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Abstract

The number of children ages 6 to 21 in the United States receiving special education services under the autism
disability category increased 91% between 2005 to 2010 while the number of children receiving special education
services overall declined by 5%. The demand for special education services continues to rise in disability categories
associated with pervasive developmental disorders. Neurodevelopment can be adversely impacted when gene
expression is altered by dietary transcription factors, such as zinc insufficiency or deficiency, or by exposure to toxic
substances found in our environment, such as mercury or organophosphate pesticides. Gene expression patterns
differ geographically between populations and within populations. Gene variants of paraoxonase-1 are associated
with autism in North America, but not in Italy, indicating regional specificity in gene-environment interactions. In
the current review, we utilize a novel macroepigenetic approach to compare variations in diet and toxic substance
exposure between these two geographical populations to determine the likely factors responsible for the autism
epidemic in the United States.
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Introduction to macroepigenetics with autism as
a case study
Autism is a developmental disorder defined by the
American Psychiatric Association (APA) in the Diagnos-
tic and Statistical Manual of Mental Disorders (DSM).
The condition is considered a pervasive developmental
disorder (PDD) that appears in the first three years of
life and affects brain development impacting social and
communication skills. Autism is defined by a common
set of behaviors, including, but not limited to, observed
deficits in nonverbal and verbal communication, lack of
social reciprocity, and failure to develop and maintain
appropriate peer relationships [1]. Recent estimates sug-
gest that 31% of children with Autism Spectrum Disor-
der (ASD) also meet diagnostic criteria for Attention-
Deficit/Hyperactivity Disorder (ADHD) and another
24% of children with ASD exhibit sub-threshold clinical
symptoms for ADHD [2]. The number of children
affected by this debilitating disorder remains unknown.

As part of this review, we analyze the current United
States (U. S.) Department of Education Special Educa-
tion data to estimate the increase in autism prevalence
from 2005 to 2010.
The cause(s) of autism also remain(s) unknown.

D’Amelio et al. found paraoxonase-1 (PON1) gene var-
iants associated with autism in subgroups of the U. S.
population but not in Italy [3]. They attributed the gene
variation to greater household use of organophosphate
(OP) pesticides in the U.S. compared to Italy. We think a
more plausible explanation may lie in the U. S. food sup-
ply. As part of this investigation, we also reviewed and
analyzed the U.S. Department of Agriculture (USDA)
Food Availability Spreadsheets to identify which foods
are most frequently consumed by Americans and of
those which most frequently contain OP pesticide residue
as reported by the U.S. Pesticide Data Program.
During this investigation, we conducted a literature

review of all studies published on autism since we pub-
lished our first Mercury Toxicity Model [4], which
explains how mercury exposure, nutritional deficiencies
and metabolic disruptions contribute to the development
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of autism. We evaluated all of the relevant studies and
expanded our Mercury Toxicity Model. We then used
the expanded model to compare the U.S. and Italian
populations to determine what, if any, factors could
explain the difference in PON1 gene variation and autism
prevalence between the two countries. We propose the
term “macroepigenetics” to describe the process of exam-
ining food supplies and their impact on body metabolism
and gene function along with what is known about envir-
onmental exposures across populations.
In studying the larger factors outside the gene and

human body that impact gene expression, we can better
explain some of the gene-environment interactions that
create disease conditions such as autism. There is agree-
ment among many in the psychiatry profession that gene-
environment interaction research is essential to under-
standing the etiology of autism and the other pervasive
developmental disorders found in the ASD category [5].
How the scientific community arrives at this understand-
ing is key to solving the problem of rising autism preva-
lence. By demonstrating the macroepigenetic approach to
determine the factors likely responsible for the autism pre-
valence in the U.S., we hope more scientists will follow
our interdisciplinary lead and use macroepigenetics as a
research strategy.

Current U. S. autism prevalence and special
education trends
Before the 1980s the prevalence of autism in the U. S. was
about 0.05% [6]. In 2006, the Center for Disease Control
and Prevention (CDC) reported that the estimated preva-
lence of autism had increased to between 0.6 and 0.7% of
all children [7]. Many scientists and parents believe the
autism prevalence rate in the U.S. is much higher than
these CDC statistics indicate. U.S. government scientists
and collaborators published an article in 2007 indicating
that 1.1% of U.S. children aged 3 to 17 years were cur-
rently diagnosed with ASD [8].
Special education data have been used in the past to

estimate autism prevalence trends in the U.S. [9]. In birth
cohorts from 1975 to 1995, increases in autism were great-
est for annual cohorts born from 1987 to 1992 [9]. From
1992 to 1995, the autism prevalence increased with each
successive year but the increases did not appear as great
[9]. Our review of the current special education data indi-
cates the number of children ages 6 to 21 receiving special
education services under the Autism category has
increased 91% from 2005 to 2010. The number of children
in the Developmental Delay category has increased 38%
and the number of children receiving special education
and related services under the Other Health Impaired
(OHI) category has increased 26% from 2005 to 2010.
Children with a diagnosis of ADHD are included in the
OHI category. These increases are startling given that the

overall number of children receiving special education ser-
vices decreased by 5% from 2005 to 2010. Table 1 provides
a graphical representation of the data obtained from the
Data Accountability Center and analyzed during this
review [10].
Data from the 1997 to 2008 National Health Interview

Surveys conducted by the CDC confirm these findings
of increasing prevalence in autism and developmental
disabilities associated with or sharing the diagnostic cri-
teria for autism [11]. Regardless of the source of data it
seems clear that autism prevalence is rising in the U.S.
compared to other countries, such as Italy, where the
autism prevalence in the general population is estimated
at only 0.1% [12]. Because autism prevalence rates vary
by country, population and geographic location, it is
becoming more evident that gene-environment interac-
tions are at play with dietary factors. The influence of
environment factors on gene expression is primarily
mediated by epigenetic mechanisms, including deoxyri-
bonucleic acid (DNA) methylation along with methyla-
tion, acetylation, ubiquitination and phosphorylation of
histones. Epigenetic regulation is particularly important
during neurodevelopment [13].

A macroepigenetic model to explain gene-
environment interactions in autism
In public health, epidemiology arguably has led the way
in researching gene-environment interactions by studying
how genotypes, environmental exposures and disorder
outcomes occur in the human population [5]. However,
this epidemiological approach has often resulted in con-
tradictory scientific conclusions when its practitioners do
not consider the dietary factors that interact and modu-
late the molecular and genetic mechanisms underlying
human metabolism and brain function [14]. This has
been the case despite the existence of literature from the
field of “nutrigenomics”, which has specifically studied
the effects of food and food ingredients on gene expres-
sion. In identifying the public health and the social and/
or environmental determinants of disease, it seems inva-
lid to study epidemiology without nutrigenomics, or vice
versa. In other words, a more macro-level approach to
unraveling the full range of environmental and genetic
factors contributing to these kinds of neurological disor-
ders ought to include nutrition factors as a component of
the environment. By combining information derived
from both nutrigenomic and epidemiology studies, a
macroepigenetic model has already been developed to
explain some of the gene-environment interactions with
dietary factors that lead to the development of autism
and ADHD [4].
Figure 1 shows the Mercury Toxicity model that pro-

vides a macroepigenetic explanation of how human neuro-
development can be adversely impacted when gene
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expression is altered by dietary transcription factors such
as zinc insufficiency or deficiency, or by exposure to toxic
substances found in our environment, such as the heavy
metals mercury and copper [4]. Elimination of heavy
metals requires the expression of the metallothionein

(MT) gene, which synthesizes the Zn-dependent metal
binding protein metallothionein [15]. With dietary zinc
(Zn) loss and copper (Cu) gain from the consumption of
high fructose corn syrup (HFCS) [16], metabolic processes
required to eliminate heavy metals are impaired in

Table 1 Number of U.S. students ages 6 to 21 receiving special education services by disability category and year

Year Autism OHI ED Speech/Language Developmental Delay (3 to 9 yrs only) All Disabilities

2005 193,637 561,028 472,384 1,157,215 79,070 6,109,569

2006 224,594 599,494 458,881 1,160,904 89,931 6,081,890

2007 258,305 631,188 440,202 1,154,165 88,629 6,007,832

2008 292,818 648,398 418,068 1,121,961 96,923 5,889,849

2009 333,234 678,970 405,475 1,107,428 104,528 5,882,157

2010 370,011 704,250 387,556 1,090,378 109,121 5,822,808

% change (2005-2010) +91% + 26% - 18% - 6% + 38% - 5%

%, percent; +, Increased; -, Decreased; ED, Emotional Disturbance; OHI, Other Health Impaired

Traits/
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Developmental
Syndromes

Fatty Acids

Metallothionein (MT)
Malfunction

-------------------------------

Hg in FishImproved Neuronal 
Functioning & Plasticity

Mercury (Hg) in the 
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Mineral Imbalances -
Zn loss and Cu gain Toxic Metal 
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Glutathione System 
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Figure 1 The original Mercury Toxicity Model. The original Mercury Toxicity Model was published in 2009 by Dufault et al. in the Behavioral
and Brain Functions journal. The model is a flow chart of what can happen in the body when there is exposure to mercury (Hg) from ingestion
of foods (via HFCS, food colors and fish) or inhalation of air. Human neurodevelopment can be adversely impacted when MT gene expression is
altered or suppressed by dietary transcription factors such as zinc (Zn) insufficiency or deficiency. Without proper MT expression and function,
mercury excretion may not be possible and oxidative stress in the brain from mercury insult leads to reduced neuronal plasticity and impaired
learning. Hg in fish is a problem when there is not enough selenium (Se) in the fish to counteract the Hg and the glutathione (GSH) system is
disrupted leading to further oxidative stress.
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children with autism [4]. Mercury has been found in sam-
ples of high fructose corn syrup and is allowable in trace
amounts in certain food colors so long as the concentra-
tion does not exceed one part per million [17,18]. Mercury
(Hg) and specific other heavy metals, including lead (Pb),
copper (Cu), cadmium (Cd), silver (Ag) and bismuth (Bi),
are capable of displacing the Zn atom in the MT protein
molecule [15]. This ‘pathogenic’ displacement of Zn
impairs the MT molecule and its ability to pick up the
heavy metal and carry it out of the body. If the diet is defi-
cient in Zn or the absorption of Zn is impaired, then the
body may not produce enough MT protein to carry and
excrete the heavy metal load [19,20]. Children with autism
may be Zn deficient and often have MT dysfunction
[21-23]. Because of their diminished capacity to excrete
toxic heavy metals, the severity of their condition is asso-
ciated with their toxic metal burden [24]. This macroepi-
genetic model proposes that autism prevalence is related
to the consumption of HFCS and the overall exposure to
Hg in the U.S. [4]. However, other dietary factors asso-
ciated with the consumption of HFCS may further contri-
bute to the development of autism in the U.S.

Additional dietary factors associated with
consumption of HFCS
U.S. per capita consumption of HFCS in 2009 was 35.7
pounds per year [25]. The peak years for annual con-
sumption of HFCS coincided with the peak growth rates
of ASD in California, the only state that reports number
of cases of ASD dating back to the mid-1980s [4]. The
Mercury Toxicity Model shows the HFCS characteristics
most likely contributing to autism include the zinc-
depleting effect that comes from consuming HFCS and
certain food colors found in processed foods, and the
additional Hg exposure that may occur from the low Hg
concentrations sometimes found in HFCS as a result of
the manufacturing process [4,17]. This model can be
expanded to include additional adverse effects associated
with the consumption of HFCS that likely contribute to
the development of autism through PON1 gene modula-
tion and lead intoxication.
U.S. Department of Agriculture (USDA) scientists warn

that when dietary intake of magnesium (Mg) is low, con-
sumption of HFCS leads to lower calcium (Ca) and phos-
phorus (P) balances adversely affecting macromineral
homeostasis in humans [26]. This is an unfortunate find-
ing because there is evidence to suggest that dietary
intake of Mg is low among Americans, most of whom
consume a high fructose diet. In 2003, CDC scientists
reported that substantial numbers of U.S. adults fail to
consume adequate Mg in their diets [27]. Children with
autism were found to have significantly lower plasma Mg
concentrations than normal subjects [28]. Adams et al.
found significant reductions in red blood cell (RBC) Ca,

serum and white blood cell (WBC) Mg and an increase
in RBC copper in autistic children as compared to con-
trols [29]. Recently, USDA scientists reported that the
National Health and Nutrition Examination Survey
(NHANES) data for 2005 to 2006 indicate that overall,
nearly one half of all individuals one year and over had
inadequate intakes of dietary Mg [30]. With a substantial
number of Americans consuming inadequate amounts of
dietary Mg along with HFCS diets, one may predict that
substantial numbers of Americans are likely experiencing
a calcium (Ca) deficit as well.
Insufficient intake of dietary Ca, Mg and Zn, or losses

or displacement of any of these minerals from the con-
sumption of HFCS, may further enhance the toxic
effects of lead (Pb) on cognitive and behavioral develop-
ment in children [31]. A significant and independent
inverse relationship between dietary Ca intake and
blood Pb concentrations was found in 3,000 American
children examined as part of NHANES II [32]. Elevated
blood Pb levels are indicative of Pb intoxication, which
is found in some children diagnosed with autism and
associated with the development of ADHD [33,34]. It
may be that inadequate intake of Ca or Mg combined
with a HFCS zinc-depleting diet increases the risk of
developing autism and ADHD from Pb intoxication.
Inadequate intake of Ca or Mg may further contribute to

these developmental disorders by impacting human serum
paraoxonase-1 (PON1) gene expression. PON1 is a cal-
cium dependent enzyme responsible for OP pesticide
detoxification as well as hydrolysis of the thiolactone form
of homocysteine [35,36]. PON1 is synthesized in the liver
and secreted in blood where it is incorporated into high
density lipoproteins (HDL). The availability and catalytic
activity of PON1 are impaired in many children with ASD
making them more susceptible to the toxic effects of OP
pesticide residues which are most frequently found in
grain [37,38]. Figure 2 shows the expanded Mercury Toxi-
city Model that includes changes both in Pb toxicity and
PON1 activity when dietary intake of Mg is low and con-
sumption of HFCS leads to greater loss of calcium (Ca)
and phosphorus (P), thereby adversely affecting macro-
mineral homeostasis.

PON1 activity and organophosphate exposure in
U.S
One can assert that with the consumption of a HFCS
intensive diet and inadequate Mg intakes, PON1 activity
may decrease, along with resulting Ca losses in geneti-
cally predisposed individuals. Although there are no
human data yet to support this assertion, PON1 activity
in rats decreased when fed a HFCS diet to mimic the
human metabolic syndrome [39]. PON1 activity has been
extensively studied in humans and there are a number of
factors known to modulate or alter PON1 expression
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including, but not limited to, Hg exposure, sex and age
[40,41]. Age plays the most relevant role, as PON1 activ-
ity is very low before birth and gradually increases during
the first few years of life in humans [41]. In one study,
scientists at UC Berkeley found the PON1 levels in many
children may remain lower than those of their mothers
for several years, especially those with genotypes asso-
ciated with decreased PON1 activities [42]. The scientists
concluded that these children may be more susceptible
to OP pesticides throughout their childhood and more
vulnerable to conditions associated with oxidative stress
such as autism [42]. In a different study, scientists at UC
Berkeley found that two-year-old children were less likely
to display symptoms of PDD when their mothers had
higher paraoxonase levels during their pregnancy [43].
Proper function and adequate expression of the PON1
gene is essential both for prenatal development and child

health because exposure to OP pesticides is a common
occurrence in the U.S.
The CDC tracks exposure to OP pesticides or their

metabolites through the National Biomonitoring Pro-
gram (NBP). Exposure data are reported for the popula-
tion as a whole and for subgroups. While most
American groups are exposed to OP pesticides, children
ages 6 to 11 have significantly higher exposures than
adults and are at greatest risk from OP neurotoxicity
[44]. Harvard University researchers recently reported
finding OP pesticide residues in a number of foods fre-
quently consumed by children [45]. The researchers
expressed concern that the children were at times being
exposed to multiple pesticide residues in single food
commodities. OP pesticide exposures occur primarily
from the consumption of foods containing pesticide
residues.
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Figure 2 The expanded Mercury Toxicity Model. Figure 2 shows the expanding Mercury Toxicity Model that includes changes both in lead
(Pb) toxicity and human serum paraoxonase (PON1) activity when dietary intake of Mg is low and consumption of high fructose corn syrup
(HFCS) leads to lower calcium (Ca) and phosphorus (P) balances, adversely affecting macromineral homeostasis. With insufficient dietary intake of
Ca and/or Mg, children become more susceptible to Pb intoxication and OP exposures with decreasing PON1 activity. Pb intoxication and OP
exposures can both lead to oxidative stress in the brain reducing neuronal plasticity.
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It is well known that pesticide exposure can impair
neurodevelopment in children, but recent studies have
found that pesticide exposure during pregnancy can also
cause delayed mental development in children [46]. A
review of epidemiological studies in 2008 found that
prenatal and childhood exposure to OPs impairs neuro-
behavioral development [47]. Higher concentrations of
urinary dialkyl phosphate (DAP) measured during preg-
nancy was significantly associated with lower cognitive
scores in children at seven years of age. Those children
in the highest quintile of maternal DAP concentrations
had an IQ score seven points lower than those children
in the lowest quintile [48]. In a group of newborns with
the highest levels of the organophosphate chlorpyrifos
measurable in their umbilical cord blood, birth weight
averaged 150 grams less than the group with the lowest
exposure [49]. Prenatal pesticide exposure showed defi-
cits consistent with developmental delays of 1.5 to
2 years [49].
Diet is the main source of OP exposure in children.

Under the 1996 Food Quality Protection Act, the U.S.
Secretary of Agriculture is directed to collect pesticide
residue data on commodities frequently consumed by
infants and children. USDA Pesticide Data Program
(PDP) provides the residue data to comply with this law
[50]. We reviewed the PDP data from 2004 to 2008 and
identified the foods most frequently found to contain
organophosphate insecticide residues. In addition, we
obtained the per capita availability data from the USDA
to determine the amount of each food commodity the
average American consumes [25]. The results of our
review indicate that wheat and corn are the commodities
most likely contributing to OP exposure in U. S. children.
Estimated per capita wheat consumption was approxi-
mately 95 pounds per year while estimated per capita
corn consumption was approximately 23 pounds per
year. The primary use of corn is for the production of
corn sweeteners, such as HFCS; however, pesticide resi-
due data were not gathered for this commodity by the
PDP. Table 2 provides a complete breakdown of the
results of this data review.
From Table 2 it is clear consumers are at risk of expo-

sure to multiple OP pesticide residues from consuming
the very same commodity. Cumulative exposures will con-
tinue to occur in the U.S. where OP pesticide use is wide-
spread by the agricultural industry. Although OP pesticide
use is equally widespread in other countries, there is
genetic variation across populations that determine degree
of susceptibility to OP exposure. The PON1 gene variants
associated with autism in subgroups of the U.S. population
but not in Italy could be attributed to the fact that HFCS
consumption rarely occurs in Italy, thereby lessening the
conditions for PON1 modulation.

HFCS consumption and PON1 modulation in
autism in the U.S
In the 27-member European Union (EU), of which Italy
is an original participant, HFCS is known as “isoglucose”
and currently it is rarely consumed by Italians. Ameri-
cans on the other hand consume on average 35.7
pounds per year, which may increase their overall Hg
exposure [17,25]. Figure 3 shows U.S. per capita food
consumption in pounds per year for HFCS beginning in
the early 1970s and increasing throughout the 1980s to
reach a peak between 1999 and 2002. In our previous
publication, we reported the peak years for annual con-
sumption of HFCS in the U.S. occurred within the same
period as when the annual growth rates of autism
peaked in California [4].
American per capita consumption of HFCS has

exceeded 20 pounds per year since 1980 while Italians
consume negligible amounts of the same ingredient. As
was previously mentioned, mercury (Hg) and fructose
may both modulate PON1 activity [39-41]. While exces-
sive fructose exposure in the U.S. may primarily occur
through the consumption of foods containing HFCS,
mercury exposure may occur in a number of ways.
A comparison of common sources of mercury exposure
in the U.S. and Italy may offer a further explanation of
the PON1 gene variation associated with autism in the
U.S. but not in Italy.
In addition to HFCS, primary sources of inorganic and

elemental Hg exposure may occur from consumption of
food colors and preservatives made with mercury-cell
chlorine or chlor-alkali products, seafood consumption,
Hg in dental amalgam, thimerosal in vaccines, and
depending on geographic location, inhalation of Hg con-
taminated air [4,51-54]. Children living near coal-fired
power plants are often exposed to higher levels of Hg in
their breathing air and have a higher prevalence of aut-
ism [55]. Because Hg emissions from coal-fired power
plants are not yet regulated in either the U.S. or Italy,
this particular source of Hg exposure is unlikely to
explain the overall difference in autism prevalence
between these two countries. With respect to the con-
sumption of seafood, use of Hg dental amalgam, thimer-
osal in vaccines or Hg-containing food colors and
preservatives, there is also no appreciable difference
between Italy and the U.S. [56-58]. The only remaining
variable in our model is the excessive consumption of
HFCS by Americans, which results in greater chronic
exposures to both inorganic Hg and, by definition,
fructose [4].
Inorganic Hg may interact with cysteine residues on

PON1 preventing its activation in the liver and impair-
ing the body’s ability to protect itself against OP pesti-
cides and oxidative stressors involved in autism [41].
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Table 2 PDP residue detections by year sampled wi th U.S. per capita consumption data

Year Crop U.S. Per Capita Avail. (lbs.) OP Residue Detected % Samples w/Detects

2004 wheat 94.8 Chlorpyrifos methyl 20.8

2004 wheat 94.8 Malathion 49.4

2005 wheat 94.6 Chlorpyrifos methyl 23.1

2005 wheat 94.6 Malathion 66.9

2006 wheat 95.6 Chlorpyrifos methyl 16.7

2006 wheat 95.6 Malathion 63.0

2007 corn 22.8* Chlorpyrifos 30

2007 corn 22.8* Malathion 37.9

2007 corn 22.8* Pirimiphos methyl 2.4

2007 celery 3.79 Dimethoate 10.8

2007 celery 3.79 Omethoate 16.5

2007 celery 3.79 Malathion 21.2

2007 peaches 2.168 Chlorpyrifos 18

2007 peaches 2.168 Phosmet 36.2

2007 almonds 1.1 Chlorpyrifos 46

2007 almonds 1.1 Phosmet 4.4

2007 almonds 1.1 Dichlorvos 0.6

2007 fresh blueberries 0.384 Phosmet 9.6

2007 frozen blueberries 1.392 Phosmet 36.4

2007 fresh blueberries 0.384 Chlorpyrifos 1.3

2007 frozen blueberries 1.392 Chlorpyrifos 4.5

2007 fresh blueberries 0.384 Malathion 4.9

2007 frozen blueberries 1.392 Malathion 4.5

2008 corn 23.2* Chloropyrifos 17.8

2008 corn 23.2* Malathion 33.7

2008 apple juice 15.93 Phosmet 1.9

2008 rice 14.8 Malathion 4.3

2008 strawberries 3.965 Malathion 24.6

2008 celery 3.79 Dimethoate 9.3

2008 celery 3.79 Omethoate 17.4

2008 celery 3.79 Malathion 19.3

2008 peaches 2.462 Chlorpyrifos 17.2

2008 peaches 2.462 Phosmet 30.7

2008 almonds 1.1 Chlorpyrifos 35.5

2008 almonds 1.1 Dichlorvos 4.3

2008 almonds 1.1 Phosmet 5.9

2008 fresh blueberries 0.526 Phosmet 11.6

2008 frozen blueberries 1.447 Phosmet 22.2

2008 fresh blueberries 0.526 Chlorpyrifos 1.7

2008 frozen blueberries 1.447 Chlorpyrifos 5.6

2008 fresh blueberries 0.526 Malathion 4.4

2008 frozen blueberries 1.447 Malathion 27.8

%, Percent; Avail., Availability; lbs, Pounds; OP, Organophosphate; PDP, Pesticide Data Program; U.S., United States; w, with; * Corn grain only, corn sweeteners
not included
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As noted above, PON1 is responsible for hydrolysis of
homocysteine thiolactone, and plasma PON1 activity is
negatively correlated with homocysteine levels [36,59].
Homocysteine is a metabolic biomarker for oxidative
stress and impaired methylation capacity. A recent study
of the Inuit population found a significant inverse corre-
lation between PON1 activity and Hg levels, as well as a
direct correlation with selenium levels [60]. With
increasing Hg and fructose exposure and reductions in
dietary Ca, one can expect to see reduced PON1 activity
and increasing homocysteine levels in children with
ASD.
Indeed, Pasca et al. recently reported finding that both

PON1 arylesterase and PON1 paraoxonase activities
were decreased in children with autism [61,62]. James
et al. found that children with autism had higher plasma
homocysteine levels than controls but demonstrated sig-
nificant improvements in transmethylation metabolites
and glutathione (GSH) after receiving folate and vitamin
B12 [63]. Patel and Curtis found that in addition to glu-
tathione and B12 injections one to three times per
week, children with autism and ADHD showed signifi-
cant improvement in many areas of social interaction,
concentration, writing, language and behavior when fed
an organic diet low in fructose and free of food additives
and food colors [64].
Mothers of autistic children in the U.S. were also

found to have significant increases in mean plasma
homocysteine levels compared to controls [65]. Schmidt

et al. found that women who took vitamin supplements
during the periconceptional period reduced the risk of
autism in their children [66]. Those women who did not
take vitamins during this period were more likely to
have a child with autism and were at even greater risk
when they had specific genetic variants within one-car-
bon metabolism pathways. This suggests that folate and
other dietary methyl donors may alter epigenetic regula-
tion of gene expression in their children, thereby redu-
cing the risk of autism [66].

Methionine synthase links oxidation to
epigenetics
Epigenetic regulation of gene expression is highly depen-
dent upon methylation of both DNA and histones, and
methylation capacity is in turn dependent upon activity of
the folate and vitamin B12-dependent enzyme methionine
synthase, which converts homocysteine to methionine.
Lower methionine synthase activity decreases the level of
the methyl donor S-adenosylmethionine (SAM) while
simultaneously increasing the level of the methylation
inhibitor S-adenosylhomocysteine (SAH) [67]. The
combined effect of changes in the SAM to SAH ratio,
therefore, exerts a powerful influence over more than
200 methylation reactions, including DNA and histone
methylation [68].
Methionine synthase activity is inhibited by oxidative

stress, and its inhibition results in the diversion of
homocysteine to produce the antioxidant glutathione

Figure 3 U.S. per capita consumption of high fructose corn syrup 1966-2004 . Figure 3 shows the United States (US) per capita
consumption of high fructose corn syrup (HFCS) in pounds per year as calculated by the United States Department of Agriculture (USDA)/
Economic Research Service.
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(GSH), providing an important adaptive response [69].
However, oxidative inhibition of methionine synthase
leads to epigenetic effects via the resultant decrease in
the SAM to SAH ratio and decreased DNA and histone
methylation. Epigenetic changes in gene expression can
recruit further adaptive responses to oxidative stress.
Figure 4 illustrates how these changes may occur when
the body is under oxidative stress from exposure to OP
pesticides, heavy metals, and calcium depleting sub-
stances, such as HFCS. Decreased methionine synthase
activity during oxidative stress also increases homocys-
teine thiolactone formation [70], raising the importance
of PON1. As was previously mentioned, PON1 is essen-
tial for reducing homocysteine levels, which are thought
to be harmful. Elevated plasma homocysteine (tHcy)
levels are associated with genome-wide DNA hypo-
methylation that may carry over from one generation to
the next, increasing the risk of autism [71]. Epigenetic

changes affecting germline cells can give rise to these
transgenerational effects [72]. James et al. found that
parents share similar metabolic deficits in methylation
capacity and glutathione-dependent antioxidant/detoxifi-
cation capacity with their children with autism [71].

Synergistic effect of multiple neurotoxins
Based upon the discussion above, it is clear that methio-
nine synthase activity is crucial for translating changes in
oxidative status into epigenetic effects, and this role is
confirmed by the improved metabolic profile in autistic
subjects given folate and vitamin B12 [63]. This relation-
ship has given rise to the “Redox/Methylation Hypothesis
of Autism”, which proposed that oxidative insults arising
from environmental exposures, such as Hg and pesti-
cides, can cause neurodevelopmental disorders by dis-
rupting epigenetic regulation [73]. The macroepigenetic
Mercury Toxicity Model expanded in this paper provides

Methionine Synthase Links 
Oxidation Stress to  

Epigenetic Regulation 

Methionine 
Synthase 

( + ) ( - ) 

SAM 
SAH 

SAM 
SAH 

Normal DNA Methylation

Normal Gene Expression 

Decreased DNA Methylation 

Altered Gene Expression 

Vitamin B12 Folate 

Oxidative Stress 
w/ HFCS, OP,  or  
Metals -Pb, Hg, 

Cd 

EPIGENETIC 
REGULATION 

 
Normal 

Glutathione (GSH) 
 

Glutathione (GSH)System 
Disruption with Deficit in 

Selenium Availability (Hg>Se) 
and PON1 Inhibition 

tHcy 

Figure 4 Methionine synthase links oxidative stress to epigenetic regulation. Figure 4 shows how exposure to toxic substances, such as
OP pesticides, HFCS, or heavy metals, inhibits methionine synthase through effects of oxidative stress. As a result, decrease of SAM to SAH ratio
will lead to a decrease in DNA methylation and consequently to altered PON1 gene expression.
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additional support for the “Redox/Methylation Hypoth-
esis of Autism” while contributing important insight into
the oxidative stress feedback mechanisms that may occur
as a result of malnutrition resulting from dietary expo-
sures to toxins. The delivery of children exhibiting autis-
tic behaviors might be associated with the prenatal diet
of their mothers. The severity of these behaviors can be
further exacerbated by toxic dietary exposures of the chil-
dren, which can improve with dietary changes aimed at
eliminating these exposures. Children with autism could
well be exhibiting an epigenetic response to several neu-
rotoxic substances at once, including, but not limited to,
inorganic Hg, Pb, OP pesticides and/or HFCS. The com-
bined effect of these substances acting together is likely
greater than the sum of the effects of the substances act-
ing by themselves. This effect likely reduces neuronal
plasticity and impairs learning capacity in autistic
children.

Conclusion
The number of children ages 6 to 21 in the U.S. receiv-
ing special education services under the autism disability
category increased 91% between 2005 to 2010 despite
fewer children receiving special education services over-
all during the same time period. A comparison of aut-
ism prevalence between the U.S. and Italy using the
Mercury Toxicity Model suggests the increase in autism
in the U.S. is not related to mercury exposure from fish,
coal-fired power plants, thimerosal, or dental amalgam
but instead to the consumption of HFCS. Consumption
of HFCS may lead to mineral imbalances, including Zn,
Ca and P loss and Cu gain and is a potential source of
inorganic mercury exposure. These mineral imbalances
create multiple pathways for oxidative stress in the brain
from exposure to OP pesticides and heavy metals, such
as Pb or Hg. Inorganic mercury and fructose exposure
from HFCS consumption may both modulate PON1
gene expression. With a reduction in PON1 activity,
there is a potential for increasing homocysteine levels
which are associated with genome-wide DNA hypo-
methylation that may carry over from one generation to
the next, affecting both neurodevelopment and autism
prevalence.
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