian compounds are trabectedin (Yondelis®) alkaloids derived from Ecteinascidia 
turbinata and another alkaloid of Plitidepsin (Aplidin®) isolated from Aplidium 
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albicans [27]. The last 40 years have seen massive advancements in drug discovery 
and the development of natural products from marine sources which has subse-
quently grabbed the attention of various pharmaceutical companies and research 
bodies that have the advanced techniques of HPLC, the NMR, and mass techniques 
[28, 29].

6  Extraction and Characterization of Secondary Metabolites 
and Alkaloids

The isolation of secondary metabolites and alkaloids from ascidians uses different 
methods like the Stas-Otto method that involves the distribution of alkaloidal bases 
between aqueous or acid solution and immiscible carbon-based solvent. In another 
common method using water soluble organic solvents, different polar and nonpolar 
solvents were used for extraction [30]. Water or aqueous alcohol method, Soxhlet 
extraction process [31], and Kippenberger’s process are commonly used in the 
extraction of alkaloids [32]. The separation techniques are thin layer chromatogra-
phy (TLC) [33] and the high performance liquid chromatograph technique (HPLC) 
for qualitative and quantitative estimation of alkaloids [34] and high-performance 
thin-layer chromatography (HPTLC) [35]. Structure elucidation can be done using 
different methods like UV spectroscopy [36], IR spectroscopy, nuclear magnetic 
resonance spectroscopy [37], mass spectroscopy (GC-MS and LC-MS) [38], FAB 
(expand), and MALDI-TOF MS [39].

Fig. 2 Some important ascidians collected from the Gulf of Mannar
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7  Sources of Secondary Metabolites and Alkaloids 
from Marine Ascidians

Marine animals and plants have been reported to have different types of secondary 
metabolites due to the environmental and oceanographic conditions they survive 
in. The increasing knowledge of marine natural chemistry, ecology, and biology are 
inspired by the current researcher attracted to drug development. The marine 
resources are wealth resources for new interest for development of new drugs for 
pharmaceutical industries [40, 41]. Marine ascidians are an abundant source of 
toxic secondary metabolites involved in chemical defense. This defense role of sev-
eral secondary compounds of ascidians has been experimentally proven and reported 
by several researchers [42, 43]. Earlier reports of ascidian larvae have shown their 
antipredatory chemical defense properties. Few researchers have also reported that 
adult ascidians and larvae have this chemical defense, particularly from tropical 
ascidian compounds [44, 45]. Tunicates natural products are attracting many chem-
ists and researchers; they contain numerous bioactive compounds like carotenoids, 
macrolides, alkaloids, and tunichromes [46]. Secondary metabolites are not required 
for the development, reproduction, and growth of these organisms and it is essential 
for an organism to adapt to its surrounding environment. This is complemented by 
the need for defense against predators to survive in a particular environment [47].

An intensive research effort during the last 25 years has led to a number of alka-
loids being derived from marine ascidians (Fig. 3). Most of the alkaloids have been 
derived from genus Eudistoma, Pseudodistoma, Ritterella, Synoicum, Lissoclinum, 
and Didemnum [21]. Currently, 300 alkaloid structures were isolated and structur-
ally characterized as ascidians and their occurrence, structural type, and pharmaco-
logical activity have been discussed. The different types of alkaloids reported as 
ascidians are shown in Fig. 4 [24]. The recent trends in tunicates have indicated that 
they are an important and major source of biomedical compounds for metabolic 
disorders. The important alkaloid compounds of aplidin, trabectedin, and other 
alkaloids isolated from tunicates have been identified as new and promising antican-
cer drugs [48, 49].

8  Biological Activities of Secondary Metabolites 
and Alkaloids from Marine Ascidians

8.1  Antioxidant Properties of Ascidians

Reactive oxygen species (ROS), also called oxygen free radicals, have been involved 
in many pathological disorders, especially in diabetes, arthritis, and cancer. Most of 
the ROS have unpaired electron valence or unstable bonds and they originate from 
mitochondrial metabolism. ROS generate oxidative stress and it is associated 
with the aging process and cell death, affecting all major organ systems [50]. 
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Fig. 3 The drug development process from marine ascidians

Fig. 4 Important alkaloids isolated from marine ascidians
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Many research studies support the relationship between oxidative stress and global 
health. These ROS include the superoxide anion radical (O2), the hydroxyl radical 
(OH), the peroxyl radicals (ROO), the alkoxyl radical (RO), and peroxynitrite 
(HOONO). Oxidative species have significant damaging potential to biological 
targets with different reactivity and formation pathways [51].

The higher consumption of nutraceutical diets (plants and marine derivatives) 
that contain valuable antioxidants has been linked with lower disease rates and pre-
ventive protection. Marine alkaloids have been used to treat oxidative stress [52]. 
The aromatic organic compound of prenylhydroquinone derived from the marine 
colonial tunicate Aplidium californicum has been shown to inhibit superoxide anion 
production in rat alveolar macrophages [53]. Eleven different ascidian alkaloids of 
lamellarins (γ, α, €, I, M, K, and U), lamellarins K-diacetate, lamellarins K-triacetate, 
C-diacetate, and X-triacetate were isolated from Indian ascidian Didemnum obscu-
rum. These alkaloids have reported the DPPH radical scavenging activity. Lamellarin 
γ, lamellarins (K, U, and I), lamellarin γ-monoacetate, and lamellarin C-diacetate 
were shown to have potential scavenging properties with the appropriate IC50 con-
centrations (3.28 mM, 5.63 mM, 5.80 mM, 6.70 mM, 2.96 mM, and 10.87 mM). 
Didemnum albidum ascidians were collected from the Mandapam region. The sec-
ondary metabolites were isolated using organic 70% ethanol. The crude extract of 
ascidian inhibits free radicals of nitric oxide on the RAW 264.7 human monocytic 
cell line [54].

Phallusia nigra ascidian was collected from the Tuticorin Port in India and 
these crude extract of alcoholic and aqueous secondary metabolites (Phenolics 
and Flavanoids) showed potential DPPH radical scavenging activities [55]. The 
two ascidians Eudistoma viride (EV) and Didemnum psammathodes (DP) were 
collected from Hare Island Tuticorin Coast, India and the bioactive metabolites 
were isolated by solvent extraction method. Fractions of partially purified ascid-
ian extracts (using Sephadex LH-20 gel filtration and TLC fraction) were exam-
ined for antioxidant potential and showed high scavenging activity. In a 
nitrogen-centered free radical of DPPH assay, EV fraction and DP fraction showed 
93% and 96% scavenging potential at higher concentrations. Two fractions were 
reduced from the ferric ions complex (Fe3+ to Fe2+) by donating electrons with 
appropriate concentration (2.3 and 2.23 reducing power in 100 μg/mL). The par-
tial purified fractions of ascidians showed maximum scavenging potential on 
Hydroxyl radical antioxidant assay with increasing concentration (96% and 98%). 
In the H2O2 scavenging assay, DP fraction (89%) showed higher radical inhibition 
compared with EV fraction (78%). The secondary metabolite fractions also inhib-
ited the nitrite/nitrate ions (NO2

−/NO3
−) with moderate inhibition (64% and 72%) 

[56]. The brominated analogues of halomadurones C and D and two chlorinated 
pyrenes were derived from Ecteinascidia turbinata associated bacteria Actinomadura 
sp. strain WMMB499  in Florida Keys. Halomadurones C and D showed potent 
nuclear factor E2-related factor antioxidant response element (Nrf2-ARE) activa-
tion. These factors together play an important role in the treatment of neurodegen-
erative diseases [23, 57].
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8.2  Anti-inflammatory Compounds from Ascidians

Inflammation is one of the two factors of pathological and physiological processes 
affected by injury, infection, and stress. The process involves the impairment of the 
immune system when tenacious for a long period of time as activated macrophages 
produce toxic factors [58]. Benslimane et al. [59] discussed the chloromethylenic 
extract of ascidian Aplidium antillense and the mixture compound of natural and 
synthetic of cordiachromene and reported the anti-inflammatory properties in 
induced rat-paw edema methods. Both compounds showed moderated activity at 
IC50 values of 4.6  mg/ml in natural isomer and 15  mg/ml in racemic mixture. 
Previous studies discussed New Zealand biota that have numerous anti- inflammatory 
and natural products from the ascidian Aplidium sp. revealing strong inhibition of 
superoxide production by human neutrophils stimulated with PMA [60, 61]. A 
novel dimeric alkaloid, lissoclin disulfoxide, has been isolated from the South 
African ascidian Lissoclinum sp. and these ascidian alkaloid have been reported to 
show activity against inhibition of IL-8 Rα and IL-8 Rβ receptors with IC50 values 
of 0.6 and 0.82 μM [62].

Appleton et  al. [63] reported information regarding 2, 2, 5-trisubstituted 
imidazolone- containing alkaloids of kottamides A–D derived from New Zealand 
ascidian Pycnoclavella kottae. These novel alkaloids of kottamides D have shown 
anti-inflammatory properties at IC50 values of 2–200 μM and antimetabolic activity 
IC50 at values of 6–10 μM. Novel indole alkaloids of Conicamin were derived from 
the MeOH extract of Mediterranean ascidian Aplidium conicum and they have 
shown histamine-antagonistic activity at a concentration of 10−6 to 10−5 M in an 
ex vivo model with guinea pig ileum [64]. The anti-inflammatory properties of two 
new tricyclic thiazine-containing quinoline quinone alkaloids, ascidiathiazones A 
and B (Fig. 5), were reported from the New Zealand ascidian Aplidium sp. The two 
compounds were inhibited with the superoxide by PMA-stimulated human neutro-
phils with IC50 value of 1.55 ± 0.32 and 0.44 ± 0.09 μM in in vitro. The in vivo 
model (murine model) of gout with oral doses of 25.6 μmol/kg in both compounds 
[61]. The new anti-inflammatory halogenated furanone compound of rubrolide O as 
a mixture of E/Z isomers was derived from the New Zealand ascidians Synoicum sp. 
and rubrolide O showed inhibition against human neutrophil free radical release at 
an IC50 value of 35 μM [65] .

Pearce et al. [66] have discussed the ascidians alkaloids, dihydroxystyrylguani-
dine alkaloid of tubastrine, Orthidines A–C, E and Orthidine F derived from New 
Zealand ascidian Aplidium orthium. These six alkaloids show in vitro production of 
superoxide by PMA-stimulated human neutrophils in a dose-dependent manner 
with IC50 values of 10–36 μM and also conformed to the in vivo murine model of 
gouty inflammation at a concentration of 25 μmol/kg. Pearce et al. [67] reported that 
two tetracyclic alkaloids, Distomadines A and B, were derived from New Zealand 
ascidian Pseudodistoma aureum. The alkaloids Distomadines A demonstrated anti-
fungal activity at 600 μg/ml and also weak activity shown in anti-inflammatory, 
cytotoxicity, antitumor, and antimycobacterial tests.
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Gompel et al. [68] reported that Meridianins, brominated 3-(2-aminopyrimidine)-
indoles derived from the Aplidium meridianum from the South Atlantic, also inhibit 
several protein kinases such as cyclic nucleotide-dependent kinases, casein kinase1, 
cyclin-dependent kinases, and glycogen synthase kinase-3. Meridianins prevent cell 
proliferation and induce apoptosis, a demonstration of their ability to enter cells and 
to interfere with the activity of kinases important for cell division and cell death. 
The anti-inflammatory properties of chondroitin sulfate were derived from ascidi-
ans Styela clava and it has shown inflammation activity in a mouse skin in vivo 
model. Chondroitin sulfate was inhibited by TPA-induced NF-κB activation, 
VCAM-1, COX-2, and inflammation cytokines suppressed by the 1KK and Akt/
PKB signals at a concentration of 2 mg/ml [69]. The Caribbean ascidian Ecteinascidia 

Fig. 5 Important bioactive metabolite reported from the marine ascidians
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turbinate, associated with bacteria of Acremonium sp., was used to isolate three new 
oxepin-containing oxepinamides A–C and its associated bacterial compound, 
oxepinamide A, showed notable anti-inflammatory activities in a topical RTX- 
induced mouse ear oedema assay [23, 70]. The meroterpene derivatives, Rossinones 
A and B, were isolated from an Antarctic ascidian Aplidium sp. and showed anti- 
inflammatory activity in the human peripheral blood neutrophils by inhibiting 
superoxide production [71]. Chan and his colleagues reported anti-inflammatory 
activities of meroterpenoids, 2-geranyl-6-methoxy-1, 4-hydroquinone-4-sulfate and 
scabellone B derived from the New Zealand Ascidian Aplidium scabellum. It inhib-
ited superoxide production by PMA-stimulated human neutrophils in vitro at IC50 
values of 21 and 125 μM [72]. Anti-inflammatory properties of MeOH extract com-
pounds isolated from the ascidian Eudistoma viride and crude compounds are 
exhibited in various concentrations at 200 mg/kg compared to the Diclofenac stan-
dard drug [73]. Another study on same ascidian Eudistoma viride reported anti- 
inflammatory properties of methanol extract concentration at 100 and 200 mg/kg 
body weight in rat models [74]. Bertanha and his colleagues reported that geranyl 
hydroquinone and prenyl hydroquinone derived from the Aplidium sp. exhibited 
in vitro anti-inflammatory assay with activated human peripheral blood neutrophils 
by inhibiting superoxide production [75].

8.3  CNS Depressant Properties of Marine Ascidians

The crude compound of CNS depressant compounds was isolated from Distaplia 
nathensis at a concentration of 100  mg/kg reported by [76]. Meenakshi and her 
coworkers reported that EtOH crude extract isolated from Indian ascidians of 
Microcosmus exasperatus has shown attributed activity of CNS depressant proper-
ties with a concentration at 150 mg/kg [77]. The new tyrosine derivatives, botrylla-
mides K, L with 6 known compounds, botryllamides A–C, botryllamide G and 
perspicamides A and B were derived from the Australian ascidian Aplidium altarium. 
These derivatives were reported to display cytotoxicity against tumor cell lines, 
SF268 (central nervous system), MCF-7 (breast), and H460 (lung) with a concentra-
tion at 10 μM [78, 79]. Rajesh and Murugan [73] discovered CNS depressant com-
pounds from the ascidian Eudistoma viride and reported that they the moderated 
activity of MeOH extract concentration at 200  mg/kg showed the activity of 
90.7 ± 1.2% was comparable to the positive control chlorpromazine (99.4 ± 1.1%).

8.4  Ascidians Use as Functional Foods for ASD Patients 
in the Future

The biodiversity of the marine environment and its associated chemical diversity 
constitute practically an unlimited resource for the development of new bioactive 
products. Marine natural products are a valuable source of bioactive compounds 
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that are responsible for many biological activities such as anti-inflammatory, anti-
oxidant, and neuroprotective properties. Marine organisms like sponges, tunicates, 
bryozoans, molluscs, bacteria, cyanobacteria, fungi, microalgae, and macroalgae 
have been utilized recently in medical biotechnology. Bioactive compounds isolated 
from tunicates (ascidians) appears to be more effective and highly specific for neu-
rological diseases like autism, Parkinson’s disease, and Alzheimer’s. Numerous 
marine products isolated from ascidian are in various phases of preclinical and clini-
cal studies (e.g., Ecteinascidia turbinata ecteinascidin 743 antitumor activity and 
Aplidine from the ascidian Aplidium albicans, which shows promise in shrinking 
tumors in pancreatic, stomach, bladder, and prostate cancers). These marine nutra-
ceutical valuable products offer several benefits like promoting body health, lower-
ing body burdens of toxins, reducing excitotoxicity, improving antioxidant capacity, 
enhancing immunomodulatory system, and minimizing the stress conditions that 
may help to manage, reduce, and prevent ASD symptoms. The marine ascidians 
possess vast bioactive assets like secondary metabolites, proteins, peptides, 
 polysaccharides, polyunsaturated fatty acids, vitamins, minerals and many other 
bioactive compounds (polyphenols, flavonoids, terpenes, alkaloids, etc.). These bio-
active metabolites as valuable nutraceutical food additives and dietary supplements 
to effectively manage ASD. They can be utilized and successfully integrated with 
current treatment to achieve desired interventional results. Omega-3 is a polyun-
saturated fatty acid, present at high concentrations in marine ascidians. Omega-3 
fats play an important vital role in brain development and neurological function. 
Evidence supports the effectiveness of Omega-3 supplementation to reduce and 
control the core or associated ASD symptoms (stereotypy and lethargy). This exper-
imental ascidians work and utility is similar to the exploration of therapeutic bene-
fits of probiotics and enzyme products supplementation being carried out by 
researchers.

Globally, numerous pharmacologically active compounds have been reported 
from ascidians with diverse biological properties such as antibacterial, antifungal, 
anti-inflammatory, antioxidant, antitumor, anticancer, antiviral, antidiabetic, antip-
roliferative, and antiparasitic properties [80]. Palanisamy et al. [78] discussed the 
ascidian metabolites of approximately 580 compounds reported from 1994 to 2014. 
The ascidians families Polyclinidae, Didemnidae, Polycitoridae, and Styelidae are 
the greatest prolific producers of bioactive compounds of potential therapeutic 
activity against diseases [78]. Moreover, ascidians are consumed in various cuisine 
preparations by many countries like France, Italy, Chile, and Korea. The family 
Pyuridae species of Halocynthia roretzi and H. auranlum are cultured and eaten in 
Japan [81]. In Chile, Sweden, and Japan Pyura chilensis is are used as a delicacy by 
humans and in European countries Microcosmus sabatieri and M. vulgaris are used 
for food as well [82]. Karthikeyan et al. [83] discussed the composition and nutritive 
value in solitary ascidian Microcosmus exasperates. The components were for pro-
tein (24.7 ± 3.65%), carbohydrate (4.97 ± 2.82%), and lipids (2.64 ± 1.11%)—val-
ues reported in dry weight—including 18 essential and nonessential amino acids in 
ascidians muscles. The saturated fatty acid (SAFA), monounsaturated fatty acid 
(MUFA), and polyunsaturated fatty acid (PUFA) contents ranged from 0.131% to 
1.612%, 1.304% to 1.546%, and 1.021% to 1.732% of total fatty acids, respectively. 
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Ananthan et al. [84] discussed the ten most commonly available Southeast coast 
Indian ascidians species that have notable amounts of lipids (1.05–2.97%), protein 
(3.8–20.01%), and carbohydrate (2.2–8.29%) where the authors recommended 
them for human consumption especially solitary ascidians. Others reported on the 
nutritional composition of the two ascidians Eudistoma viride and Didemnum psam-
mathodes. The total nutritional content was determined to be the following: lipid 
(0.23 and 0.32  μg/mL) carbohydrate (2.15 and 2.2  μg/mL), protein (13.78 and 
3.62 μg/mL), total free amino acid content (3.2 and 3.9 μg/mL), and crude fiber (9.2 
and 7.9 μg/mL) [85]. On the other hand, the tunic of Halocynthia roretzi and H. ror-
etzi contain total carbohydrate amount of 46% and crude protein content of 40% 
[86]. Another study of the tunic Styela clava revealed rich content of protein 
(8.1 ± 0.1%), lipid (0.4 ± 0.1%), and carbohydrate (16.7 ± 0.2%) [87]. Typically, the 
nutritional content values vary from one region to another and fluctuates with the 
season. Several reports concluded that ascidians have rich nutritional value and used 
as food sources for many countries and it could be useful for the ASD patients in 
the future.

9  Conclusion

This chapter mainly focused on novel secondary metabolites and alkaloids from 
tunicates and treatment for ASD. The bioactive metabolites of the ascidians were 
reported to show various biological properties, i.e., antioxidant, anti-inflammatory, 
CNS depressant, anticancer, antitumor, and antiviral activities. Ascidians have also 
proved to show commendable activity against autism spectrum disorders. In the 
recent years, ascidians have been shown to be potential candidates for ameliorating 
diseases. Further, many studies across the globe reported the beneficial effects of 
ascidians. The current focus on pharmacopoeia warrants the exploration of bioac-
tive molecules with unique structures from marine ascidians for future use in the 
treatment of autism spectrum disorder (ASD).
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1  Introduction

The definition of autism spectrum disorder (ASD) has been modified over time. The 
most recent definition has been provided by the Diagnostic and Statistical Manual 
of Mental Disorders (DSM-5) wherein ASD is a neurodevelopmental disorder char-
acterized by deficits in social communication and repetitive or restricted pattern of 
behavior [1]. They also exhibit atypical patterns of food intake (i.e., they limit them-
selves to selected food types) which is as high as 90% [2, 3]. Food selectivity is the 
most prominent problem among the feeding issues faced by children with ASD [4], 
to the extent that it was initially used as one of the diagnostic measures of ASD [5]. 
This has been identified as a major concern leading to several problems like nutri-
tional deficiency (such as inadequate vitamins and minerals required by the body 
[2]), medical issues (like increased constipation [6]), and poor bone development 
[7]. The consequences of food selectivity are not limited to health issues but also 
behavioral problems like throwing tantrums and strong emotional reactions when 
given the food they do not like to take [8]. This behavioral problem with regard to 
food is of great concern to families of children with ASD as it is associated with 
unhealthy living and unwanted behaviors. Although being picky with food is not a 
deliberate act on their part, studies have related feeding selectivity with their sen-
sory processing disorder such as taste, smell, texture, or sight [9, 10]. One of the 
consequences of unusual attitudes toward food selection may lead to further disso-
ciation and stigmatization in terms of social acceptance. Moreover, this feeding 
problem could be a long-term issue if not corrected at an early age and might con-
tinue to pose the risk of health complications. Therefore, it is imperative to find a 
way of assisting individuals with ASD in selecting the right choice of food which is 
good for their health.

One of the evidenced-based solutions identified by some authors is behavioral 
intervention [11, 12]. This intervention is a way of preventing atypical behaviors in 
children with ASD and children with other behavioral issues. Food selectivity is one 
of the problems faced by children with ASD; refer to this study [13] for other prob-
lem behaviors faced by young children with ASD. There has been proof of a sub-
stantial improvement in feeding habits when behavioral intervention method was 
used by therapists training the children on food types and its benefits [8, 14]. Despite 
the success rate of this method, there is the persisting problem of therapist–client 
ratio in hospitals [15]. According to a report by the Centers for Disease Control and 
Prevention (CDC) of the USA, the prevalence of children with ASD increased from 
1 in 110 children in the year 2000 to 1 in 68 children in year 2018 [16], indicating 
an increasing population that needs to be catered to. Thus, technological support 
that can simulate the real life of a therapist engaging in behavioral intervention at 
the hospital may be a good option. The technology that has the potential to do so, as 
of today, is reality-based technology like virtual reality, augmented reality, and 
mixed reality. Reality-based technology can be used as a medium in creating a 
desired interactive intervention for teaching skills needed to support the deficits of 
children with ASD such as social interaction and communication [17]. Furthermore, 
reality-based technology can be used to automate behavioral therapy sessions which 
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are typically time-consuming. It also provides the opportunity of carrying out the 
intervention at home or any other location [18, 19].

A number of systematic literature reviews have looked at reality-based technol-
ogy and other technologies developed to support the common needs of children 
with ASD in the aspects of communication, social learning, and imitation skills as 
well as other skills (like doing exercise). Examples of these reviews are referenced 
here [20–22]. However, these reviews have not investigated the degree of inclusion 
of the subjects with regard to behavioral intervention and how reality-based tech-
nology can be applied to feeding problems in children with ASD. Therefore, the 
objective of this study is to review recent studies on how reality-based technology 
has been used for children with ASD, specifically for behavioral intervention and 
the impact of such intervention. We will also investigate the type of reality-based 
technology that can support feeding habit intervention in children with ASD.

2  Reality-Based Intervention

Reality-based intervention involves technologies that consider the ecological valid-
ity of an intervention. Ecological validity is a mechanism of using technological 
intervention in the real world while considering possible factors associated with the 
treatment. The importance of the ecological validity of intervention is the general-
ized, pragmatic knowledge gained. Thus, participants are able to usually extend the 
skills learned on a computer to the real world. There are different categories of tech-
nologies used for reality-based intervention. These categories are explained below.

2.1  Virtual Reality-Based Intervention

Virtual reality-based intervention applies virtual reality (VR) tools in the treatment 
of common deficits or training for specific skills that can be generalized and used in 
the real world. The advantage of this technology is the simulation of a desired sce-
nario for users [23]. There are three types of VR. The first is a desktop virtual envi-
ronment where the VR contents are displayed on a monitor and the users interact 
with computer input devices like the mouse, keyboard, etc. Many studies with ASD 
find this safe for children as there is no risk of “cyber-sickness” like feeling nause-
ated or dizzy [24]. The second type is the head-mounted display (HMD); this 
involves the use of oculus rift and a similar device which gives the effect of immer-
sion in the scene used for intervention while viewing. Some studies that have used 
HMD have reported positive results [25, 26], while others have found it inconve-
nient for children with ASD and typical peers [22, 27]. The third type is cave auto-
matic virtual environment (CAVE) which involves full immersion of the users by 
displaying the computer application on a wall. Despite the robustness of the tech-
nique of VR application for intervention, there are scenarios that may be risky for 
children with autism in terms of fear and anxiety [28].
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2.2  Augmented Reality-Based Intervention

This type of intervention makes use of augmented-reality technologies which are a 
combination of real-world and computer-generated 3D animations or objects 
which provide real interactivity [29]. Other studies refer to the combination of 
computer- generated 3D objects and real-world object as mixed reality [20, 30, 31]. 
There are three types of display used with AR applications [32]. The first type is 
the see- through head-mounted display where users can view the real world from 
virtual objects overlay. The second type is the AR display which is a projection-
based display; this allows users to view the virtual and real world from a projection 
without the need to wear any head gear. The third type is handheld display. This 
display is a good alternative as compared to the other types due to its size and por-
tability options. The type of display used will also be based on the type of 
intervention.

3  Review Objectives

The main objective for this study is to review the existing reality-based technology 
intervention for children with ASD. The rest are as follows:

 1. Reality-based technology intervention that is commonly used: There are different 
types of technologies that can be used for reality-based intervention which could 
be virtual reality, augmented reality, or mixed reality. The participants usually 
serve as a major influence on the type of reality-based technology used. Sensory 
processing disorder is common in children with ASD. This disorder affects the 
way they react to touch and visuals. Thus, selecting the type of reality-based 
technology requires the involvement of the children. As such, we want to know 
which reality-based technology is commonly used by children with ASD.

 2. The types of intervention that have been targeted with reality-based technology: 
Intervention varies from one group to another, and different types of technolo-
gies are used. In this context, the goal of intervention usually influences the type 
of reality-based technology to use here. Hence, we would like to know the type 
of intervention that influences the type of reality-based technology used by chil-
dren with ASD.

 3. The types of inclusion used for the children in reality-based interventions: 
Inclusion simply means the type of immersion users experience with reality-
based technology. In general, inclusion is immersive; users interact directly with 
3D objects without conscious awareness of the immediate environment. The sec-
ond type is non-immersive, where the user interacts with 3D objects with con-
scious awareness of the immediate environment. The third type is semi-immersive; 
the user interacts with 3D objects as well as other objects in the environment as 
seen in the projection of 3D content on the wall.
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These three objective statements have guided our search, review, and recommen-
dation of reality-based technology that can support the ecological validity of food 
intake intervention for children with ASD.

4  Search Methods

We have searched three large databases, PubMed, Scopus, and Web of Science, 
using the search terms as virtual reality OR augmented reality OR mixed reality 
AND behavioral interventions AND children AND (autis∗ OR ASD) within the 
span of 11 years between 2007 and 2017. The search result gave us a total of 41 
articles. Fourteen articles were indexed from PubMed, 17 from Scopus, and 10 from 
Web of Science. The search results showed us that the number of studies that used 
reality-based intervention for children with ASD has been rising and falling during 
this 11-year period as shown in Fig. 1. There were 9 articles that were duplicated 
and hence removed, leaving us with 37 articles. To ensure the reliability of our 
article selection in meeting our objective, two authors independently selected the 
articles that meet inclusion criteria. The inclusion criteria used for the selection of 
articles for this study were:

 1. Studies published between 2007 and 2017
 2. Studies that have used any of the reality-based technology for behavioral inter-

vention and evaluated their behaviors in real-world scenario after the 
intervention

 3. Studies whose participants were young children (less than 13 years) with ASD
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Fig. 1 Studies on behavioral intervention using reality-based technology for children with ASD 
retrieved from Scopus, Web of Science, and PubMed with search query (virtual reality OR aug-
mented reality OR mixed reality) AND behavioral interventions AND children AND (autis∗ OR 
ASD) between 2007 and 2017

Reality-Based Technologies for Children with Autism Spectrum Disorder…



684

We reviewed the titles and abstracts of the 32 articles following our inclusion 
criteria to select related papers for this study after which we applied the inclusion 
criteria and added studies referenced from other articles. We excluded studies on 
reality-based behavioral interventions for caregivers to use and have evaluated its 
usability on the therapist rather than the children with ASD. Therefore, we reviewed 
12 full text articles that have reported successful intervention with regard to general-
izing behaviors to real-life scenarios. We then analyzed these articles based on the 
core areas of behavioral interventions and participant inclusion type.

The rise and fall in reality-based technology intervention for children with ASD 
occurred majorly between years 2007 and 2012 when desktop VR application was 
popular. Two years after, there was a clear increase in reality-based application. This 
could be interpreted as a trend of technological advancement and acceptance of 
reality-based intervention like oculus rift, cave automatic virtual environment 
(CAVE), etc. as compared to the popular desktop VR. Additionally, the perceived 
positive impact of these technologies on children with learning and other disabilities 
has increased its applicability. However, there was a fall in the number of studies in 
2015 as compared to 2014 with a 40% decrease. This could be related to the cost of 
acquiring and maintaining reality-based applications. The influx of cheap and 
affordable reality-based tools created opportunities for more people to choose 
reality- based application for training and intervention. Therefore, there has been an 
increase in the number studies using reality-based intervention since 2015 to 2017, 
and we can also predict more studies in this area as a result of its positive impact and 
low cost.

4.1  Data Extraction

Twelve out of 47 articles identified were reviewed to investigate the types of reality- 
based intervention used for children with ASD as well as their inclusion. The idea 
of this investigation is to recommend reality-based technology that enhances behav-
ioral intervention to correct food habits among the children. The complete summary 
of the 12 papers reviewed can be found in Table 1.

4.2  Result

We have highlighted the results obtained from reviewing the 12 articles based on 
our 3 objective statements that guided this study.
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4.2.1  Objective Statement 1: The Reality-Based Technology that Is 
Commonly Used

There are different reality-based technologies that are being used for behavioral 
intervention for improving deficit skills of children with ASD. These technologies 
range from virtual reality using head-mounted displays (HMD), screen-wall projec-
tion, and CAVE to desktop VR.  Another reality-based technology is augmented 
reality or mixed reality which is usually the combination of VR and the real world. 
Some of the devices used vary from smart glasses to mobile displays, etc. We can 
infer from our review that the most common type of reality-based technology used 
was virtual reality as depicted in Fig. 2.

4.2.2  Objective Statement 2: The Types of Intervention that Have Been 
Targeted with the Reality-Based Technology

We have identified that the reality-based technologies are commonly used for inter-
vention in the core deficit area for children with ASD such as social interaction [25, 
34, 41] and communication skills [28, 42]. None has been targeted toward the feed-
ing problem. Hence, there is a need for implementing more reality-based technol-
ogy intervention to teach the importance of taking the right meal and seeing how 
they can tolerate the sensory feeling of food.

4.2.3  Objective Statement 3: The Subjects’ Inclusion Types Used 
in the Reality-Based Interventions

Four inclusion methods using reality-based intevention for children with ASD were 
identified. They are as follows.

Virtual 
Reality

75%

Augmented
25%

Fig. 2 Reality-based 
intervention for children 
with ASD
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4.3  Immersive Inclusion

One of the user’s inclusions in reality-based technology was immersive which was 
used only by 1 of the 12 studies. This inclusion involves direct interaction of the 
user with 3D objects through some other input devices with little or no awareness of 
the immediate environment. The study by [28] used immersive inclusion to train 
children with ASD in improving their joint attention and non-verbal communication 
skills using dolphin-assisted therapy. Joint attention therapy was implemented with 
a virtual dolphinarium scene in an immersive room. This room had a 3D screen 
spanning at 320 degrees and was made to display images from five projectors that 
were mounted on the ceiling. The children interacted with the simulated dolphina-
rium as a trainer using hand gestures with dolphins. This simulation was made to 
teach non-verbal communication skills using hand gestures to the participants. The 
findings from their study showed that among the 15 participants who took part in the 
study, 3 participants were able to actively learn and use gestures with little supervi-
sion, 3 learned the gesture functions but required prompting, and 5 were over-
whelmed by the VR experience and were supported with parental mediation, while 
4 others were overwhelmed by the VR experience despite mediation and support 
from their parents. We can infer from the findings that immersive inclusion may 
require some sort of support for the children to overcome the overwhelming effect 
since 9 out of 15 were affected by the same in immersive inclusion.

4.4  Non-immersive Inclusion

Non-immersive inclusion was one of the other methods used in the reality-based 
intervention where participants interacted with the virtual environment through a 
desktop computer. Seven out of the 12 studies reviewed have used this type of inclu-
sion for improving different behavioral skills such as safe road crossing [36], social 
emotion recognition [34, 38, 39], safety skills against fire [33, 35], and purchasing 
skills [37].

4.5  Semi-immersive Inclusion

Only one of the studies used semi-immersive inclusion for training on behavioral 
skills for improving contextual processing of objects [44] so that they could recog-
nize objects irrespective of the form they were being presented with. This type of 
inclusion used a larger and wider area of display as compared to desktop display. 
The display is projected from a laptop onto the walls surrounding the child to pre-
vent other environmental distractions. The VR application required the child to drag 
virtual objects to a specific location on the laptop screen. Eighteen randomized test 
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items were given to the children to match the pairs of objects with similar functional 
characteristics. The software application and the authors independently marked the 
correct match made by each child, and the score was not shown to the children to 
make sure their learning was not influenced.

4.6  Non-immersive with Real-World Inclusion

The last of the inclusion types used was non-immersive with real-world interaction. 
Three out of the 12 reviewed articles used this method which involved the combina-
tion of virtual reality with real-world interaction to improve behavioral skills. The 
study conducted by [41] emphasized object discrimination using a mobile applica-
tion called “Mobis” with an accelerometer. The children used Mobis which auto-
matically detected objects that the child was viewing, and a message was sent to the 
therapist to identify which object the child had been focusing on. The second study 
taught pretense play using AR objects: three foam blocks, a cardboard box with 
markers attached, and computer with a 24-inch monitor screen on which they 
viewed the AR objects to engage in pretend play [42]. The third study imparted 
emotional self-regulation with AR smart glasses used by the children for a face 
game to identify emotions [43].

5  Discussion

The results showed that reality-based technology for behavioral intervention in chil-
dren with ASD leads to a successful outcome. Additionally, several methods of 
inclusion were used for different trainings. This study identified four different meth-
ods of subject’s inclusion: immersive, non-immersive, semi-immersive, and non- 
immersive with real-world interaction. However, non-immersive inclusion of the 
subjects is mostly used in reality-based intervention for children with ASD. The 
reason for its popularity may be linked to the common effect of “cyber-sickness.” 
We have also seen from the results that the subjects’ inclusion methods were based 
on the type of intervention that is to be achieved. For example, “non-immersive with 
real-world” interaction was used as an intervention for the children to help them 
differentiate one object from another as seen in the study of [41]. This method can 
be justified as the object’s texture in real world will provide more information as 
compared to a visual description alone. Furthermore, it may have been chosen in 
order to prevent the children from “cyber-sickness” or other inconveniences. It is 
important to know that food selectivity in children with ASD is primarily attached 
to the smell, texture, and color of the food [9]. Therefore, a good description of food 
with its nutritional value needs to be thought of with real-world features such as 
texture and smell. Hence, augmented reality-based application using “non- 
immersive with real-world interaction” is recommended for enhancing food habit 
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intervention for children with ASD.  However, there are three main issues high-
lighted by [45], namely learning, pedagogical, and technical issues due to its multi-
tasking content, inflexibility of content, and bulky equipment, respectively. These 
issues are minimal or absent when it comes to intervention tools which are going to 
be used with a therapist or caregivers who are going to be assisting the user during 
the process instead of leaving them to do it on their own.

6  Conclusion

This study reviewed the existing reality-based technologies (i.e., virtual, augmented, 
and mixed reality) used as behavioral interventions for children with ASD to inves-
tigate the technology types and approach that suit the behavioral intervention for 
food selectivity in these children. Studies have shown that feeding problem in these 
children is of great concern as it is risky for their well-being and mental develop-
ment. Hence, behavioral intervention by a therapist has been identified as an 
evidenced- based solution. However, the problem of therapist–client ratio (in the 
context of ASD) still exists. Therefore, the procedures for technological support 
need to be in place. We have seen the different technological approaches of develop-
ing technological intervention for children with ASD using robotics, dedicated sys-
tem, and telehealth [20]. However, the need for reality-based technology is mainly 
because of its potential for ecological validity of the target behavior and repetitive 
functionalities based on the reviewed and analyzed 12 articles that met our inclusion 
criteria. Despite the findings from this study, some of its limitations are the limited 
number of databases used and the fact that our search queries may not have covered 
all the articles on reality-based intervention for children with ASD. However, we 
used some related articles cited from the searched articles in order to increase the 
amount of relevant data.
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